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The difficulties encountered by various authors in connection with the application of the Hill-
determinant method are investigated. The conditions of applicability of the method are deduced.

I. INTRODUCTION

Nonperturbative methods have been extensively applied
to the determination of the spectrum of anharmonic oscil-
lators. ' Among them, the Hill-determinant method
(HDM) has been used with success by various au-
thors. ' However, doubts have recently been raised as
to whether the HDM can work in every case. Flessas and
Anagnostatos have claimed that the HDM was unable to
furnish the correct spectruin of the oscillator x +Ax".
We have shown that their conclusions were based on an
inaccurate analysis of the problem and that the HDM ef-
fectively works in that case. A more serious objection
has been presented by Singh, Biswas, and Dattas which
has been reformulated by Znojil9 and by Chaudhuri. )o It
is the aim of this paper to try to elucidate the conditions
under which the HDM works properly. For the sake of
clarity we shall first concentrate on the example given by
Chaudhuri, i.e., the oscillator ax +bx +cx; then we
shall generalize the results.

II. THE ex~+br +ca~ OSCII.GATOR
(c p 0) (HILL-TAYLOR APPROACH)

A. HDM in trouble

We consider the eigenvalue equation

f"+(E—ax2 —bx —cxs)/=0 .

It is evident that according to the values of the parameters
a, b, and c ~ 0, there is a finite number of negative eigen-
values (eventually zero) and an infinite number of discrete
positive eigenvalues. No eigenvalue can be smaller than
the least value of ax +bx +cx . Equation (1) is of order
two. It possesses two independent solutions which behave

quite differently at infinity along the real axis:

f~„„-exp( ——,c x , bc x )——1 1/2 4 1 —1 /2 2

ancl

It is inviting to make the following subititution in Eq. (1):

/=exp( —4c'~x ,'bc ' x

)/T-

. —

hee transformed equation is written as

p"+2x(p ax )p'+[E+p+(—p a —3a)x ]/=0, —(3)

where a =c '~ ~ 0 and P= ——,
' bc

Equation (3) has no singularity in the finite x plane.
Therefore the function P can be written as

yC 2k+

0
(4)

P —a —(4N —1)a=0 (6)

(where X is some given positive integer) the equation
D =0 is unable to furnish the full spectrum of the oscilla-
tor. In fact, if Eq. (6) holds, D splits in two parts: a finite
XXN determinant whose roots effectively coincide with

where v=O (even states) or v=1 (odd states). Here we
shall concentrate on the even states only. The odd states
are treated similarly. The expansion (4) is typical of a
Hill-Taylor approach. The coefficients Ck obey the
second-order recurrence relation

(2k+1)(2k+2)Ck+)+ [E+p(4k+1))Ck

+[p —a —(4k —1)a]Ck ) ——0 (5)

with k=0, 1,2, . . . , and C l ——O.

The infinite Hill determinant D of the problem is writ-
ten as

1g2
E+5P 3x4

p —a —7a E+9p 5 X 6

E+13P
~ ~ ~ r

~

The principle of the HDM is to identify the roots of D
with the eigenvalues of the problem. That procedure has
never been justified properly and we shall see that this can
induce misleading results.

All the authors dealing with the HDM comment on Eq.
(5) by saying: "The necessary and sufficient condition
that nontrivial Ck exist is that the infinite determinant D
vanishes. " This seems a dangerous extrapolation of a
theorem of hnear algebra about systems of a finite number
of equations. Clearly when the system is infinite, there is
no need for a consistency condition since the forward cal-
culation of the successive Ch is always possible through
Eq. (5). The origin of the condition D=0 which effec-
tively leads to the correct spectrum in many cases must be
found elsewhere. Moreover the condition D =0 does not
seem to include the condition of square integrability of
the wave function so that the current theory of the HDM
seems incomplete in many respec:ts. Chaudhuri' has de-
tailed a counterexample where precisely the HDM fails to
work: he has found that when the coupling constants obey
the relations

b~0
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the correct lowest (even) eigenvalues and a remaining in-
finite determinant whose roots are not real positive num-
bers when b &0. On the other hand, the method works if
b)0.

Practically, the numerical calculation of the roots of D
is performed by truncating D to its kth-order approxi-
mant D' ' and calculating the limits of the roots of D'"'
when k tends to infinity. In the example treated, the pro-
cess appears to diverge when b =0. That the finite XgN
determinant gives the exact lowest eigenvalues is quite
normal: the corresponding wave functions are square in-
tegrable since P is polynomial in this case.

We have found that similar troubles occur with the
HDM, even when no special relation like (6) holds, pro-
vided one has b &0. An example is furnished by the os-
cillator x —2x +2x whose eigenvalues are positive: the
HDM with the model of Eq. (2) is unable to find them.
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B. Explanation of those troubles

We now proceed to establish the following.
(i) If b & 0 the sequence {Ck I, as obtained by the HDM,

leads to a function
~ ~ ~

~ ~ ~ 4

which remains bounded along the whole real axis, so that

g behaves correctly at infinity, like P„„„.
(ii) If b & 0 the obtained sequence I Ck ] leads to a func-

tion P which behaves like

exp( —,
' c '"x'+ —,

' bc -'"x'),
for

I
x

I large, so that P behaves like fd;„This wou. ld ef-
fectively explain why the HDM works in the first case
and not in the second case.

—I

~ ~

1. The meaning of the uanishing condition D =0 gl ~

We first prove that equating the Hill determinant D to
zero amounts to searching for a nondominant solution of
the associated recurrence relation which is consistent with

the initialization C k ——0 (k=1,2, . . . ). The proof re-

quires that we first remind ourselves of the general theory
of linear recurrences. Let us consider a linear homogene-
ous recurrence of order n written as

~k Ck+i+~k Ck+ ' +~k Ck-a+i=0 ~
(~) (n —I) . . . (0)

Let us consider a fundamental system or n independent
solutions Ck" whose asymptotic behaviors are contrasted
with the maximum. For k sufficiently large one has

I
Ck"

I
& ICk"

I
& ICk"'I .

It is well known" that the forward recursion is convenient
for the stable numerical calculation of the dominant solu-

tion Ck" while the backward recursion stably calculates
the dominated Ck"'. That procedure is known as Miller's
algorithm. ' The stable calculation of the intermediate
solutions CI', '. - Ck" " is only possible through a gen-
eralized algorithm which has been studied by Oliver. ' To
calculate the sequence {Ck' ] (i E. 1, , 2. . . , n) one has to
solve the following linear system:

+
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ON THE HILL-DETERMINANT METHOD

The value of K must be chosen large enough to ensure the required number of significant figures in C", . Ck".

n. -logiol Cx Ck /CE Ck (S)

A good estimate of K is generally obtained if Ck" is replaced by its asymptotic behavior in {S).
Applying that algorithm to our problem in the case i =2 (since we are only interested in a nondominant solution), we

obtain the linear system

E+P 2

P —ti —3a E+5P 12

Pi —a —7a E+9P

&0

P —a (4K —1—)a E+P(4K+1)

If we impose the initial conditions C k ——0 (k =1,2, . . . )

we obtain a finite linear homogeneous system. Its non-
trivial solution exists if and only if we require the vanish-

ing of its determinant which is nothing other than the Hill
determinant of the problem.

This achieves the proof

g k "I'(k) ' iexp(ik )( —1)"(px) &M( = const)

for x large and positive.
%e conclude that

2. Asymptotic behavior of the ivove function

Recurrences like {5) have been studied by Birkhoff'
and Birkhoff and Trjitzinsky' who showed that their
solutions are asymptotic to expressions of the type

k a "exp(ak +Pk"+ . )(ink)'.

We have published extended tables of the coefficients
a, iv, a,P, trt, n, r, . . . which are useful in practical exam-
ples. ' In the case of recurrence (5) (which is of order
two} we find two asymptotes:

P

&k
(+c' ) l {k) ' k~exp(+ —'bc k' ),

k

where iv = —(P —a+9a)/(Sa).
If b & 0 it is apparent that ak is dominant and that Pz

is dominated; i.e., one has

Ck -ak and Ck -&k(1) (2)

If b =0 we find that the asymptotes are not contrasted. If
b &0 we observe that ak is dominated and that Pk is
dominant: i.e.,

Ck -Pg and Cg -ak .(i) (2)

By another way we estimate in the Appendix the follow-

ing asymptotic behaviors (p & 0):

0

hence f —gd;„and that

~ pit ~

—g pkx & M
0

so that gtt- /gay.
Clearly the "good" wave function is gati and it is built

with the aid of that sequence of Ck which behaves like

Pk. Here is the clue to the problem: the asymptote Pt, is
dominated solely if b & 0. Therefore in that case only the
HDM is able to construct the well-behaved wave function.
When b &0 the HDM calculates nondominant Ck which
behaves like aq and the derived wave function is not
square integrable. When b=0 there is no contrast be-

tween dominant and nondominant asymptotes of the re-
currence and in such a ease the HDM is known to fail. '6

So the origin of the troubles presented in Sec. II A is
now apparent.

C. TrOQblcs i.cIaoycd

it must not be thought that the HDM is unable to cal-
e~ate the entire sp~tmm of an oscillator of the type
ax +bx +ex even in the case b ~0. Simply, the substi
tution (2) is unsuitable for that purpose because it precise-
ly corresponds to the exact asymptotic behavior of P. The
following substitution allows the HDM to work properly
in that ease:

g k~1 (k) '~2exp(kk'~ )(px) —exp( —, p x +Qx) f= exp( —cox —ox ) g Ckx (even states, o &0) . (9)
0

The Ct, now obey the following fourth-order recurrence:

(2k+1)(2k+2)Ck+i+(E 2' Soik}Ck+(4co —a—+4a——16crk)C~ i+(16oio b)Ck 3+(16o—c)Ck 3—0' —
mth k =0, 1,2, . . ., and C i ——C 2 ——- . . ——0.

(10)
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The Hill determinant 5 is now written as

3X4
E—18co 5&6

4co —a —28o E—26co 7 X 8
e ~ e E 34I—3

The role played by the dummy parameters co and o is the following: though the energy levels E (eigenvalues) are indepen-
dent of g and cr it may happen that the roots of the successive kth-order approximants converge faster to E for well-
selected values of co and O'. This phenomenon is known in the literature and we have indicated theoretical estimates for
the optimal values of these parameters in various cases.

The four asymptotes of recurrence (10}are easily calculated

( 2o +c I/2/2)»/21'(k )
—i/2 exp[

& (b +4rec 1/2)c —i/2(2o. +c I/2/2) —i/2k 1/2]

P -(—1)"(2cr+c' /2) I (k) ' exp[ '—(b—+4NC' )c ' (2cr+c' 2/2) ' 2k' ],
y -(2o —c'/ l2) I (k) ' exp[ —,'(b —4—roc' }c ' (2o —c' j2) ' k' ],

( —1)»(2 — i/2y2)»/21 (k )
i/2 exp[

~

(b —4 c i/2)c i/2(2 —c i/2/2) 1/2k i/2]

Less important factors of the type k have been omitted
in each asymptote. It may be shown that in the usual
domain of variation of co and cr the dominant (the dom-
inated) asymptote is a» (5»). The intermediate solutions
are asymptotic to P» and to y». In theory P» dominates

y» for k very large. However, for moderate values of k
which are of interest for us the situation is a little more
complicated. o being fixed, there exists a critical value of
m, say cu,~„ for which one can say the following: if
co &cu,~, the asymptote P» is subdominant, i.e., the order
of decreasing dominance of the four asymptotes is
l~» I & IP» I

& I)'» I &14 I

y» is subdominant, i.e., the order is
) a» [ & [ y» [

&
~ P» ~

& 5». Clearly the critical value of r0,~, is obtained
wh~

I &» I
=

I r» I
~e 1 now «om a pr~»ous study'

about the HDM that the relative accuracy on the lowest
eigenvalue is of the order of magnitude of
exp( —p)-

I
subdominant solution

I
/

I
dominant solution I:

&.e.,

tain the highest accuracy for a fixed value of k. The situ-
ation is illustrated by Fig. 1 in the case k =20 (oscillator
x —2x"+2x, fundamental state calculated through the
HDM for various values of r0 and o); the optimal values
are cr,~,-0.2, ai~, -2, and p,~, -14.5 (6 exact decimal
figures). The accurate value is 1.241 391 715 188 58. . . .

In practical calculations it is not necessary to solve the
transcendental equation (12) to get sufficient approxima-
tions of both 0,~, and &0~,. It is largely sufficient to apply
the generalized Miller algorithm of Sec. II 81 for various
values of o and r0 and to select values which maximize the
quotient

[ dominant solution
~exp p

~

subdominant solution
~

I&»l = Is»I (12)

%hen co~co,p, the prerision decreases. A similar argu-
ment holds for every value of o so that it appears that
there are optimal values of cr and co which allows us to at-

e"p( p)- I)'» I
/ I&» I

if ~&~.pt

where p is the number of Napierian figures which are ex-
act in the answer furnished by the HDM.

For example, if co & co,~, we find

p -—,
' c ' ~(b+46pc' i)k'/ l(2cr+c' l2)'

If we fix the order k of the approximant this means that
the accuracy increases linearly with co until co attains its
optimal value coopt coop) ls the root of the equation

FIG. l. Oscillator x6—2x +2x, fundamental state. The
lowest root of the 20th-order approximant has been calculated
for various values of ~ and o. The precision p is plotted versus
co exhibiting an optimal domain (co,o ). (Hill-Taylor approach. )



33

FIG. 2. Oscillator x —2x +2x, fundamental state.
Theoretical prediction of the influence of cu and 0 variations on

the expected precision. To be compared with the experimental
curve of Fig. 1.

3'5 ~opt C5 55 4)

FIG. 3. Oscillator x6—2x +2x~, fundamental state. The
lowest root of the 20th-order approximant has been calculated
for various values of e. (Hill-%cher-Hermite approach. }

In order to fix the ideas Fig. 2 shows how
p- ln

~
Ck /Ck '

~

varies as both ro and o vary. Ck" and

Ck
' are deduced from the generalized Miller algorithm

with the conventional choice E= 1. That this value is not
the exact one is not important since Eq. (11) shows that
the asymptotes of the recurrence (10) are not sensitive to
variations of E. If we compare both Figs. 1 and 2 we find
that apart from a slight shift along the p axis the theoreti-
cal curves of Fig. 2 correctly prehct the experimental
curves of Fig. 1. In particular the theoretical optimal
values of ai are rather accurate. The unpredictable shift is
explained by the fact that the asymptotes are only known
to a multiplicative constant factor. Finally we might veri-

fy that the resulting wave function exhibits the expected
asymptote behavior P~,„by following a procedure strictly
analogous to that already mentioned in Sec. II B.

III. THE ax 2+bx «+cx OSCILLATOR
(e ~ 0) (HILL-%EBBR-HERMITE APPROACH)

P= g CkDii, (vox )/k! (even states) .
0

The odd states are treated similarly by replacing k by
k+ —,

' in the calculations below.
The Ck obey the sixth-order recurrence relation:

(13)

Another approach to the same problem starts with an
expansion of the wave function in terms of the scaled
eigenfunctions of the harmonic oscillator, i.e., Weber-
Hermite functions D(x ):

8c(2k —3)(4k —1)Ck+ i+4(2k —1)(2k 3)[be +(12k—9)c]Ck-
+(k ,

' )[240ck2+—(—32bcoi 600c)k+42—0c+4zro 40bco co']—Ck—
+ —,

' [640ck +(96bco2 —3360c)k2+(16aco 336bco +60—80c+4cg )k+300bco 28aco 378—0c 7' —4Eco ]Ck —2—
+ ,' (k 2)[24—0ck'—+(32br0' 1080c )k+—1260c+4aco' 72bco' —~—']Ck

+(k —2)(k —3)[(12k 33)c+ba) ]Ck g—+c(k —2)(k —3)(k —4)Cp i ——0

with k=2, 3,4, . . . and C k=0 (k=1,2, 3, . . . )
The dummy parameter u plays the role of a variational parameter: indeed it can be shown that the HDM in this

Weber-Hermite approach is strictly equivalent to the classical Ritz variational method with co and the Ck adjustable in
the trial function (13).

The advantages of the method are the following.
(a) It is sound and efficient whatever the coefficients a, b, and c ~ () are.
(b) It is performant as shown o»ig 3: the 20th-order approximant leads to a precision twice as great as the corre-

sponding approximant in the Hill-Taylor approach. The optimal value m,~, may be predicted by a method similar to that
described in Sec. II C.

(c) There is no need to prove that the resulting wave function is square integrable in this approach since we are sure
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that the minimal solution of the recurrence consistent with the initialization C k
——0 (k = 1,2, . . . ) generates the minimal

solution of the starting Schrodinger equation. This results in a straightforward way from Parseval's theorem.
For all these reasons this approach must be preferred. Its one simple drawback is that the recurrence is more difficult-

ly determined.

IV. GENERALIZATION

In the general case the HD is associated with the recurrence

~k Ck+1+~a Ck+ '' '+~k Ck-. +1=0 ~

where k=s,s+1, . . . and C k=0 (k=1,2, . . . ).

We recall that the system of contrasted asymptotes is Cq" with

« large) .

It is written as

~ {n—s —1)
s

~ {n-s—2)
~s+1

{0)~n-1

~ {n—s)
s

~ {n-s —1)
+I

g {n)
s

~ {n—1) ~ {n)
s+1 s+1

{n)

D possesses (s+1) upper diagonals. In the example of
Secs. II and III we had s =0 and s =2, respectively. Posi-
tive s values are encountered when sets of orthogonal
functions fk are used in the starting substitution of the

type

p= g Ckfk(x) .
0

The value s=0 is typical of the so-called Hill-Taylor
scheme for which the starting substitution is of the types
(4) or (9). Generalizing the proof of Sec. II 8 1 it is easy
to establish that equating D to zero is equivalent to con-
structing an intermediate solution of the recurrence
C~'+ ' which obeys the initialization C"k+ '=0
(k=1,2, . . . ). In order to be sure that the HDM will

work (Taylor approach) it is then necessary to verify that
the corresponding function go Ck'+ 'x behaves proper-

ly at infinity like f „„.

V. CONCLUSION

We have tried to clarify the origin of the troubles which
are observed when one applies the HDM without precau-
tions to anharmonic oscillators. The following seems to
be established.

(i) The Hill condition V =0 is not a consistency condi-
tion for the associated infinite linear homogeneous sys-
tem.

(ii) That condition simply selects a nondominant solu-
tion Ck'+ ' of the associated recurrence which is con-
sistent with the initialization C k

——0 (k = 1,2. . . ).
(iii) The condition of square integrability is not included

in the Hill-Taylor method so that the user must verify

that the resulting wave function correctly behaves at in-
finity. In the Weber-Hermite approach the same condi-
tion is included in the method.

We have indicated in the Appendix a possible way to
establish the asymptotic behaviors of the wave functions
which are built through the HDM.

APPENDIX: ASYMFI'OTIC BEHAVIORS
OF THE WAVE FUNCTIONS

(1) We first estimate the asymptotic behavior of the fol-
lowing expansion ( p & 0):

Si ——gk I (k) ' exp(Ak' )(px)"
0

for x large and positive. Using standard techniques we
prowled to the following deductions:

S1— I z ' exp ' px'z
exp ——,

' lnI z + '~ +zln px dz .

That integral is estimated through a classical saddle-point
method. ' We have, using Stirling's formula,

S1 exp z dz exp z

where f'(z )=0. We find

f= ——,zlnz+(w+ ~ )lnz+Az'~ +z[—,+ 1n(px)),
f'= ——,

' lnz+(w+ —,
'

)z '+ —,
'

Az '~ + ln(ax) .

The saddle point z' is easily found asymptotic to

Z Q X



Hence

S, —exp( —,
' p~x'+A, px) .

(2) The same technique does not apply if p ~0 because

of the extreme ill conditioning of series of the type

when x is large and positive there exists a region of k
values where the contributions of the successive terms are

very large with alternated signs; the result is a dramatic

cancellation which maintains the values of the series in a

bounded region.
We must prove that

Indeed if S2 is not bounded, it is asymptotic to

S2 ——QCkx "-exp( —,'c' x + ,'b—c ' x ) .

But by Cauchy's theorem we have

Ck —— . x-'2k+"S, x dx.1

2l&

That integral may be evaluated by a classical saddle-point
method:

Ck —— exp x x —exp x '
where the saddle point x ' is defined by f'{x' )=().

%e have, successively,

y ( 1)k(c 1/4)kl (k )
—1/2

0

X exp( ,' b—c—'"k-'")x'"
and

f(x)= —,c' x + ,'bc —' x —(2k+1) lnx

( kc —I/2) l /4

remains bounded when
~
x

~
~+ ao along the real axis.

We proceed ad absurdum by proving that if

S2 ——g Ckx~k is not bounded then Ck cannot be asymp-

totically written as

( —1) c" I (k) ' exp( ,'bc ——k' )

hence

(+c1/4)kl (k )
—1/2

which contradicts the starting hypothesis
Ck -( c' ) I—(k) ' (up to unimportant factors).
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