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Masslessness and light-cone propagation in 3+2 de Sitter and 2 + 1 Minkowski spaces
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The problem of determining the most natural criteria for defining masslessness in 3+2 de Sitter

space is reexamined. There is no real difficulty, for all the expected features of masslessness that

make sense in de Sitter space are mutually compatible. In this paper we point out that light-cone

propagation, in particular, is perfectly compatible with other criteria. The situation is very different

in three-dimensional space-time, even in the flat case. Here the conventional, Maxwellian form of
electrodynamics fails in many respects: it is not conformally invariant, it does not have light-cone

propagation, and it has catastrophic infrared behavior as can be inferred from the fact that the
"Coulomb" potential is proportional to lnr. It is pointed out that there exists an alternative form of
three-dimensional electrodynamics that is conformally invariant, propagates on the light cone, and

has a static potential proportional to 1/r, Finally, we point out that some so-called massive, three-

dimensional gauge theories have none but the most superficial features that characterize genuine

gauge theories.

I. 3 + 2 DE SITTER SPACE

It is now quite universally believed that massless,
Poincarb-covariant field theories are fundamental to the
formulation of physical theories. Such theories need to be
regularized to make sense, especially in the infrared re-

gion, and no completely satisfactory procedure is yet
available. The formulation of massive gauge fields is un-

available as an expedient in non-Abelian gauge theories,
and tricky even in the Abelian case. Finite volume cutoffs
destroy covariance, something that (for good reasons) has
not been tolerated in the ultraviolet regime for a long
time. Regularization by the introduction of a small but
nonzero constant curvature in space-time therefore be-
comes a very attractive possibility. The infrared region of
3 + 2 de Sitter-covariant field theories is not only strongly
regularized compared to the flat case, but very interesting
from several different points of view. The question of
how to define masslessness in 3+ 2 de Sitter space is
therefore far from being purely academic. Applications
to supergravity provide stronII, additional motivation.

A study of this question, a few yell ago, examined
several criteria for masslessness that seemed especially im-
portant, without inquiring whether or not propagation is
confined to the light cone. Here we shall see that light-
cone propagation is, in fact, a feature of massless, de
Sitter field theories with any spin. We begin by listing the
criteria ex'imined in Ref. 1. (a} The index by which to
recognize masslessness that was proposed first, is the em-
ergence of gauge structure that accompanies the break-
down of the Fierz-Pauli program. This led, subsequent-
ly, to the construction of a family of gauge theories with
spins s &1 (Ref. 3). The physical, one-particle states of
these theories carry the representations D(s+ 1,s} of the
3+2 de Sitter group. (b) Conformal extensions were
mentioned in Ref. 2, but fully investigated in Ref. 1.
Massless, discrete helicity representations of the Poincare
group have (unique) extensions to unitary representations

of the conformal group. ' The only representations of
the de Sitter group that have this property are D(s + l,s)
for s & —,

'
and, in addition, D(1,0) st(2, 0). From now

on, we refer to these as the massless representations. Note
that they include all the physical representations of (con-
ventional) de Sitter gauge theories, but that this does not
imply that these gauge theories are conformally invariant.
(It is not even automatic in the case s =1, electrodynam-
ics.i ) (c) It is certainly reasonable to expect that the
massless representations of the de Sitter group contract
smoothly to those of the Poincare group in the limit of
vanishing curvature. This is intimately related to the
property of conformal extendability, as was shown in Ref.
l. Other aspects of this contraction were examined subse-
quently. (d) Physical representations are unitary, and in
the case of the semisimple groups they are minimal
weight representations. The minimal weight is bounded

by the requirement of unitarity, and gauge theories are as-
sociated precisely with the lower bound. For s&1 the
bound on D(Eo,s) is Eo & s + 1, and this leads to the con-
ventional gauge theories associated with massless parti-
cles. For s =0, —,

' the lower bound is Eo & s + —,'. This ex-

plains why massless particles with spins 0 and —,
' are not

gauge theories, and points to the extraordinary gauge
theories of Dirac singletons: Rac= D(1/2, 0) (Ref. 7), and
Di=D(1, —,

'
) (Ref. 8). These subparticles are the constitu-

ents of massless particles. ' We have thus returned to
gauge theories. We insist that the main feature of interest
in massless field theories is the fact that they involve a
nontrivial gauge structure that necessitates indefinite
metric, Gupta-Bleuler quantization.

Deser and Nepomechie" have recently examined propa-
gation in de Sitter field theories, some of them massless,
by means of a transformation that appears to reduce the
problem to a more familiar one in Minkowski space. This
method led them to conclude that the connection between
null-cone propagation and gauge invariance for spins
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higher than 1 is specific to flat space and that it is not
maintained in a 3 + 2 de Sitter universe.

We now investigate the question of whether or not
massless fields in de Sitter space propagate on the light
cone, by direct examination of the propagators in de Sitter
space. To be systematic, it is convenient to dispose, first
of all, of the case of low spin, s =0 and —,'. We use the
customary description of de Sitter space as a covering
space of the hyperboloid yo' —y, '—y2' —y, '+y, '= I/p
in R, p being the positive curvature constant. The prop-
agator is determined in terms of boundary values of an
analytic function E of the variable z =py y', the two-
point function. The locus of points y that are lightlike
relative to y' is given by' ' z =+1. In the case of spin
zero the field is a scalar field P, and E is the vacuum ex-
pectation value:

This function is analytic in z except for singularities at
z =+1 and at infinity. Branch cuts at z =+1 imply "re-
verberations;" that is, propagation in the interior of the
light cone. Propagation is confined to the light cone if
and only if E is meromorphic, with poles at z =+1. In
this case the vacuum expectation value of the commutator
vanishes except on the light cone. The two-point function
associated with the irreducible representation D(EO, O}
was calculated long ago

EE,(z) ~(z —1) '
QE, 2(z),

where Qi is a Legendre function of the second kind. For
most values of Eo, this function has a logarithmic singu-
larity at z = l. [Equation 3.9(5) of Ref. 14 does not apply
when p, is integral. ] The discontinuity across the cut that
extends along the real axis from + 1 to —oo, in the re-
gion —1&z &+1,is [see Ref. 14, Eq. 3.4(8)]

(z' —I)-"2P,', ,(z) =(a/az)P. . .(z) . (1.2)

Propagation is confined to the light cone if and only if
this function vanishes identically; that is, only in the spe-
cial cases Eo =1 and Eo =2 %e have

E2(z) = 1

z —1

The propagator for spin- —,
' fields in the representation

D (Eo, ,' ) is related to—the spinless propagator for
D (Eo+ ,',0) by different—iation. ' Light-cone propagation
therefore occurs if Eo ———,

'
and if Eo ———,'. Of the two as-

sociated representations, only the massless representation
D ( —', , —,

'
) is unitary.

Turning now to the case of massless fields with spin
s &1, we must recognize that we are dealing with gauge
theories, and therefore first point out the obvious: the
question of whether propagation into the interior of the
light cone occurs depends on the choice of gauge. Howev-
er, the only matter of direct physical significance is the
transmission of signals between two localized, gauge-
invariant (conserved) sources. We claim that such signals

(Q —(Q })k —c,X,[By~+(s —g —2)y]g=o . (1.4)

Here Q is the so(3,2) Casimir operator, and ( Q }=2s i—2
is its value in D(s+1,s); k is a syinmetric, double-
traceless and transverse tensor field of rank s, and

g= —,
'
Xi[By +(s —X—5)y](1/y )k' —B.k

are transmitted along the light cone only. The easiest way
to prove this is to show that there exists a choice of gauge
in which all propagation (even of the physically irrelevant
gauge modes) is confined to the light cone. Indeed, such a
choice does exist, as we shall show.

Propagators for spin-l, de Sitter electrodynamics, have
been discussed in great detail already. The field is a
transverse vcx:tor field, y.W(y) =0 (other possibilities ex-
ist, see Ref. 6, Appendix). Maxwell's equations, with
gauge fixing, are

trpr[[B —p(%+1}(%+2)]&,—cB,B MI =+, .

(Here trpr means transverse projection and N= yB—).
This is gauge-invariant if c =1, while c =0 is the "Feyn-
man gauge. " The simplest choice of c is not zero but —,,
in which case the two-point function is one of two possi-
bilities. The first one is

(0
~
W, (y)Mb(y')

~
0) =trpr[5, i Ei(z) —p 'B,BbE2(z)],

(1.3)

and the other is found by exchanging Ei and Ez. The
questions posed by the existence of two options were dis-
cussed in detail in Ref. 6 (also in Ref. 2), and will be
passed over here. Evidently only poles appear and all
propagation is on the light cone in this gauge. However,
with any other choice of gauge' (c&—,

'
and c&1) loga-

rithms appear in the two-point functions and the discon-
tinuity across the real axis in the complex z plane extends
from 1 to —co ', hence, propagation extends to the interior
of the light cone. Since physics is gauge independent,
only gauge modes contribute to this phenomenon. (The
gauge modes are not themselves logarithmic, but their
canonical conjugates, the scalar modes, are. The loga-
rithms thus occur with gauge mode factors in the modal
expansion of the propagators, and therefore do not contri-
bute to physical matrix elements. )

Just as the spin- —,
'

propagator can be expressed in terms
of first-order derivatives of the spin-0 propagator, one ex-
pects that ihe spin- —,

'
propagator can be written in terms

of first-order derivatives of the spin-1 propagator. If this
is correct, then in the gauge that is favored (c = —', for
spin 1), spin- —, propagation will be confined to the light
cone. We have not actually verified this in detail. Instead
we have investigated the case of arbitrary, integer spin. It
turns out that there is a favored choice of gauge, in which
all modes props. gate on the cone. In this gauge the propa-
gator for spin s can be obtained by differentiation of the
two spin-0 propagators E& and E2. Detailed calculations
and explicit expressions for the propagators have been
relegated to the Appendix; here we just sketch the
method. The spin-s wave equation has the form
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is a symmetric, traceless and transverse tensor field of
rank s —1; k' is the trace of k and the summation sym-
metries. This equation is gauge invariant if c, =1. We
now solve this equation recursively, expressing the solu-
tions for spin s in terms of the solutions of the field equa-
tion for spin (s —1). Supposing that the latter have no
logarithms, we find that the former also have no loga-
rithms, prouided that c, =2/{2s+1) (see Ref. 16). Loga-
rithms do appar for every other choice of c,. With this
unique choice of gauge, we can express the propagators
for spin s as derivatives of lower spin propagators, and
thus avoid propagation inside the light cone for all integer
splns.

Conclusions A.ll known, reasonable criteria for mass-
lessness in de Sitter space are mutually compatible. In
particular, this includes the intuitive idea that the physical
manifestations of massless fields ought to behave like
light signals and propagate only on the light cone. The
lowest spins, s =0 and —,', are exceptional only in that
they are not described by gauge theories. In this sense
their role is taken over by the singletons. Conformal ex-
tendibility holds for the physical sector for all spins. This
fact is compatible with, and at least suggests, the existence
of conformally invariant wave equations, but it does not
imply that massless wave equations are automatically con-
formally invariant, nor does it imply that all conformally
invariant wave equations describe massless particles.

II. 2+ 1 MINKOWSKI SPACE

Our interest in three-dimensional, massless field
theories is not purely academic, since the singletons have
a very interesting realization as field theories on the
three-dimensional boundary of 3+ 2 de Sitter space at
spatial infinity. In fact, they are the only massless parti-
cles in 2+ 1 dimension if by masslessness we mean
that the invariant P"P„of the (2+ 1)-dimensional Poin-
care group vanishes. (For a more accurate statement, see
Ref. 17.) In ordinary 3+ 1 Minkowski space it is of
course a truism that Pi'P„=O for massless particles. But
the experience with de Sitter space, where this is not even

true, has taught us to find more abstract, and therefore
more physical and more meaningful, characterizations of
a class of physically dominating field theories that should

perhaps have been referred to by a term other than "mass-
less." (This is a good exainple of the instructional value
of doing physics in de Sitter space, which was in fact a
motivation for embarking on the project 20 years ago. ' )

Now we want to approach three-dimensional field theories
with an open mind, so we shall place the word "massless"
between quotation marks from now on, in order to avoid

getting trapped by the superficial generalization that it
would be to define masslessness by requiring the vanish-

ing of P"P„ from the start. An interesting approach
would be to apply our experience in 3 + 2 de Sitter space
to 2+ 2 de Sitter space, to discover the natural definition
of "masslessness, " and then to pass to the limit of flat,
three-dimensional Minkowski space. The results would be
the same as those obtained directly.

Let us digress for a moinent to recall some conventional
wisdom. It is weH known that the Coulomb potential in

three-dimensional space-time has the form lnr and not
1/r. This is directly related to (i) a catastrophic infrared
behavior (which we shall not regard as a virtue) and {ii)
the fact that the scalar two-point function has the form

(0 i
P(x)P(x')'

( 0) =[(x—x')~] (2.1)

(0 i
P(x)P(x')'

i
0) =[(x —x') ] (2.3)

This is also conformally invariant, and in fact conformal
invariance leads almost uniquely to this form. The
Coulomb potential is now 1/r. The infrared behavior
may be better in this case, but we have not verified it.
The conformal degree of P is 1, which is not canonical, so
there is no invariant Lagrangian in the usual sense. In
fact, the above two-point function is incompatible with

any differential equation for P. To understand why, and
in order to clarify the physical meaning of the field P, we

may expand (2.1) and (2.2) into Fourier series. This re-
veals the following. The modes of the field in Eq. (2.1)
carry the singleton representation D ( —,,0) of so (3,2)—the
three-diinensional conformal group. The wave equation
C3$=0 satisfied by these modes expresses the special prop-
erty of the states of this, highly degenerate, representation.
The modes of the field in Eq. (2.3), on the other hand,
carry the representation D(1,0) of so(3,2). This represen-
tation is less degenerate and the modes of the field are too
numerous to be restricted by a differential equation in
three-dimensional space-time. [They are just half of the
states of the four-dimensional massless, scalar field, which
carry D(1,0)SD(2,0).]

The two-point function (2.3) does not satisfy a wave

equation, yet the Feynman propagator

DF(x,x')=[(x x') +i@—]
possesses an inverse C3 such that

f d'x Cl(x,x')D~(x', x")~5'(x —x") .

A quantum field theory can therefore be constructed, with
the free Lagrangian

f d x P'(x)C3(x,x')P(x'),

The square root introduces a cut, and signals propagate
inside the light cone. This is a well-known phenomenon
sometimes called reverberation. ' This equation is compa-
tible with conformal invariance, with conformal degree —,

'

for P, which is the canonical degree in three dimensions.
A conformally invariant Lagrangian for P is

J d~xp'op .

This is the theory of free, scalar singletons (the racs). The
wave equation is C3$=0, so that P&P& ——0 for free parti-

However, as we said, it ls not absolutely sul'e tllat
this is the true (or most useful) definition of "massless-
ness.

It is also not completely obvious that light-cone propa-
gation expresses the deepest meaning of "masslessness;"
nevertheless, let us make the hypothesis that it does, and
work out the implications. The two-point function must
have poles only, and the simplest possibility for a scalar
field is
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for example, by path-integral methods. The free quantum
field satisfying (2.3) can also be constructed without any
difficulty. One can also take the point of view, common
in the context of conformal field theory, that the (interact-
ing) quantum field theory is defined by the bare propaga-
tors and the interaction Lagrangian. One is dealing, to
put it simply, with a scalar conformal field theory with
anomalous dimension. Therefore, since we have to choose
between masslessness in the naive sense and "massless-
ness" in the sense of lightlike propagation characteristics,
then the latter must at least be admitted as an attractive
alternative. Let us pass now to the electromagnetic field
itself.

The two-point function

(0
~
A„(x)A„(x')

~
0) =5„$(x—x')'] "

is incompatible with light-cone propagation if n has the
canonical value —,. Only n = 1 is compatible with our in-

tuitive perception of light propagation. In this case we
have no wave equation for A& and no Maxwell equation,
but we can still take the free Lagrangian

xA~ x C3xx A~ x

and proceed as in the scalar case. The theory is not con-
formally invariant as it stands, but this defect can be re-
moved. Following Dirac's method, we compactify 2+ 1

de Sitter space and identify it with the projective 3+ 2
cone. On this cone we introduce a five-potential (M, )

a =0, 1,2, 3,5 with degree of homogeneity —1 and the
manifestly conformal invariant two-point function

Returning to Minkowski notation one ends up with a vec-
tor potential (A&) p=0, 1,2 and two scalar fields, just as
in the four-dimensional case. The extra degrees of free-
dom are pure gauge and scalar modes and are eliminated
by boundary conditions on the incoming states.

This theory is not a gauge theory The F.ourier expan-
sion of 1/(x —x') includes integration over p ~0, and
the point p =0 does not contribute. Unitarity can there-
fore be assured, as in four-dimensional massive theories,
by projecting out the modes that satisfy B.A =0. Then
the invariant inner product becomes positive definite, not
semidefinite. There is no radical to divide out, no uncom-
plemented invariant subspaccs, and hence this is not a
gauge theory. The conformal extension is, nevertheless, a
gauge theory, with exactly the same so(3,2) modules as de
Sitter electrodynamics. In fact, 1/y y' is the limit, as
y ~0, of the propagator (1.3).

A nontrivial, three-dimensional theory of gravitation
could be developed along similar lines.

There is a property of four-dimensional electromagne-
tism that may express its essence better than any other: it
is a zero-center module. Since this concept has recently
been explained at length, we limit ourselves to a few re-
marks. Both de Sitter and conformal QED have the prop-
erty that all Casimir operators are nilpotent on the field
module, and that the trivial representation (a vacuum
mode) appears in the physical sector. In conformally in-
variant, three-dimensional de Sitter electrodynamics this

would imply that the physical states carry the representa-
tion D(2, 1) of so(3,2). Conformal gravity is associated
with D(3,2), which is not a zero-center module. Howev-
er, both these representations are included in a zero-center
representation of three-dimensional conformal supersym-
metry, if sufficiently extended. In fact, the extension to
osp(4/N) is justified, and N is determined, by this re-
quirement. The result is that X =6 is the only extension
that includes gravity without also bringing in spins higher
than 2.

Finally, we would like to add some comments about a
massive, thrm-dimensional "gauge theory. " The proposed
Lagrangian is '

J d x( SFi m—F'—A),

where F' is the Hodge dual of the field strength F. The
wave equation is gauge invariant, in the sense that it is

solved by any potential A of the form A„(x)=B&A(x), for
which F vanishes identically. In addition, there are solu-
tions of the free wave equation of the form

Ap(x) =e' "eq(k'), k =m

with e&(k) complex subject to

e„(k)' =e„(—k), d'" k„ei —imel' . —

Under the action of the three-dimensional Poincare group
these modes transform as a direct sum of a massive, ir-
reducible representation and a very reducible representa-
tion carried by the gradient modes. There is no indecom-
posable representation and no need for any indefinite
metric. We may introduce gauge fixing in the usual way.
Thus, in the Feynman gauge, the free Lagrangian is

d x —,A~HA~ —mE A

The free solutions are now the massive modes already
described and, in addition, the massless modes

qA( x=)e'"'k„, k =0.
Both may be quantized with positive metric, which gives
rise to the two-point function

(0 i
Aq(x)A„(x')

i
0)

=f e'"' " 'f5„„+e„„i(k/m) k„k„]-
X5+(k —m )dk —f e' ' ' 'k k„5+(ki)dk .

There is no need for the current to be conserved and the
theory has none of the essential characteristic features of
gauge theories. It should be stressed that in real gauge
theories the structure of the interaction (minimal cou-
pling) is uniquely determined by gauge invariance, which
is in turn imposed by unitarity. This is the rigidity that
gives gauge theories their essential predictive power. In
the theory examined here, on the other hand, there is
nothing that particularly distinguishes or favors ininimal
coupling.
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1

(Eo —s —1)(EO+s —2)

0=&ie z4i+&zekz+DÃg .

Here 8 is the transverse projector

cub =&as pt'usa ~

(Al)

Xi and Xz symmetrize the product of two tensors, z =(z, }
is a complex polarization vector that carries spin 0 or + l.
Next, Pi is a carrier state for D(Eo,s —1), while Pz is a
carrier state for D(Eo,s —2}, given in terms of Pi by the
formula

The aim of this appendix is to show that massless,
integral-spin fields in 3+ 2 de Sitter space propagate on
the light cone. The demonstration rests on recurrence for-
mulas that reduce the problem to the spinless case.

The positive-energy, irreducible representations of
so(3,2) are denoted D(E&,s). The infinitesimal generators
are denoted

L~ ——M,s+S,s ———Li, a, b =0, 1,2, 3,5,
where M~ is the orbital part and S,s is the spin part.
The minimal energy Eo is the lowest eigenvalue of L50
and s is the angular momentum of the lowest-energy
elgenspace.

The carrier states of D(Eo,s) will be described as sym-
metric tensor fields P of rank s sati~fyi~g

~g (Q(E„s)&]y=O,

(y 8—Ã)/=0 (homogeneity),

y /=0 (transversality),

8 /=0 (divergencelessness) .

Here

g iL Lab

is the Casimir operator, and

( Q (Eo,s) ) =ED(Eo —3)+s (s + 1)

is its value in D(Eo,s). The number N may be fixed at
our convenience. The last two conditions imply traceless-
ness. The carrier states can be built up by induction on s.

Proposition 1. I.et P be a carrier state for the represen-
tation D (Eo,s). Suppose that Eo&s + 1 and that
ED+2 —s. Then P can be represented by the formula

X z.Bpi —(s+1}py.zgi+pXi)z P,

D, iz.Pi
P

2s —1

i, )
Sz'(z}

E,+z(z) =
(z —1) +

(s)

K, '+p(z) =
2 ~ i +—K3', q(z)ln

(,) ~p «) 1 (,)
z-1

(A2)

p &3 . (A3)

Here S~"(z) is a tensor polynomial in the z variable and
X3", z(z) is the propagator of the unique finite irreduci-
ble representation D (3—s —p,s), Weyl equivalent to
D (s +p,s}. The other representations that are Weyl
equivalent to D (s +p,s} are infinite, nonunitary and carry
higher spin: D (s +2,s +p —2) and D (1—s,s +p —2).

Note that proposition 2 does not yet deal with the
massless representations D (s + l,s). It applies to the mas-
sive representations with integer Eo, including the limit-
ing case D(s +2,s), which is also exceptional.

The case p =2 is remarkable in the sense that only one
representation, namely, D(1—s,s) is Weyl equivalent to
D (s +2,s). This fact prevents the appearance of the loga-
rithmic term in the expression of the propagator E,'+z(z),
a feature shared by the propagator K,', (z) for the infin-
ite, nonunitary representation D (1—s,s).

Let us now examine more closely the singularities at
Eo s+ 1 and at ——Eo 2 swhich limit the v——alid—ity of the
recurrence formula (Al). They are related to the fact that
these values are reduction points of the minimal weight
representations. The wave equation (1.4), which in the
present notation reads

The reason for the exclusion of Eo s+——1 and Eo 2 ——s-
is manifest.

Applying a finite number of times the recurrence rela-
tion (Al) within its domain of validity permits us to ex-
press the propagator KE*,'(z) for D(Eo,s) in terms of
EE,'(z)=EE,(z). This procixlure leads to the following

result when Eo is an integer.
Proposition 2. The homogeneous propagator E,"+z(z)

for the unitary irreducible representation D(s +p, s), P in-
teger &2, possesses poles at z =+1 for any p &2. It has
logarithmic singularities at z =+1 for any p & 3. Poles
and other singularities are displayed by the following for-
Glulas:

The operator D2 is a "purified" gradient operator that
makes a symmetric, transverse tensor field of rank s out
of a symmetric, transverse tensor field of raiik s —1,

D.0, =p '&if~+p(~ —Ib'l0& ~

Bg =8~ By

Finally p is given by the reveallilg formula

fg —& +]P2c+, DB, /=0,
&i[~+p(& —4)y]$', P'=trace p

determines a nondecomposable representation, more pre-
cisely a Gupta-Bleuler triplet that is characterized by a
reproducing kernel or two-point function.

Proposition 3. I.et P be a carrier state for the spin-s
Gupta-Bleuler triplet. Then P has the representation
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0=&ie &Pi+&280i+D. (kg'+0'g') .

Here Pi is a carrier state for the unitary representa-
tion D (s + l,s —1) or the nonunitary representation
D(2 s,—s —1). For these particular representations pro-
position 2 tells us that the two-point functions have (mul-
tiple) poles at z =+1 only and no logarithmic singularity.
Next, 4q is given in terms of Pi by

cible representation D (1—s,s —1). The general solution
has the form

A-gf lnv py+ [mod D(s +2,2—1}-states

eD (2—s,s)-states] .

Precisely the action of the gradient D, in Eq. (A4) cancels
any carrier state for D (1—s,s —1) since

2
2s —1

Pg'=(2s —1) '[g t)4i+p(s —2)y g4i+p&iyg 0i
—2(2s —1} 'D, ig Qi],

(A5)

D,qf ——0.
This remarkable property prevents the appearance of

logarithms in the gauge fields D, A Th.e only source of
logarithms in P is D,A'. The tensor field A' satisfies the
inhomogeneous dipole equation

(Q —2s +2) A'=rif

Pg ——A+(1—cg) '[c,(2s+1)—2]A' .

The heart of the problem is the nature of the tensor fields
A and A'.

We shall leave the full details of the specifications of A
and A' to a subsequent publication~ {see also Ref. 16).

The crux of the matter is that P is determined by Pi
and by A and A'. If Pi is free of logarithms, then the
source of logarithms in ((} might lie in the gaugelike parts:
D, A and D,A'.

The tensor field A satisfies the inhomogeneous equation

{Q—2s +2)A=7}f,
where i}tf is an arbitrary camer state for the finite irredu-

and contributes logarithms which are not canceled by the
action of D, . Therefore logarithms appear in P unless the
coefficient of A' vanishes, that is, for all values of the
gauge-fixing parameter c, except

2
$

as is seen from Eq. (A5}. Full details, including all non-
decomposable representations that appear, will be pub-
lished separately. We should mention that there are actu-
ally two systems of representations, and two choices of
propagators, for all spins, as conjectured by Breitenlohner
and Freedman. i (For spina 0, —,, and 1, see Refs. 2 and
15.)
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