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The scattering of a nucleon beam on a non-Abelian flux line 4,'proposed by %'u and Yang for test-

ing the existence of gauge fjelds) is studied in a test-particle framework. All predictions of Wu and

Yang are quantitatively confirmed. In particular, protons can be turned into neutrons under suitable

conditions. (Charge conservation is restored at the field-theoretical level. ) Similar results hold for
the scattering of m mesons. A "shadow" of the effect survives also in the classical limit.

I. INTRODUCTION

In their celebrated paper on the nonintegrable phase
factor Wu and Yang' propose a Gedankenexperiment to
test the existence of gauge fields. By analogy to the
Aharonov-Bohm (AB) experiment, i they suggest scatter-
ing a nucleon beam around a cylinder which contains a
"non-Abelian flux. " Although the nucleons cannot
penetrate into the interior of the cylinder —the only region
where the field strength is different from zero—they in-
teract with the gauge potential outside and produce thus a
nontrivial interference.

Wu and Yang assume first that the flux in the cylinder
is in the r3 direction. They predict then that (i) if one
scatters a proton (or a neutron) beam on the cylinder, the
interference fringes are shifted in the opposite direction; if
a coherent mixture of protons and neutrons in a pure state
is scattered on the cylinder, one will observe (ii) a fiuctua-
tion in the proton-neutron mixing ratio, and (iii} a fluctua-
tion of the nucleon intensity.

They assume next that the average direction of the flux
is different from that of r3. Then (iv) the scattering of a
proton bum. wi11 produce some neutrons as well as pro-
tons.

The predictions of Wu and Yang are purely qualitative.
The aim of this paper is to give, at least approximately, a
quantitative description.

In our attempt to deepen their heuristic arguments, we
have encountered a number of conceptual as well as tech-
nical difficulties. First, how does one produce the "non-
Abelian flux line'7" (See Note added in proof. ) Even as-
suming this can be done somehow, a physically sensible
model is needed to describe the process. A nucleon is
naturally identified with a spin- —, SU(2) doublet %. The
complete description of the nucleon-cylinder system
would require solving the coupled Yang-Mills (YM) equa-
tions, which is technically impossible without knowing in
detail what is going on in the cylinder. Fortunately, this
is not needed: we are interested only in describing the
motion of the nucleons which, by assumption, cannot
penetrate into the cylinder. On the other hand, it is
reasonable, as a first approximation, to neglect the
changes in the YM field due to the nucleon. This is what
we mean here by treating the nucleon as a test particle
moving in the field A„due to the non-Abelian flux en-

closed in the cylinder. So 4' satisfies a background Dirac
equation

y&(a&@+a&q ) =me'. (1.1)

The validity of (1.1) is restricted to the exterior region M.
Dropping the irrelevant z variable and assuming the
cylinder very thin, we identify M with the punctured
plane 8 gtOI.

This model can be solved completely (Sec. II). First, the
"Yang-Mills vacua" —YM potentials with E&„——0 in the
exterior region —are described: there exists a gaug~
analogous to the U gauge in monopole theory' —such
that, in polar coordinates, the YM potential is given by

a
Ag ——— (1.2)

E

A„=O,—Q

where a is a real parameter defined modulo integers. In
this gauge the field is Abelian, and the wave equation (1.1)
splits into two uncoupled, electromagnetic "Aharonou
Bohm" (AB} equations with opposite magnetic fluxes.
The solution is thus obtained by mere substitution of the
known Abelian results. '

So far so good. But how can we interpret these results
in terms of protons and neutrons? As emphasized by
Yang and Mills in the very first paper ever written on
gauge theory, ' the distinction between protons and neu-
trons is possible only by measuring electric charge. The
prescription of Ref. 5 is as follows: select, at each point x
independently, a preferential direction t0(x} in isospace.
In the fully dynamical theory the electric current is given

by

J",~ =—.Vy&co(x )4+Tr I [A„,F"")ro(x)I
E

(1.3)

q„„,~ ——e —+— 4 xerox%'xdx1 1 3

2 E

which is ordinarily conserved, B„J", =0.
Observe that it is only the total rather than the

nucleon's charge alone which is conserved. So transitions
of the type proton —neutron are, a priori, not excluded.
As a rnatter of fact, in Sec. IV we show that such a transi-
tion does indeed occur. It is not difficult to show that the
particle's charge alone,
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is conserved only if the "implementation" ei(x} generates
an internal symmetry, D&to=0 for the background field
configuration. ' Otherwise, it is only the total charge

qgog qnucl + gfIe1d %vhlch ls conserved, %vhclc

qr„ie ———e f TrI[A„(x)„F (x)]co(x)]d x . (1.5)

In the non-Abelian AB setup any direction g is uniquely
implementable (Sec. IV}. In fact, t0(x) =g (a constant gen-
erator) in a suitable gauge. '

To be an internal symmetry is a strong condition: in
our ease an ei(x) not parallel to A„(x) generates an inter-
nal symmetry only for the trivial field.

Having settled the problem of charge conservation, we
can identify protons and neutrons, and interpret the re-
sults of Sec. II. The cases (i)—(iii) correspond ta t0(x) be-

ing parallel to the electromagnetic direction. The
particle's charge is now conserved: protons (neutrons)
remain protons (neutrons}.

To describe case (iv), a subtle mixture of the fully
dynamical and the test-particle frameworks is used. We
still use the test-particle equation (1.1)—hoping that its
solution does not differ substantially from the exact
one—but interpret the result in the dynamical framework,
since it is only here that electric charge conservation can
be restored. Our procedure is best understood by the fol-
lowing analogy: consider the refiection of an elastic ball
by a wall. It is natural to describe the motion of the ball
alone, but this leads to an apparent violation of momen-
tum conservation which can only be restored by allowing
some dynamics to the wall. This does not affect the
motion of the ball in an essential way as long as this latter
is light compared to the wall.

Our results pravide a fuB confirmation to all predic-
tions of Wu and Yang. The same technique allows us to
describe the scattering of tr mesons, and leads to similar
conclusions.

Interestingly, a "shadow" of the effect survives in the
classical limit. We demonstrate this by solving explicitly
the equations proposed by Wang. ~ Protons and neutrons
are again distinguished by electric charge. If the direction
of the field coincides with the electromagnetic direction,
there is no classical effect. If, however, these directions
are different, isospin precession is found also classically.

The crucial step in performing the generalized AB ex-
periment seems to be the creation of a non-Abelian fiux.
This may well explain the failure of the recent attempt by
Zeilinger, Horne, and Shull' who, as suggested by Wu
and Yang, scattered a neutron beam on a rotating rod of
23 U metal. The produced fiux seems to be too weak for
observation. Viewed another way, the experiment of Zei-
linger et al. sets an upper limit —10 ' for the strength
of the non-Abelian AB effect versus its electromagnetic
counterpart.

H. NUCLEON SCA j.-x BRING GF A NON-ASELIAN
FLUX LINE

Let us first describe the "non-Abelian vacua" —static
YM potentials AJ with FJ Oon M=A ——gIOI. Ac-
cording to Wu and Yang, ' YM fields are characterized by
their nonintegrable phase factors. To demonstrate this ex-

plicitly, choose a reference point xo [for example, let xo
be (1,0), in the usual polar coordinates ( r, 8)]. Let yo be a
loop through xo which winds once around the cylinder.
Denote by 4 the nonintegrable phase factor

4=P exp —
z AJ.dJx (2.1)

Under a gauge transformation defined by g (x), 4 changes
as 4~g '(xo)@g(xo), so the YM field determines {2.1)

up to conjugacy with an element of SU{2).
Conversely, assume are are given two YM potentials AJ

and AJ' whose phase factors (2.1) are conjugate. We claim

AJ and AJ are gauge related. To see this consider the
simply connected space M' obtained by cutting M along
the half-infinite line 8=0. Let us choose arbitrarily a
path y„ in M from xo ——(1,0) to x' for all x'GM.
Now

g(x)=P exp — A djx'J

does not depend on the choice of y„', since M' is simply
connected and thus far any loop y' there exists a continu-
ous family y, (t), 0&s (1, 0&t &1 such that yo(t) is the
trivial loop, yi is y' itself, and y, (0)=y, (1)=xo for all s.
Define

(2.2)

t QxJ
h(s, t)=P exp AJ dt' dt

I~

where the integral is taken along y, . Put g(s)=h(s, l).
According to the "non-Abelian Stokes" theorem~

idg ih iF hex Bxjd
ds 0 'J at as

'

In our case F1=0, so g(s) is independent of s, g(s}
=g(1). Hence (2.2) provides us with a we11-defined func-
tion on M'. lt satisfies Bjg= —Aig. Similarly, replacing

Ai by Ai, we get a function g'(x') on M'. Assume now
that the phase factors (2.1} belonging to AJ and AJ',
respectively, are conjugate, 4' =h '@h for some
h GSU(2). Then

f(x )=g(x')h[g'(x')]
defines a gauge transformation over M' which carries A,
to AJ,

(2.3)exp( 2ni a)—
where a is a real number defined modulo integers. a is
unique if we require a &0. Plainly,

r

a 0
A, =0, Ag ——— ———2aw30 —cx

(2.4)

is a gauge potential producing (2.4), and what we have just

f(x') projects to a function on M if and only if
f(r, 2ir) =f(r, O) for all r. But this happens exactly when
4'=h-'4h

4 can be diagonalized by conjugation —physically, by a
global gauge transformation. In this gauge 4 reads

exp(2nia) 0
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(2.6}

where

1 82 1 8 1 i3

2m r~ r Br ri 88
(2.7)

is the standard Hamiltonian for a particle with unit elec-
tric charge in the field of an electromagnetic AB solenoid,
with fiuxi (2na/e ).

We are interested in the behavior of the nucleons at
large distances, so we can use scattering theory. ' Let us
briefly summarize what is known in the Abelian case.i
Consider first time-dependent scattering. In the gauge
A, =O, As ———a, the angular momentum for a charged

particle is I= —t'(8/88)+a with periodic boundary con-
ditions p(r, 2ir}=|tl(r,O) (Ref. 13). Choosing a so that
—1 & a ~ 1, the spectrum of angular momentum is

=m+a, m =0,+1,+2,. . .. It is convenient to work in
momentum Hilbert space H=Li(M, dk). H splits into
angular momentum subspaces,

where H~ is defined by the projection

proved shows that any YM potential Ai is gauge
equivalent to one of this form. The gauge where (2.4)
holds is analogous to the U gauge in monopole theory.

Let us now study the motion of a nucleon, considered
as a test particle in a background YM vacuum A&. Bring
Aj to the form (2.4) by a suitable gauge transformation
In this gauge the Dirac equation (1.1} clearly splits into
two uncoupled Dirac equations, each describing an elec-
trornagnetic Aharonov-Bohm experiment rvith enclosed
fluxes 2rra/e and ( 2n—a/e), respectively (irt= 1). So
(1.1) is solved by mere substitution of the Abelian results.

Actually, we find it convenient to replace (1.1) by its
nonrelativistic limit (this is justified if the nucleons move
sufficiently slowly). The standard approximation pro-
cedure, see Ref. 11, Sec. 1.4, shows that the upper 4
(positive-energy) component f of (the eight-component} ~p

satisfies the Schrodinger equation

(a, —A ) |(.. a@ 2

dt 2m
(2.5)

The Pauli term o"B does not appear now since FJ —0 in—
M. Both spin components of g satisfy hence the same
equation, and (2.5} can be thus considered as a two-
component equation for a spinless SU(2} doublet f. In the
U gauge (2.4), it becoiiles

—ma for A, &0
25 (a)=

ma for li, (0. (2.10)

Intuitively, the phase shift depends on which side of the
solenoid the particle passed. The origin of the AB effect
is that, in quotum mechanics, a particle can be split and
go both sides.

In the time in-dependent approach one works instead
with an incident plane wave g;„,(x) =exp(ik x) .The out-

going wave has the form

g,„,(x)=exp(ik x)+f(k,8}exp(ik r)r

In the AB experiment f(k, 8) is given, for 8+0, by

sinma exp( i 8—/2+ [a])

/2n ki sin(8/2)

(2.11)

(2.12)

III. ELECTRIC CHARGE IN GAUGE THEORIES

Let us first consider a fully dynamical nucleon-Yang-
Mills system (A„denotes here the total YM field, not
only a background). The field equation

D~F&"=d„FI'"+[A~,F&"]=J",
vrhere J"is the nucleon current,

X,"=(1/i)+"~,f, a=1,2,3,

(3.1)

(3.2)

implies that J" is covariantly constant, DQ"=0. Conse-
quently,

where [a] is the greatest integer less then a. [This subtle-

ty will be important in the non-Abelian case where the
upper (lower) components get opposite phase shifts be-
cause the a's have different signs. ]

Equation (2.6} is solved now at once: go to the U
gauge, switch to the momentum representation, and
decompose the incident wave as

0++0
Pine =

. ++ —. (2.13)

where the subscript + refers to the sign of A,~. The out-
going wave function is then, by (2.9) and (2.10),

exp( i ira)P—++

exp(isa�)P

exp( in a )X+ +exp( i ma )X—
(2.14)

Observe that (2.14) depends only on a modulo integers
i.e., on the Wu- Yang factor.

To interpret these results in terms of protons and neu-
trons, these objects must be first identified.

(P g)(k,P)= e' ~ I d8e ' @(k,8), (2.g)
. A'"r. 0+([A. F"—"1).
l

(3.3)

S ~H =exp[2i5 (a)], (2.9)

k=(k, P). This has the advantage that the restriction of
the 5 matrix to each angular momentum subspace H~ is
just a phase shift,

is ordinarily conserved, 8j,"for all a. Hence

q. = IJ.'d'x, a=1,2,3, (3.4)

provides us with an ordinarily conserved charge for each
Q.

Yang and Mills argue that electric charge should be in-
troduced by choosing, at each point independently, a pre-
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ferential direction co(x) in isospace. Choosing the gauge
so that this direction is along the third axis, the charge of
the nucleon (field} is expressed as

q„„„=e —,
' + xJ (3.5)

L

qp id ——e A„,I' 3 x . (3.6)

The total charge q„„,~+qf„~~ ——q3 is thus ordinarily con-
served.

The formulas above are valid in the "preferential
gauge. " In an arbitrary gauge they are reformulated as
follows: let us select, at each point x, a direction
to(x) =co'(x)~, [with

~
to(x)

~

=1] in internal space; con-
sider

q„„,) ——e —+ —. f Vt(x)co(x)%(x)d x1 1 3

2 1
(3.7)

qf ]d ———e Tr AxE x co x x . (3.8)

The fundamental assumption in this procedure is that
there is a gauge such that co(x) is position independent,
co(x)=g, for all x. This is undoubtedly correct if the
underlying space is R3. In topologically nontrivial situa-
tions however, the fields A„and g are smoothly defined
in general only on contractable coordinate patches. The
local expressions A„' ',g'~' (A„' ',P' ') given in V ( Vt)) are
compatible if and only if

y(a) h y(P)

A„' '=h ~
'A„(t')h

~ B„h ~(—h y)

(3.9)

where h tt is the transition function between the gauges
labeled by a and P, respectively. Similarly, in V the
direction field is given by an co(~). Gauge invariance re-
quires that

co( '(x)=h tt(x} 'co(~)(x)h(x) tt (3.10)

in the intersection of the domains. Now, V is contract-
ible for each a by assumption, so one can choose a
gauge —the so-called "rigid" gauge —such that co")(x)=g
is constant, ' Gauge invariance requires hence that

hatt '(x)gh tt(x) =g (3.11}

must be satisfied for all x, where h tt denotes now the
transition functions between the rigid gauges over V~ and
Vtt. Conversely, any g satisfying this constraint provides
us with an admissible direction field: co~(x) =g is a con-
sistent definition in the rigid gauges, and thus in all
gauges.

Equation (3.11}is, as explained in Refs. 6 and 8, a topo
logical obstruction Those g*s s.atisfying (3.11) are called
implementable directions.

Let us now consider a "background" solution A& to the
sourceless YM equations B„I"""+[A„',I"&"]=0 in M,
and assume the direction field co(x) is background-
covariantly constant, B„co+ [A„',co]=0 [in the terminolo-

gy of Ref. 6, o)(x) generates an internal symmetry of the
field configuration A„']. I.et us split the total field as
A„=A„'+ct„. As demonstrated in Ref. 7 the dynamical
YM equation (3.1) implies that

cc'=I"+(D+"")n, (3.12)

where the subscript N means all terms quadratic and
higher order in a„, satisfies the background conservation
law (3&c"+[A„',cc']=0 H. ence

8, (x)=Tr[P(x)to(x)] (3.13)

is ordinarily conserved, c)&c =0. Our definition given in
the Introduction for a test particle means exactly that
quadratic and higher-order terms in a„can be neglected, '

and (3.13) reduces then to the particle's electromagnetic
current J", =Tr(J"co) which must be now separately con-
served. Alternatively, this statement follows also directly
from the Dirac equation (1.1).

Now, adopting the philosophy of Yang and Mills, a
nucleon is a proton (neutron) if its charge is e (0).

Alternatively, consider the electric charge operator

Q, =(eli)co(x) . (3.14)

A nucleon )p is then a proton or a neutron, if it is an
eigenfunction of g, with eigenvalue +e/2.

IV. INTERPRETATION IN TERMS
OF PROTONS AND NEUTRONS

SU(2) YM fields over the punctured plane can be
described without transition function, so (3.11) is au-
tomatic: any SU(2) direction is implementable. Further-
more, the implementation is unique. As a matter of fact,

cc)f(x) =g (4.1)

0
proton = 0, neutron = (4.2)

respectively, in this gauge. So, by (2.14),

in a suitable "rigid" gauge. Indeed, denoted by to~(x) an
implementation of g, so that co~(xo) =g. In each
contractible subset of M—for example, in the region 0 & 8
g2n —we can gauge co~(x) to the constant value g,
g '(x)cong (x)=g. Furthermore, the G-valued function

g (x) can be chosen to be smooth everywhere —except that
it may happen that lim(i 2 Dg(x}=h&1. Such a singu-
larity is, however, removable. In fact, h belongs neces-
sarily to the U(1) subgroup of 6=SU(2) of rotations
around g, because co~(x) is continuous. But H is connect-
ed, so there is a smooth path h (t) in H such that h(0) =1
and h(2m) =h. The new gauge transformation defined by
g(r, 8)h '(8) is then smooth and brings co~(x) to g.

Notice, that this unique iinplementation of g can be ex-
tended to an implementation of the full su(2) in two
gauge-inequivalent ways.

Now we are in the position to check the predictions in
Ref. 1. Assume first that the electromagnetic and the
field directions coincide. This means that, in the U
gauge, co(x) =~& so a proton or a neutron has wave func-
tion



411

e
'

)z~ +exp(isa)Pexp( —i@a

RONOV-BOHM pp @PCS~I IAN AH&

for a proton

(4.3)

„;„,hifts, p«v'"g( „trons) get oprotons neuand }ience P

rgre ofur00I pMgt ptglX

t0
=exp

tron mixi g
c mc

'
roto ne

simplicity
(") the outgoing p

t on express~

gn .
direction- e

d (212) ~e get ' .
dependent flu ~i m—a)Xexp isa)X++exp( in—a for a neutron,

I

1 —cos8)]s n/4+8/2 —kr(a+ v'Srrkr sin( 8/2)sinn a cos rr2rrkr sin (8/2)+sin ira+
(8/2)+sin rra2nkr sin

l

(4.4)

Ei. 12
( ) HIXING RATIO p

4. 84

1.88~ '~ RQ ANr

V

etric for theicture is more symme ri

nucleon intensity v'") The outgoing nuc si v
. 2, according toshown on Fig. , ac

sin ma

2mkr sin2( 2)
' 1/2

8/

——kr(1 —cos8) . 4.sinma sin ——r

RS WRV

ton =, neutron =proton = p, ll

1
' '

roton is by (2.1 . An incoming prrespectively.
1

(4.6)

nto

+ —.sin(ma)=cos(maPou~=

-de endent mix'xture o pro
s roduces som e

, is hence a flux- ep
nce scattering a beamtrons: hence

(4.7)—4++4-

rrkr

on a (modulo
bl 11

yObserve that
ds on the noninteg—'n other wor s, nintegin —n

'
tegers) —in

1d and eec re 1 t omagnet&cassume that the fie
direction
a)(x)=xi in t e
h e function

PENCE 1. Q5

INTEiNS I TY 4

4E-812 l. Q3-

—1.37'

0. 00 .02
tion of the proton-nFIG. 1. Fluctuation

s metry can
1 ted for kr=

rather the proton-neutrby considering rather t e p
AH.

RP D I,&NS
I

. 03 . 0

nsity calculated fore nucleon intensity ca ortion of th

e
' . The divergence ane ttering angles.ne ative sca e

la (2.12).
tamed for g
due to the use of the



P. A. HORVATHY 33

Schrodinger equation. In the U gauge this is not diago-
nal; however, it can easily be diagonalized by a second
gauge rotation. In this new gauge —let us call it the U'

gauge —our Schrodinger equation becomes

82

(5.1)

FIG. 3. Scattering of a proton on a non-Abelian flux line
whose direction in isospace is perpendicular to the proton-
neutron axis. Isospin is rotated by the angle +2ma, depending
on the sign of the angular momentum. For a= 2 in particular,

all protons are turned into neutrons. This effect survives in the
classical limit.

neutrons as we/I as protons, confirming prediction (iv) of
Wu and Yang. In particular for a = —,

'
(when the Abelian

cross section is maximal), cosa.a =0, and thus all protons
are converted into neutrons. Similarly, an incoming neu-
tron is changed into a proton in this case.

In the first case co(x) =r& is covariantly constant„so the
particle's charge is conserved. When r0(x)=xi, Djro
=2a[r3 7 i] =2am& vanishes if and only if a=0 (modulo
integers), so the nucleon's charge alone is conserved only
if the YM field is trivial. In other cases the interaction of
the nucleons with the charged quanta of the field induces
a transfer of electric charge. Our fundamental assump-
tion is, however, that this does not change the "back-
ground" field in a substantial way and the Dirac equation
(1.1) is still a good approximation for describing the real
process.

When the particle goes entirely on one side of the
solenoid feither P =0, X =0 or P+ ——0, X+ ——0 in
(2.13)], the S matrix is just a rotation by angle +2ea
around v3.

exp(+isa) 0
0 exp(+isa) (4.8)

(where the sign is plus or minus depending on the sign of
the angular momentum). Hence the field induces isospin
precession (Fig. 3).

Notice also that the S matrix is the square root of the
Wu-Yang factor, S+ ——(4)+'~ . Intuitively, if the particle
goes entirely on one side, its polar angle is changed by
+n. So the phase shift is half of that associated to
+2%—which 18 4

V. MESGN SCAx-j. BRING

We can, by analogy, consider the scattering of m mesons
on a non-Abelian flux line. Pions are spin-0 SU(2) trip-
lets. Let us define m+,m, mo to be the eigenstates of Q,
given by (3.14) with eigenvalues e, —e, and 0, respective-
ly. Identify the Lie algebra su(2) with 8 ~ in the standard
way. The same line of thought as for nucleons leads to
describing the motion of ~ mesons by a three-component

Equation (5.1) splits into three uncoupled AB equations
with "magnetic" fluxes dna/e, 4na—le, and 0, respec-
tively.

It is now easy to prove the following statements, analo-
gous to the predictions of Wu and Yang. Assume first
that the preferential direction coincides with that of the
field. In the U' gauge, the pion states are given by

0 0
~+= 0, ~-= x, ~'= 0 (5.2)

0 0

Thus (i) m+ (n ) mesons get opposite phase shifts, while
a n beam proceeds undisturbed, and (ii) if a coherent
mixture of n+, no, and n is scattered on the cylinder,
one will observe a direction-dependent fluctuation in the
mixing ratios and intensities.

These statements are confirmed exactly like those valid
for nucleons.

Let us now assume that ai(x) is orthogonal to the field
direction, for example, co(x)=r& in the U gauge. In the
U' gauge the pion states are hence represented by

~+= —p, ~'= i), ~-= —X (5.3)
0 —x

Hence (iv) the scattering of a m+ beam will produce also
some rr and n mesons; as a matter of fact, P;„,=@+ is
scattered into

0+ —((l-
1

P,„,=cos ma —((t —sin ma 0+—sin2—ira ~+
0

m'

(5.4)

From (5.1) one could naively deduce that meson scattering
1is the same for a and a+ —,, because H2~ and H2 +&

describe the same electromagnetic AB situation. Observe
however that the S matrix (2.9) and (2.10) is ( —1) if a is
an odd integer. In the electromagnetic situation this is
unobservable, since it yields merely an overall phase. In
the meson scattering, however, the upper two components
in (5.1) do get this phase shift, while the lower component
is unchanged, so there is a relative phase difference. Al-
ternatively, this is understood by remembering that in case
(iv) the electric charge of a test particle is conserved if and
only if a =0. So for a= —,

'
something must happen which

causes the loss of the particle's charge. This is confirmed
by the exphcit solution (5.4): for a= —, all incoming m+ s
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are turned into m s.
These results complete those obtained in" where it was

shown that, for a particle which transforms according to a
unitary representation U of the gauge group, two solu-
tions of the test particle wave equation in YM vacua
characterized by Wu-Yang factors 4 and 4' are gauge
equivalent if and only if U(4}=U(4'). In those papers
we did not distinguish between protons and neutrons (or
between m+ and m ), so any gauge transformation was al-
lowed. Here, however, a preferential direction to(x) has
been chosen in order to do such a distinction. Therefore,
only those gauge transformation are now allowed which
preserve to(x).

Similar results could be obtained for the scattering of
"free quarks" [SU(3) triplets] or baryons [SU(3) octets] on
a "chromomagnetic flux line, "etc.

VI. CLASSICAL LIMIT

Generalizing the heuristic arguments of Wong,
Ardoz's has demonstrated, that the expectation value of

I

the particle's isospin,

J, =I gt~, gd x, (6.1)

satisfies, with the classical trajectory x(t), the equations
of motion

J=[J,A„x"], (6.2)

(6.3)

These equations are gauge invariant if J transforms ac-
cording to J~g ' Jg under a gauge transformation.

In the non-Abelian AB setup these equations are solved
at once. By (6.3), the space-time motion is just that of a
free particle. To solve (6.2), it is convenient to switch to
the U gauge. With the initial condition J(0}=(J;k)
E su(2) the solution reads

(t)=
exp {—ai [8(t)—8{0}]IJ»

exp {ai [8(t) 8(0—)) IJi2

J22
(6.4)

So classical isospin pro:esses, just like its quantum coun-
terpart, around the field direction. When the particle's
polar angle changes by 68, J is rotated by an angle
( —2ah8). In the scattering process b,8=+@,depending
on which side of the solenoid the particle has passed. So

t~J; for I&0
Jo„,= (6.5)

8+2 J;„, for I~0,
where I=rnxXx is the classical angular momentum.
Again, the phase of (6.5) depends on the sign of the angu-
lar momentum.

To get an interpretation in terms of protons and neu-
trons, first these objects must be identified. Let us choose
a preferential direction to(x). According to (6.1) the elec-
tric (3.7}of the nucleon is

aCuuci=e(7+to Ju} . (6.6)

Notice that the second term here is just the "spin-from-
isospin" contribution due to the internal symmetry of the
field. s'

A "classical proton" (a "classical neutron") is hence one
with —Tr(a)J) = —,

'
(——,').

If the field direction is parallel to the preferential direc-
tion, then, in the U gauge,

for a proton

0
for a neutron .

{6.7)

The effects (i)—(iii) above disappear in the classical limit:
according to (6.4) any mixture of pure protons and neu-
trons remains unchanged since there are no off-diagonal
elements.

On the other hand, the prediction (iv) survives even
classically. Let us assume again that ro and the field
direction are different, for example to=a, in the U gauge.
Then

0

2 1 0 for a proton

(6.8)
0

2 —1 0 for a neutron .

According to (6.4), a proton is scattered hence into

r

exp(+2irai )

exp{+2irai )

0

0 i 0 —1
=cos(2na) — . +sin(2ma) —.i 0 2i —1 0

(6.9)

depending on the sign of the angular momentum. This is
again a rotation by angle +2ma, cf. (4.7) and (4.8). In par-
ticular, for a = —,

' all protons are turned into neutrons.
Using (6.2), it is clear that the particle's charge alone is

conserved if and only if co is an internal symmetry for the
field, D&to=0. (The loss of electric charge is again re-
stored in the field-theoretic framework. } This conclusion
is confirmed by the explicit solution: DIt0=0 if and only
if a =0 modulo integers. But, by (6.9), then J,„,=Ji„,.

Noted added in proof. A promising candidate may be
the fractionally charged self-dual solution described in P.
Forgacs, Z. Horvith, and L. Palla, Phys. Rev. Lett. 46,
392 {1981}.
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