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The one-loop renormahzation of the Fess-Zumino model in four-dimensional anti —de Sitter
space (AdS}4 is studied using a manifestly supersymmetric Pauli-Villars regularization procedure.
The vacuum expectation value (A ) of the physical scalar field is linear1y divergent, while (F) =0.
This divergence is canceled by a counterterm in the superpotential which is linear in A. The diver-
gences of two-point functions agree with the nonrenormalization theorems of the flat-space model.
However, the divergent one-point function shows that the special notion of "naturalness" in flat-
space supersymmetry does not extend to (AdS}~.

I. INTRODUCTION

In this work we extend recent investigations' of the
properties of supersymmetric field theories in anti —de
Sitter (AdS) space. In four dimensions such theories are
invariant under the superalgebra OSp(1,4) whose Lie
subalgebra SO(3,2) describes the invariance group of
anti —de Sitter space. One motivation for these studies is
to explore supersymmetry in a context intermediate in

complication between flat space and quantum supergravi-

ty in which possible clues to the puzzle of the cosmologi-
cal constant might arise.

The particular topic studied here is the quantum struc-
ture of the AdS Wess-Zumino model 2 and we present re-
sults on two related questions.

1. Regularization. Careful calculation of the Green's
functions in perturbation theory requires a method of reg-
ularization in which the symmetries of the theory are
maintained. %e use here the Pauli-Villars method in
which the regularized action is manifestly supersym-
metric. The applicability of Pauli-Villars regularization
to the fiat-space Wess-Zumino model was stated quite ear-

ly and the general prescription for superfleld perturbation
theoryi was given. The only previous calculations known
to usi' involve matrix elements of composite operators
such as the stress tensor and conserved currents, which re-
quire a formal procedure different from that for the
Green's functions of elementary fields.

We present the regularized component field action for
the Wess-Zumino model both for flat space and AdS
space. A surprising result is that all quartic terms in the
Lagrangian vanish due to the Pauh-Viilars sum rules, so
that quartic vertices do not appear in any calculation. At
flrst sight this seems to be an error since quartic couplings
are known to contribute to tree-approximation amplitudes
for the physical fields. However, there are cubic cou-
plings between the physical and regulator fields, and it
turns out that the effects of the standard quartic coupling
is exactly reproduced by Yukawa exchanges of the regula-
tor fields in the infinite-mass limit.

2. One loop renorrna1iza-tion One of th. e most striking
features of flat-space supersymmetry is the nonrenormali-

zation theorem~ which implies that the classical superpo-
tential is not renormalized by perturbative radiative
corrections. Our results show that this modified concept
of "naturalness" is not true in AdS space. We start with a
superpotential containing cubic coupling and mass terms.
These are not renormalized at one-loop order, but there is
an infinite vacuum expectation value for the scalar field.
This must be canceled by a counterterm which is a linear
term in the superpotential.

Dimensional arguments strongly suggest that the
cutoff-dependent parts of the wave-function and
coupling-constant renormalization constants are un-

changed by the curved background, but changes in the
mass and linear renormalization constants are allowed.
Thus it is not clear whether the nonrenormalization of the
mass term found at one-loop order will persist to all or-
ders. If so, then the failure of the standard nonrenormali-
zation theorem is confined to one-point functions and is
not very drastic. The higher-loop behavior is left as an
open question here, although some possible approaches
are discussed briefly in Sec. VIII.

+AB 3A g 388 gyA

One can introduce intrinsic coordinates t,p, 8,$ collective-
ly denoted by x& by an explicit formulas y"(x"), such
that the induced metric takes the form

ds =
z z [dt —dp —sin p(d8 +sin 86dqP)] .

Q cosp
(2)

The scalar curvature is R=12a . To formulate super-
syinmetry one needs Killing spinors e(x) which satisfy the
equations

II. FOUR-DIMENSIONAL (AdS) GEOMETRY

We start the discussion with the fact that four-
dimensional AdS (AdS)q is the hyperboloid slztty"y
= —ai embedded in I with Cartesian coordinates y",
A =0, 1,2, 3,4 and flat metric slztt ——(+ ———+).
Infinitesimal O(3,2) transformations are realized by Kil-
ling vectors
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D„+—aye e(x)=0. (3)
z;, f;, F; with kinetic coupling parameters c; and mass
parameters p;. Since quadratically divergent integrals
occur in the theory, we impose the sum rules

There are four independent solutions which can be written
as e(x)=S(x)g where g is a constant Majorana spinor and
the matrix S(x) is an explicitly known matrix in the fun-
damental spinor representation of SO(3,2). Here we need
only the properties

S(x)S(x)=I,
S(x)y"S(x)B„=y'K,4+icr' K,b =i I' Kgs,

(4)

III. THE REGULATED WESS-ZUMINO MODEL

The Wess-Zumino model involves chiral multiplets
z(x), g(x), and F(x) with the transformation rules [with

L,R = —,
'

( I+y&) and with Ki11ing spinor parameters]:

5z =@LE,

5LQ=L ( i s)z—+F)e,
5F= equi @+a—)L Q .

One sees that the auxiliary field F(x) plays its usual role
as the indicator of supersymmetry breaking.

We introduce a set of Pauli-Villars regulator multiplets

where a,b =0, 1,2, 3 and the K„s are the Killing vectors
(expressed in intrinsic coordinates). The ten matrices I "
generate the spinor representation. For more details of
(AdS)4 geometry, see Ref. 5.

gc;p;i'=0, p=0, 1,2.

The physical fields (i =0) have co ——1 and po=p. For the
regulator fields (i & 1) we write p; =a;M where a; are di-
mensionless numbers and the limit M~ ao is taken after
calculation of Feynman integrals. Explicit determination
of the parameters c;, cz; is unnecessary.

The action of the regularized model is obtained from
the invariant kinetic and interaction Lagrangians

+az;I';+aI';z;+3a z;z;

W,„,= g(F, W, +F, W, )

——, grtr;(LW J+RW gj)fq+3a(W+ W),

with superpotential function

W(z;)= —,
' gcg 'iiiz; + A, gz;

After introducing real scalar and pseudoscalar com-
ponents z;=(A;+iB;)/~2 using F;——az; —c; W;, and
eliminating auxiliary fields, we obtain the Lagrangian

~= i gcg [c)p ~cd"~;+c)„&;d"&i+itrr(i8 p;)g; (p—; ap—r 2a —)A; —(p; +ay—; —2a )8; ]

The coefficient of the last term vanishes due to the p =0 sum rule (6), so that quartic couplings can be dropped entirely
both in flat space and (AdS)4, as noted in the Introduction.

For perturbative calculations one needs propagators for the fields A;(x), 8;(x), P;(x). Scalar propagators are func-
tions of a single O(3,2)-invariant variable, and it is convenient to use the chordal distance variable u = —,

' a (y"—y' ")
which is related to the square of the geodesic distance cr(x,x') by u = 1 —cosh I a [—cr(x,x')]'r I. Note that cr and u are
negative for neighboring spacelike-separated points.

%e use the notation

(A (x)A (x')) =—(0 TA(x)A(x'}
~
0),

etc. It follows from earlier work' that the free spinless propagators are give~ by

a d Q(A;(x)A;(x')) =c; Qi z(1 —u+ie), (8;(x)8;(x'))=c; Qi z(1 —u+ie),~

4 du A,. du
(10)

where Q„(z) is the Legendre function of second kind, and A,„=1+@;/a (and As ——2+@;/a) are the lowest-energy eigen-

values of the SO(3,2) representation for the free fields A;(x) [and 8;(x)].
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The spinor propagator can be written in terms of (A (x}A(x')) or (8(x)8(x') ) as'

(P;(x)g;(x')) =[(iQ„+p; +a)( A;(x) A;(x'))]S(x)S(x')

=[(is}„+p; —a }(8;(x)8;(x')) ]y5S(x)S(x')y&

which ensures that the (AdS)4 boundary conditions and the supersymmetry Ward identities are satisfied. It is curious
that for a massless spinor the propagator contains both even and odd powers of y" whereas chiral invariance would re-
quire only odd powers. The reason for this is the boundary conditions which imply that the axial charge is not con-
served, although there is a locally conserved axial-vector current. Thus chiral spinors do not exist in (AdS)4. The gen-
eral features of (11) have been confirmed in a recent analysis involving the more traditional bispinor of parallel trans-
port.

The short-distance behavior of the spinless propagator is determined from the asymptotic expansion

a d a 1 1 m
Qi, z(1 —u} ——

z
—+—2+ i [—ln( ——,

' u)+ho(A, )]+O(u lnu, u) (12)
4m da ~~o 8na '2 a

l

where A, (A, —3)=m /a and m =p +ap —2a is the Lagrangian mass for the free scalar (pseudoscalar) field, and
ha(A, ) =f(1)+P(2)—1it(A, )—f(A, —2), where f(A, ) is Euler's function.

We will now use the propagators in one-loop calculations beginning with the more singular one-point function of the

scalar field and then the two-point functions. Before proceeding to the quantum calculations we note that the classical

stationary point of the potential in (9), namely, A; =8;=0, also satisfies F, =0 and is therefore supersymmetric. It is the

radiative corrections to this classical supersymmetric phase that we will investigate.

IV. THE ONE-POINT FUNCTION

(13)

The vacuum expectation value of the field A;(x), whether a physical or regulator field, can be calculated via the stan-

dard Dyson-Wick expansion. To one-loop order this gives

(A;(x)}=iJ d y[ —g(y)]'~2(0~ TA (x)W;„,(y) ~0)

fd'y[ —g(y)]' '(A;(x)A;(y)) g [(p;+2p, )(A, '(y)) —(p; —2p, )(8,'(y))+(P, (y)g, (y))] .

To obtain the last line we inserted the cubic interaction
Lagrangian of (9) and performed Wick contractions. The
three terms inside the sum g. are the regulated contribu-J
tions of scalar, pseudoscalar, and spinor loops. The regu-
lated sum of the zero-separation propagators is well de-
fined and independent of the point y.

The next step is to use the relation

g(gi(y)fi(y)&= —2+[(p +a)&A (y)'&
J J

+(p, a)(8;(y—)') ] (14)

which has bien used previously' and follows from the spi-
nor trace of (11}in the short-distance limit. We also de-
fine a truncated one-point function (A; )„in an obvious
way and ~rite the result as

& A; )„=——,
'

A,(p; —2a ) y ((A, ') —(8,') ) .

The shift property g(1+z)=P(z)+z
(6) can now be used to obtain the simple final result

(A;)„= (p; —2a)gcjpJP

Using the asymptotic formula f(z)=lnz+O(z '), one
can easily see that the regulator contribution to the sum is
linearly divergent as the cutoff M~ 00.

We now note that (8; ) vanishes trivially; there are no
contributing boson loops because of parity conservation
and the trace in the fermion loop vanishes. However, to
interpret the result (17) clearly it is important to compute
the vacuum expectation value of the auxiliary field F;.
From the expectation value of the equation of motion,

2—Fg =azg +pgzg +c( A, $zj v 2, (18)
J

This quantity vanishes in the flat-space limit (a~0) be-
cause scalar and pseudoscalar propagators are equal, but it
does not vanish in (AdS)4 as we will see.

The value of the regularized zero-separation propagator
sums can be obtained from the short-distance limit of (12)
which gives

( A; )„= (p, ;—2a ) g can [pi(pi —a }ho(iq, )

p(p +a h}(0A. a)] .—(16)

V2(F, ) =(a+p, ;—)(A;)

(19)

To proceed further we must relate ( A; }to ( A; )„using

i fd yV' g(A;(x)A—;(x')) =c;[(p;—2a)(p;+a)]

(20)

which follows by naive manipulation of the equation
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Note that a possible counterterm quadratic in the boson
fields vanishes because of the sum rules (6). The truncat-
ed one-point function (3;)„is equal to 5I j5A; where I
is the effective action. If we compare (22) with (15) or
(17) we see that the Lagrangian seems to have been wait-
ing for the counterterm in (22), and we can cancel (A; )„
by taking

v = — g ((a,') —(8,') ) .
2 2

(23)

Both the infinite (cutoff dependent) and finite parts of
(A;) are canceled by this choice, and this is required in
order to interpret the theory as an operator theory in Pock

(0+m )(A(x)A(x')) = —i( —g) ' 5(x,x') .

From (13), (15), and (20), we see that (a+p;)(A;) com-
pletely cancels the second term in (19), so that the regular-
ized value of (F, ) vanishes. Hence supersymmetry is
preserved by the one-loop radiative corrections.

An alternate completely local method to show that
(F, ) =0 is to compute (A;) from the vacuum expecta-
tion value of the regularized operator field equation

c; (2+@; —ap; —2a )(A;(x)) = . (21)
5A;(x)

The term Cl(A;)=0 because of O(3,2) invariance. The
right-hand side of (21) is a regulated expression involving
operator bilinears, and these can be evaluated using Wick
contractions. After use of (14), one finds an expression
for (A; ) which can be substituted in (19) and again leads
to (F, ) =0.

Our computations have led to the result that (3;)„is
nonvanishing (and infinite as M~ oo) but (F;) vanishes.
Thus no symmetry of the initial Lagrangian is violated by
the one-loop vacuum expectation value, and we can cancel
the ultraviolet divergence and maintain supersymmetry by
adding a counterterm to the superpotential which is linear
in the z;. Thus we modify the superpotential (8} by add-
ing the term b, W=vg, .z;. After eliminating auxiliary
fields via F; =u+a—z;+c; W, i, we find that the new in-
teraction Lagrangian is

W;„,+bW;„,=W;„,—v 2ug(p, ; —2a)A; .

space.
Readers should note that (F; ) still vanishes after addi-

tion of the counterterm, since one can compute using the
relation —F, =u+az;+c;W;. We now have (z;) =0 be-
cause of the new counterterm vertices, while u as given in
(23) now cancels (c;W;) directly.

The philosophy underlying the procedure just discussed
is simply the idea of "naturalness" in nonsupersymmetric
fiat-space field theories. We found a divergence which
was consistent with the symmetries of the theory with the
couplings p and A, , and to cancel it we added a term to the
action which was also consistent with those symmetries
and might have been added ab initio. The conventional
nonrenormalization theorems imply a modified view of
"naturalness" in supersymmetric theories. The superpo-
tential is not renormalized, so even if one starts from a
theory which is not the most general one consistent with
symmetries, one is not forced to change it. Our results
show that this is not true in (AdS)& supersymmetry, and it
is in this sense that the conventional nonrenormalization
theorems fail.

V. THE BOSONIC T%'0-POINT FUNCTIONS

Truncated one-loop two-point functions are simply the
products of free propagators in configuration space and
the regulated expressions are nonsingular at short dis-
tance. Therefore it is difficult to recognize directly the ef-
fective singular quantities, 5(x,x') and CI„5(x,x') to be
canceled by counterterms for mass and wave-function re-
normalization. To circumvent this difficulty we use the
adiabatic expansion technique of Bunch and Parker
which permits the use of momentum-space methods to
determine counterterms.

For the free scalar field (I}(x) in a general curved back-
ground, i.e., for the Lagrangian

,' g""d„Jd"P —,'
( m g—R—)P—

Bunch and Parker study the propagator (P(x)P(x')) us-
ing normal coordinates z"=e,"(x')z' about the point x'",
so that g„„(x'}z"z"=rj,bz'z =a(x,x'). They obtain an
approximate Fourier representation [their (4-20) is rewrit-
ten in our Lorentzian signature conventions, with
kz=rl, bk'z ],

(P(x)P(x') ) =i J e
d4k

(2m)

1
(-' —g)R R k~k.

k m+ie (k —m+ie) —(k m+ie)—

1

k m+i e (k m—+i e) —(k ~ m+ie)— (24)

where in the second line we use R„„=—,Eg„„which is appropriate for an Einstein space.
Comparing with the boson mass terms of (9), we see that g= —,

'
and m ~p; +ay; for the scalar A;(x) [and pseudo-

scalar 8;(x)]. Thus we obtain the approximate boson propagators:

(~,(x)~,(x') )
(8;(x)8g(x') ) ' (2~)4

2a (p; +ay;}
+O(a k )k2 p,; +ay, ; (k p; —+ay(}—
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For the fermion propagators, we insert (25) in (11). The
virtue of this is that the correct supersymmetric Ward-
identity relations between Bose and Fermi propagators are
manifestly maintained, although the price of virtue is that
special techniques will be required to handle fermion-loop
diagrams.

The justification of the use of the approximate piopaga-
tors for the calculation of the ultraviolet properties of the
theory is that they satisfy two related criteria.

(a) The approximate expressions match the terms in the
short-distance expansion of the exact propagators, both
for bosons and fermions, up to regular terms.

(b) The approximate ex ressions coincide with the
power-series expansion in a of the exact propagators up
to an order beyond which, on dimensional grounds, there
can be no modification of the renormalization structure of
the flat-space theory.

The second term in (25) turns out not to contribute to
the ultraviolet-divergent renormalization constants. One

might suspect this since it is a regular term at short dis-
tance in both the Bose and Fermi propagators. However,
we have kept this term in our calculations because it is
still required by criterion (b). It also appears that the cri-
teria (a) and (b) would not be satisfied if the adiabatic fer-
mion propagator of Bunch and Parker (see also Ref. 10)
were used directly, because the chiral projections of the
exact and adiabatic propagators differ by terms which are
singular at short distances.

In the adiabatic method one calculates the self-energy

Il(x,x')= f 4e ' II(k )
d'k

(2ir)
(26)

essentially by momentum-space techniques using the ap-
proximate propagator above. Ultraviolet divergences as
M~00 are contained in the coefficients P and Q of the
Taylor series Il(k ) =P+Qk +0(k ), and one identifies
the corresponding counterterms via

e ' I'+ =P "z — q z =, P xx' — Cl„——,8 xx' . 27
(2~)' a" az'

=
[—g(x)]'"

The result' involving C3 ——,'R =CI —4a can be verified by multiplying the terms involving Q by a function of compact
support and integrating over the manifold. The term —,'R comes from the normal coordinate dependence of the volume
factor [—g(z)]'i2.

Now that we have set up and justified the adiabatic method of calculation, we will apply it to compute the one-loop
corrections to the two-point function &0

~
& TA (x)A(x )

~

0). We again use the Dyson-Wick expansion:

&Oi &TA(x)A(x') iO)ill ———fd zid z2[ —g(z, )]' [—g(z2)]' &Oi &TA(x)A(x')W;„,(z, )W;„,( Z)2i0) .00P (28)

After performing the Wick contractions using the vertices of (9) we find

& 0
~

& TA (x )A (x )
~
0 ) i i~i, = — fd z i V g& A—(x)A (z i ) )fdz2/ g& A—(x ')A (Z2 ) )

Xg l(P +4PIJl+2IJl +2I2lPk)
k, 1

X & ~k(z 1 )~k (z2 ) & & ~1(z 1 )~l (z2 ) &

+(IJ 4PI2l+2Pi —+28@i )

X &Bk(Zi )Bk(Z2) ) & Bi(zi )Bl(Z2) )

Tr[&gk—(z, )itlk(z )) &Pi(z, )gl(z ))]I . (29)

The three terms clearly correspond to scalar, pseudoscalar, and spinor loops. %e have omitted tadpole diagrams since me
have already introduced the counterterms which cancel them.

For further discussion we define the truncated two-point function or self-energy by
2

L 11(x,x ) = — g I (~+~„+~,)'& a„(x)~,(x ) & & a,(x)a,(x') &

k, l

+(P PI P l )'
& ~k (~ )~k (x ')

& & ~l (~ )~i (x '
) &

—Tr[ & ((k (x ) |I'k (~ '
) & & (('l (~ )4 (x ')

& ] l (30)

in which (29) has been rewritten symmetrically in k and I
Let us first study the spinor loop. The Ward identity (11) and the property (4) imply that
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S(x)(gk(x)fk(x') )S(x'}(—aI "
K&II +pk+a )(Ak(x)Ak(x') ),

S(x)y5(gk(x)fk(x') )S(x'}(x)=(—a I'" Kzs p—k+a )(8k{x)Bk(x')) .
(31)

%'ith these relations, the spinor trace becomes

Tr(fk{x)pk(x'))(QI(x)QI(x')) =
2 Tr[( al—" K&II +pk+a)(Ak(x)Ak(x'))( aI—KcD, +pi+a)(AI(x')Ai(x))]

+ —,'Tr[( aI"—Kg/ —pk+a)(Bk(x}Bk(x'))( ar—KcD, —pI+a)(BI(x')BI(x))],
(32)

where Kza (or Kcn,} indicates a differential operator with respect to the intrinsic coordinates x" (or x "). However,
X

the biscalar propagators can equally well be regarded as functions of the embedding coordinates y" and y' ". Indeed [see
(10)] they are simply functions of the chordal distance u =—,a (y"—y'") . Thus we introduce the simple notation
(&k(x)&k(x') ) =ak{u) and (BI,(x)Bk(x')) =bk(u). Then using (1) we have

I'" K~a (Ak(x)Ak(x')) =21'" y~ ak(u}=2a'I" y~(ya —yii)ak(u)= —2a'I" y~yaak(u),
yB

where ak(u) is the derivative with respect to u. Using this and its analogue for (Bk(x)Bk(x') ) we can rewrite (32) as

Tr(fk(x)gk(x') ) (4k(x')Pk(x ) )=2a Tr(I I )y~yIIycyn[ak(u)aI' (u)+bk(u)bI (u)l

(33)

+2(pk+a)(PI+a) k(u)al(u)+2(pk a)(PI a}bk(u}bl(u) (34)

The trace can be calculated from the imphcit definition (4) of I'" with the result Tr(I'" I ) =rl"Drlsc —rl"ci} . Us-

ing this, the constraint y "yz ——a, and the definition of u, we obtain

Tr(pk(x)fk(x')) (QI(x')ttII(x ) ) =2a u (2—u )[ak(u)ai (u)+bk(u)bI (u)]

+2(pk+a)(pI+a)ak(u)aI(u)+2(pk —a)(pI —a)bk(u)bI(u) .

The self-energy (30) now becomes

2

I'II(u) = 2a u(2 —u) g [ak(u)ai (u)+bk(u)bi' (u)]—g I [(p+pk+pI) —2(pI, +a)(pI+a)]ak(u)aI(u)
2 k, l k, l

+ [{p pk pI )' 2(pk a—)(pI a—}]bk(u)b—I(u)] . {36)

z 1
ak(u) = ak(z) =—,ak(z),

du a[u(u 2)]'~ dz

where we have used u =1—cosh[a ( —z )'~ ]. It is now convenient to make a Euclidean rotation in (25) and perform the

angular integration to obtain

(37)

Ji (kz)
ak(z) = — fk dk sin x dx e' ' ak(k ) = kidk ak(k )

(38)

We will now discuss the first term in (36). It is clear that only this term will give us divergences proportional to q . Let
us only work out the details for the A fields, the result for the 8 fields can then be obtained by simply replacing

pk~ —pk. The adiabatic propagators (10) are actually functions of the geodesic distance Ir'~ (x,x') =z, so we can write

ak(u) =ak(z}, etc., and compute the derivative via the chain rule

ak(k )= 1

k +9k —~9k

2a (pk apk)—
{k'+pk' —apk )'

Ji(x)
dx x

we find for the derivative of the propagator

and we have used a standard integral representation of the Bessel function J I (kz). If we now use

Jz(x)
(39)

d
ak(u) =

dQ

and therefore for

1
k dk

Jp(kz}

a [u (u —2)]'~ (2m ) Z
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2a (2—«)a«(«)a((«)= —2 a
—

2 fdkk dg(ka)a«(k ) Jdpp pz(pa)a&(p ) .
(2ir} z

(41)

On the one hand, we are pleased by this expression, since the factor u (2—u) was canceled; on the other hand, we ended
up with Bessel functions of order 2 and factors of 1/z. These factors seem not to allow us to undo the angular integrals
and go back to momentum space. But we employ a little trick to achieve this goal. Observe simply that the relations

k Jz(k )=k ZJ (kz), zdk k k
= ——J (kz), (42)

hold. Using these two relations and integration by parts we easily see that

f dk k'Jz(kz)kak(k') =fdk k'J2(kz) AI (k )

= —fdk [k Jz(kz)]Ak(k ) = —fdk k2ZJ, (kz)Ak(k )
k

d
&t pz pi dp

d k g a (pa —apk}2 2

,e-' in( —k +JM,„—ap, „)+(2~)' (k Pk +aP—k}

p 2

(p —W +aui}
x

(21r) p III +apI—

J2(pz} 1 d Ji(Pz) „1Ji(pz} d
p pQIp = — p pQIp = p pQIp

p z dp p z p dp

where we implicitly defined Al(k ) to be the integral of kal(k ). End-point contributions from the partial integration
cancel in the self-energy by the sum rules (6}.

We now reassemble things and restore the angular integral ending up with a nice expression involving only
I.orentzian-signature Fourier transforms, viz. ,

a

Ckcl 2 Ji(kz)
2a u(2 —u)ak(u)at (u) =2 „ fdk k2 Ak(k2)

(2n )" z

~ (PI aI I) 6P a (III aPI)

(P IIII +apl } (P Pl +ay l }

(q+k) ~ (PI aPI }

l(q+k} WI +aPI1 —[(q+k}' PI +algal—1'
X

(q+k) PI +aPI—2 2

To progress further we introduce q =p +k, let k go to —k, and rewrite (44) as

ckcl d q leg d k a (p» apk}—
2a'u(2 —u)ak(u)aI'(u) =2, , e "*f-, »( —k+Iuk' —a)Mk }+

(2m ) (2m ) (2m') (k' I.'+a~~ }'-

6(q+k) a (pI apl)—
[(q+k)' l I'+aoI 1'— (45)

This contains Feynman integrals of a moderately unusual type, and a lot of them. However, power counting implies that
the integrals involving the a term in the left-hand factor give finite expressions as M~ao. It is less clear whether the
product of ln( —k +(Mk —apk) with the a i terms in the right-hand factor are ultraviolet finite, and we have evaluated
these integrals explicitly and determined that they are finite as M~ ca. The details are too tedious to record here.

The remaining integrals without explicit factors of a can be handled using the identity

ln( —k +(uk —apk)2 2 2

(q+k)z plz+apl—
(q+k)

[(q+k)' I I'+al I1'—
(46)

k(q+k) 8,
1 k, 2 (q+k)"2» —k +Idk aIdk-k' I '+aI „(q+k)' I I'+a—I I &k" — (q+k) I I +aI I—

%e may then write, finally,
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2k(q+k)
2a u(2 —u)ai', (u)a/(u) =cocci

(2~) (2~) k —p~ +ay~ (q+k) p—l +apl
(47)

since the surface term in (46) vanishes at infinity. Note that (47) is precisely the expression one would get in flat space,
except for the api, terms in the mass denominators.

We are now ready to write an expression for the complete self-energy (30), including (47), the mass terms from the fer-
mion trace in (35), and the boson loops. The contributions of the term proportional to a in the boson propagator (25)
are finite by power counting, so we discard these terms. The result is

iII(x,x')= ——f 4e '~+cocci f 4 [p +pi, +pi +2(p —a)(pi+pi, )—2a —2k(k+q)]d q d k 2

(2n) i, i (2m)

1 1
X

k —i a +oua «+q) i i+—u) i
2 2

+ fp +pp +pl/ 2(p, —a)(p—[+pi, ) —2a —2k(k+q)]

1 j.

2k —i ~ —usa (k+q) —
J i oi i—2 2

Further simplification is achieved by expanding the propagators in powers of a

(48)

1 1 &Pa

pp ++—p/( k pg —(k —pg )

1 1 QPg
2 2 2 2 2 2 2k +Wc +&@a k —pa « —yi, )

(49)

We see that the contributions of the terms of linear and higher orders in a are either finite by power counting or finite
after cancellation between the scalar and pseudoscalar contributions. Dropping these terms we can rewrite (48) as

iII(x,x')= ——f 4e ~+cocci f 42[@, +pi, +pi —2u —2(k+q)k] z 2 z z
. (50)

d q 2 1 1

(2ir) g, i (2m ) k —p, g (k+q) —pi

With the help of Feynman-parameter techniques we may evaluate the momentum integral. The pi, +pi terms in the
numerator cancel with other terms from the momentum shift. The result is

ill(x, x')=iA. f e '~(q +p —2a )gci,ci f dxln x(1 x)q +—xpi, +(1—x)pi

This is the final form for the self-energy. We can evaluate the Feynman parameter integral (at q =0, so that only flnite
terms are neglected), and we find

iII(x,x')=i e 'e'(q +p —2a ) gci, ci lnres 2 —2 2 Pa +Br Pa

a, i Pa P i ij&—
where ultraviolet-finite terms have been omitted. Using (27) we rewrite this as

iII(x,x')=i( —CI+2a +p )
'

i&2 gci, ci z zln 2
5(x, )xA, Pa +P& Pa

[—g (x)] 32 a, & pa pi pi—

(52)

(53)

where the sum over regulator masses diverges logarithmically as M~ 00.
We have also evaluated the self-energy of the pseudoscalar 8 (x) in a computation similar to that described above. The

result is that the infinite part of the self-energy is identical to that of the scalar in (53). There are differences in the finite
terms which are expected since not even in the tree approximation do (A (x)A (x') }and (8(x)8(x') }coincide.

VI. THE SPINOR TWO-POINT FUNCTION

We now study the fermion self-energy beginning again with the Dyson-Wick expansion and a formula analogous to
(28) with the interaction term

'gA —i@~,

We then obtain the self-energy

i X(xx') = —A, g [(AJ(x)AJ(x') }(fi (x)Pi (x') }—(BJ(x)BJ(x')}y,(fi (x)fi (x') }y&] .
j,k
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This is a bispinor, i.e., the left spinor index responds to local Lorentz transformation at x and the right spinor index to
local Lorentz transformations at x . We take care to preserve this property in our calculations. Using (11) we rewrite
the previous expression as

i X(x,x') = —A, g [(AJ(x)AJ(x') )(iQ„+pk+a )(Ak(x)Ak(x') )
j,k

+ (8J(x )8J(x ') ) (i 9„—pk+ a ) (8k {x}8k{x')) ]$(x)$(x') . (55)

(56)

The quantity within the square brackets is a second-rank spinor at x, and it is this quantity to which we apply the
normal-coordinate methods. Our treatment is thus somewhat different from Refs. 9 and 10.

In our conventions" the inverse metric can be expanded in normal coordinates z& —=e,"(x')z'=5,&z' as

g""(x)=8'"+ —,
' R","g (x ')z'z~

and we can choose local frames so that

e,"(x)=5,"+—,
' R&,~(x')z'z

Thus the differential operator which occurs in (55) can be expressed in normal coordinates as

(57)

ax~ ' az"
= ' ' ' az'

Thus we can insert the adiabatic approximate boson propagators (25) in (55) and write

iX(x,x')= —A, gcjck f ~e ' aJ(k )f 4e '&*[y'(5, + 6R",~z'z )pb+pk+a]ai, (p )
{2n ) (2ir)

+ 48 J 4 P g +6+ g~zz Pb —@k+0 bkP SxSx

(58)

The z'z terms can be traded for (8/Bp')8/ill", and they yield Feynman integrals which are convergent by power count-
ing. Similar remarks apply to the contribution of the a -dependent terms, including the +a}M in the mass denominators.
We therefore drop all such terms, let k =q —p, and rewrite (58) as

i X(x,x') =f ~ e 's'X(q)S(x)S(x') (59)
(2n )

d'p (I+i k+u)+(P i k+u)—
X(q) = —A, cjck 4 2 2 2 2(2m') [(q —p) p& ](p —pk )—

f 1~i 1= —A,z(q+ 2a ) dx
(2n. ) [i +x (1 x)q xpj (1——x)}u—]—

=i(q+2a) ge ck dx ln[ —x(1—x)q +xp +(1—x)pk ]
i2

2 2 2

16m J

=i(q'+2a) g cjck ln32, k p,
' p„' pk'—

(61)

In the last step we have reintroduced the original coordinates and used the Kil1ing spinor property (3).

In the various steps we have used standard manipulations of Feynman integrals. In the x integral we set q =0, thus
neglecting finite terms. We insert this in (59) and obtain the divergent part of the self-energy

i X(x,x') =i i y' +2a 5(z) S(x)$(x') g cick 2 2
lnp g 8 &i +»

Bz Jk PJ Pk Pk—
S( x)$( x)5(,x x) ){, ~ Pj +8k PJ=1

1/2 ~CJCk 2 210
[—g{x)] 32'ir J,k PJ. Pk Pk—
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VII. COUNTERTERMS FOR TWO-POINT FUNCTIONS

We now show that the divergent parts of the boson and fermion self-energies, Il(x,x'} in (53) and X(x,x') in (61) can
be canceled by adding supersymmetric counterterms for the physical fields of the Lagrangian (9). If we scale the fields

Ao, Bo, %0, and the parameter p =po according to

Ao(x)~Z„'~'A(x), 80(x)~Zii'~zB(x), $0(x)~Z~'~'g(x), po Z„p,
and let Zq ——1+I, 5z~, etc., we find the counterterm Lagrangian

(62)

A, ~W„=—,
' A[5zz( —C3+2a') —(5zz+25z„)p, +ay(5zz+5z„)]&

+ —,'8[5zii( —U+2a )—(5zii+25z&)p, —ap(5zz+5z„)]8+ ,
'

P[5—z&ig (5z—~+5z&)p]P . (63)

By taking the second variational derivative with respect to A (x), we see that the divergences in (53) can be canceled if
and only if we take

5zg ———5z„=— g cgck 2
ln

1 pj +pk pj.
(64)

32ir J,k PJ Pk —Pk

The same steps apply to the 8-field self-energy, which is identical to (53), and the divergence is canceled only if
5Zg ——5Zii.

The spinor counterterm is somewhat trickier because we must properly interpret

y —gy y z~i ~
— z~+ z„p y

5$~(x')5'(x)

[ g(x—)]' [5zgig» —(5zg+ 5zq )p]p„t/rr(x) (65)
5$' (x')

so that the bispinor transformation properties are respect-
ed. Since the Killing spinor matrix S(x) enforces these
transformation properties in supersymmetric Ward identi-
ties such as (11), it is consistent to define

=S„( )S~ ( ')

We then see that the divergences of (61) can be canceled
only if we take 5Z~ ———5Z„as before.

The results indicate that the nonrenormalization
theorems of flat-space supersymmetry are obeyed for all
two-point functions in one-loop order. There is a com-
mon wave-function renormalization 5Z for all fields
which satisfies 5Z = —5Z„as required. The renormaliza-
tion constants are independent of the curvature; indeed
they coincide with the expressions that would be obtained
in a treatment of the fiat-space Wess-Zumino model using
Pauli-Villars regularization.

It should be noted that dimensional arguments would
have permitted the more general replacement
po~Z„p+A, 5Z'a where 5Z' is a dimensionless logarith-
mically divergent quantity. This could have led to addi-
tional counterterms

W,', =—
2 A (25z'ap —5z'a )

,
' 82(25z'ap+5z'a )—

——,
' Pga5z'

which were not present in the calculated self-energies. Fi-
nally we repeat the earlier remark that explicit calculation
of three-point functions is not required, since dimensional

analysis implies that their renormalization is not affected
by the curved space-time background.

VIII. DISCUSSION

The chief result of this paper is that the special notion
of naturalness which occurs in flat-space supersymmetry
because of the nonrenormalization theorem does not ex-
tend to the Wess-Zumino model in (Ad$)4. This effect is
rather modest; it occurs only in the one-point function,
whereas dimensional arguments would have permitted an
effect on the mass renormalization as well. It would be
curious to investigate the situation in higher-loop order.
The obvious technique to use is the form of superspace
perturbation theory ' which is applicable in (AdS)q. This
is more complicated than in flat superspace, but there is
still a distinction between chiral and full superspace in-
tegrals. Well before the development of superfield calcu-
lations, the particular form of the renormalization of the
Wess-Zumino model was determined by use of functional
techniques' ' which went beyond supersymmetric Ward
identities. It may be possible to generalize these tech-
niques to (AdS)~.

Quantum field theory in AdS space is unusual because
of the boundary conditions' required for conserved gen-
erators ' of OSp(1,4). One place where these have im-
pacted on the present calculations is in the treatment of
the spinor propagator as in (11) where there are terms
which are singular at short distance which seem to have
the character of boundary terms in the heat kernel expan-
sion. It is not clear whether these terms have actually af-
fected the final results on ultraviolet structure.

We have discussed above that these terms imply chirali-
ty nonconservation even in the massless %ess-Zumino
model. It is interesting to conjecture that a nonzero (and
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ultraviolet finite) fermion mass is generated at one-loop
order. This should be a calculable effect because the one-

loop mass counterterm vanishes in the theory with zero
"bare mass. " To establish this conjecture would require
accurate calculations of the finite part of X(x,x'), and
possible use of the nonperturbative criterion that physical
mass is determined from the pole in the transform of the
Lehmann spectral representation which has recently'
been extended to (AdS)4.

The boundary conditions imply that the fields in (AdS)&
have a definite symmetry under the antipodal reflection

y "~—y" on the hyperboloid. Because of this, propaga-
tors are singular not only on the light cone u{x,x')=0
which contains coincident points x =x', but also on the
reflected light cone u(x, x') =2 which contains antipodal
points x, =x'. The Legendre functions in (10) are clearly
singular at u =0 and u =2. This implies that propagator
wave equations should have both coincident and reflected
sources 5(x,x'}+e ' 5{x„x').The naive manipulations
used to derive (20) did not incorporate this feature. We
are not sure how to do this properly, although we believe
that there is a proper argument which does lead to (20)
simply because this result is required in order to agree
with the closely related local calculation using {21}.One
should also expect that the ultraviolet singularities of the
two-point functions would involve both coincident and
antipodal 5 functions, and it is not quite clear how to set
up the calculations to incorporate this. The present calcu-
lation should not be affected, since there is simply another
contributing region. We hope that these questions can be
illuminated in the future.

The results reported here can be compared with several
recent papers of Bellucci and Gonzilez. The first of
these' arrived long after the completion of the calcula-
tions of Sec. IV, and contained one-loop calculations of
two- and three-point functions in the massless Wess-
Zumino model. The second arrived' soon after the com-
pletion of the calculations of Sec. V and contained one-

loop calculations of two- and three-point functions in the
massive model. Dimensional regularization and the adia-
batic expansion technique were used, and it was concluded
that the nonrenormalization theorems of the flat-space
theory remain valid. This conclusion appeared to us to be
premature and incomplete since one-point functions were
omitted from consideration.

Several weeks later we obtained a third paper' in which
one-point functions (and also two- and three-point func-

tions) are calculated using Pauli-Villars regularization
with independent A and I' fields. There is a simple
methodological error in the relation between (F) and the
one-particle-irreducible I F [see (22) of Ref. 18] which
leads the authors to conclude incorrectly that supersym-
metry is spontaneously broken by the radiative corrections
while the nonrenormalization theorems are maintained.
This completely disagrees with our results.

It is less clear whether there is agreement between the
results of calculations involving the spinor propagator.
Bellucci and Gonzalez use the standard adiabatic approxi-
mate spinor propagator which differs even at short dis-
tances from the propagator (11) which obeys boundary
conditions and supersymmetry Nard identities. It ap-
pears that the ultraviolet-divergent part of the spinor
graphs for (A ) and (0

~
TA(x)A(x')

~
0) do not differ in

the two treatments but there is at least an apparent differ-
ence in the calculation of (0

~

T'P(x)4'(x')
~

0). Bellucci
and Gonzilez find, in effect, X(q)-glnM whereas we
find, in (60), X(q)-(g+2a)lnM . The term involving a
can be traced clearly to the a term in
(is)+@+a)(A(x)A(x') ) of (11) and this is not present in
the adiabatic spinor propagator used in Ref. 18. Our
treatment of the adiabatic spinor propagator differs from
Refs. 9 and 10. There, the local frame is chosen so that
the bispinor of parallel transport ts unity, and it does ap-
pear correct to conclude in this framework that
X(q) —q lnM corresponds simply to a spinor wave-
function renormalization. What is not clear to us is
whether the divergent parts of two-point functions are
then consistent with supersymmetry %ard identities, be-
cause it is S(x)S(x') which plays the role of bispinor of
parallel transport in these identities. It is worthwhile to
clarify this point because there is an issue of principle in-
volved, namely, do the reflective boundary conditions af-
fect the ultraviolet behavior'?
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