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We show that energy-momentum-conservation effects strongly influence the multiplicity distribu-
tion, as it is observed in e *e ~—hadrons over the full rapidity range. Once these effects are re-
moved, a Koba-Nielsen-Olesen scaling function corresponding to the independent superposition of a
small number of geometric cascades is consistent with the data. We predict the multiplicity distri-
bution in the central rapidity region, and speculate on its energy dependence.

I. INTRODUCTION

The multiplicity distribution of hadrons produced in
high-energy processes provides interesting general infor-
mation on the production mechanism and has been exten-
sively studied in recent years both experimentally and
theoretically.! The theoretical approach which seems to
grasp the most essential features of the problem is the in-
vestigation of the KNO function proposed 14 years ago
by Koba, Nielsen, and Olesen.? In this approach one
studies the KNO function

Y(z)=nP(n), (1.1)

where z =n /n, with 7 being the average multiplicity and

P(n) the observed multiplicity distribution. In many pro-
cesses, the experimentally determined KNO functions
turn out to be only weakly dependent on the energy of the
collision. This phenomenon is called KNO scaling.

Recently, a substantial violation of KNO scaling be-
tween CERN ISR and collider energies was reported by
the UAS5 collaboration for pp collisions.? It was establish-
ed that the KNO function in pp collisions broadens con-
siderably with increasing energy. It was pointed out in
Ref. 4 (see also Ref. 5) that one of the important sources
of this effect can be the influence of the energy and
momentum conservation laws which tend to suppress the
large-multiplicity tail. As this suppression is obviously
stronger at lower energies, the distribution is expected to
broaden with increasing energy, as observed. The analysis
of Ref. 4 suggests that the asymptotic KNO function is
the same as that found>®7 for particles produced in the
central region of rapidity, i.e.,

V(z)=4d4ze 2. (1.2)

(Throughout this paper, the central rapidity region is de-
fined by the requirement that |y | is much smaller than
the full rapidity interval available at a given incident ener-
gy. In this region the energy and momentum conserva-
tion effects are expected to be small.)

This important role of energy and momentum conser-
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vation, even at collider energies, implies that such
kinematic corrections should be thoroughly examined for
any process before a physical interpretation of the multi-
plicity distribution is attempted.

In the present paper we report an analysis of such
kinematic corrections for the process of hadron produc-
tion in e te ™ collisions which was recently summarized
by the TASSO collaboration.® This allows us to estimate
(starting from the measured multiplicity distribution in
the full rapidity range) the distribution which should be
valid in the central region of rapidity and, if KNO scaling
holds asymptotically for this process, to predict also the
multiplicity distribution at higher energies.

The effects of energy and momentum conservation on
multiparticle final states are to some extent model depen-
dent and thus it is necessary to specify the model selected
for the analysis. Since we want to invest as little of the
physics as possible at this stage of the argument, we have
chosen to work in the framework of uncorrelated produc-
tion of clusters”!® or, equivalently, the “bremsstrahlung
analogy.!! The results should be similar for any model
which limits the transverse momenta of the final particles
and produces a plateau in rapidity.

The resulting analysis of the data of Ref. 8 leads us to
the conclusion that the KNO function describing multi-
plicity distribution in the central rapidity region can be
approximated by the form

Y(z)= k* Zk—lg—k
T T(k) ’
with 2 <k <3. This form is close to the shape (1.2) ob-
served in pp collisions,’ but much broader than that ob-
served in the full rapidity interval of e*e ~—hadrons,®
which would require 8 <k <9.

The prediction of energy dependence is more difficult
because we do not know a priori the energy dependence of
k and our analysis is not precise enough to determine it
very accurately. Therefore only some speculations on this
problem are possible. The situation may be settled when
the direct measurements of W(z) in the central rapidity re-
gion of ete~ —hadrons are available. Such measure-
ments would also provide a crucial test of our approach.

(1.3)
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Our paper is organized as follows. In Sec. II we
describe the energy and momentum conservation correc-
tions to multiplicity distribution following from “brems-
strahlung analogy.”!! In Sec. III the theoretical spectra
are compared with the data of Ref. 8 and the shape of the
distribution in the central rapidity region is derived. In
Sec. IV we speculate on the possible energy dependence of
the spectra. Our conclusions are summarized in Sec. V.
In Appendix A the proof of the equivalence of the formu-
las for the particle spectrum derived from “bremsstrah-
lung analogy”!! and from longitudinal phase space'® is
given. In Appendix B the origin and physical interpreta-
tion of Eq. (1.3) are explained.

II. EFFECTS OF ENERGY
AND MOMENTUM CONSERVATION

The standard way of estimating to what extent an ob-
served feature of the high-energy data contains real physi-
cal information (or if it is merely a reflection of kinemati-
cal constraints) is to compare it with the longitudinal
phase-space calculation which also includes some funda-
mental properties of high-energy collisions such as, e.g.,
limited transverse momenta and the presence of leading
particles. We follow this method here, using for our esti-
mates the model of independent emission of clusters®!°
or, equivalently, the bremsstrahlung analogy.!! In this
model the observed multiplicity spectrum can be approxi-
mated by the formula'?

P(n= [ dzW(2)8(n —7(L)), 2.1

where A=zA is the height of the inclusive single-cluster
spectrum at rapidity y=0 [A fluctuates with the probabil-
ity distribution W(z)dz where, as we shall show below,
W(z) is the KNO function], and 7 (L) is the average num-
ber of clusters in events with given A. (In this formula the
fluctuations of multiplicity at fixed A are neglected. They
are expected to be Poisson like!! and thus they may only
introduce some corrections at the low multiplicity end of
the spectrum, which is not very essential for our argu-
ment. However, they influence the precise determination
of k in the central region. This is taken into account in
the discussion of Secs. III and IV.)

n(A) is obtained by integrating, over a given rapidity

range, the single-cluster inclusive distribution'!"!?
=P Ax (1—x ! 2.2)
dy

where the first term describes the produced and the

second one the leading clusters. x is the Feynman vari-

able x =P /Py, and y is the rapidity of the cluster.

Equation (2.2) is derived in Appendix A, where also other

details of the calculation are given.

It follows from the formula (2.1) that ¥(z) is the KNO
function of the multiplicity distribution in the central ra-
pidity region. Indeed, in this case we have from Eq. (2.2)
A(A)=~AY, with Y being the rapidity interval considered
(x =0 in this region). Equation (2.1) then gives

1
P(n)= }LOY‘P(n/kOY) . (2.3)

Since, on the other hand, AyY is easily identified with the
average multiplicity in the interval Y (and thus A, with
the average height of the single-cluster distribution in the
central region) we obtain

AP (n)=W¥(n/n) (2.4)

which completes the proof.

Using Egs. (2.1), (2.2), and (2.4) one can express the
multiplicity distribution in any rapidity interval by the
function W(z) describing the multiplicity distribution in
the central rapidity region.

III. ANALYSIS OF THE e*e~ DATA

In Ref. 8 the multiplicity distribution in the central ra-
pidity region was not given. We therefore do not know
the function ¥(z) and are forced to make some assump-
tion about its general shape. We have considered the
one-parameter family of W(z) of the form given by Eq.
(1.3) and tried to determine the parameter k from the
available data in the full rapidity region® using Egs.
(2.1)—(2.4). The form (1.3) was suggested by pp data [cf.
Eq. (1.1)] and by its simple intuitive interpretation, as ex-
plained in Appendix B: it corresponds to the distribution
created by k-independent form-invariant cascading pro-
cesses.

Using Egs. (1.3) and (2.1)—(2.4) we have calculated the
expected KNO functions in the full rapidity region at 14
and 34 GeV for several values of the parameter k. They
are plotted in Figs. 1(a) and 1(b). One sees that at 14 GeV
[Fig. 1(a)] the data are reasonably well described by k=2
whereas at 34 GeV k=3 seems to be preferred. The cor-
responding KNO functions for the central region [i.e., Eq.
(1.3) with k=2 and k=3, respectively] are also plotted in
Fig. 1 and are seen to be much broader than the ones for
the total rapidity range.

This striking effect of strong broadening of the spec-
trum in the central rapidity region is very characteristic of
our analysis (it was already present in the pp data*) and
therefore represents a crucial test of the approach present-
ed here. It would be interesting (and probably not very
difficult) to verify this prediction experimentally. [We
have checked that this result is insensitive to the presence
of leading particles in longitudinal phase space. In this
case Eq. (2.2) is replaced by dn/dy =A(1—x)*~! (Ref.
10). The numerical results are slightly modified for small
multiplicities, but do not change for z >0.6.]

As to the energy dependence of W(z) indicated by the
data of Fig. 1, it is a much smaller effect and may well be
contained within the error bars of our analysis (which
treats the kinematic corrections crudely, particularly at
such small energies and multiplicities). The conclusion
must thus wait till the direct experimental measurement
of W(z) in the central rapidity region is available; in our
argument the function W(z) is not known a priori and
thus one cannot predict the energy dependence at this
stage. Some speculations on this subject are nevertheless
presented in Sec. IV.
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FIG. 1. (a) Hadronic multiplicity distribution ({(n)P, vs
n/{n)) in e*e~ annihilation. The data at 14 GeV (over the
full rapidity range) are compared with the theoretical curves
which, starting from a KNO scaling function ¥(z) with two or
three sources, incorporate energy-momentum conservation ef-
fects in the manner described in the text. Predictions for the
central rapidity region are also given in both cases of two or
three sources. (b) Same as (a), but with the data at 34 GeV.

IV. SPECULATIONS ON THE ENERGY
DEPENDENCE OF THE SPECTRUM

Taking into account the data shown in Fig. 1, we shall
consider two possibilities: (i) k is energy independent [and
so is W(2)]; (ii) k increases slowly with energy [and thus
W(z) shrinks].

If k is energy independent, one can easily predict the
energy dependence of the KNO fur.ction in the full rapi-
dity region, using the formulas of Sec. II. In Fig. 2 the
KNO function expected at 100 GeV is plotted. One sees
that the distribution is expected to broaden substantially
with respect to the present data.

If, on the other hand, the indication of energy depen-
dence of W(z), suggested by the data of Fig. 1, is con-
sidered seriously, it opens the way to an interesting specu-
lation. Let us start by recalling that Eq. (1.3) is the limit-
ing form of the distribution of particles emitted by k-
independent “random” sources.®” The data of Fig. 1 sug-
gest that the number of independent sources of particles
in the process e *e ~—hadrons increases with increasing
energy of the collision. It is thus tempting to identify
these sources with quark and gluon jets'* which, as is well
known,® dominate the particle production process in
ete™ collisions. This identification, if accepted, has
several interesting consequences.

(a) The distribution of multiplicity within one jet must
correspond to that of a “random” source. As shown in
Appendix B, this implies the distribution of the “geome-
trical” type, e.g.,

<n=Fy ‘ ' ' ‘

KNO function for full rapidity region at 100 GeV

01—

\n
0.01 1 | L I L /<n>
0.0 1.0 20 30

FIG. 2. Prediction of the multiplicity distribution at 100 GeV
over the full rapidity interval, depending on whether the number
of sources is two or three (the shaded area) or increases to four
(the single curve).
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Pn)=(1—MA""!, n>1. 4.1)

[Since we are interested in the limit of large n, the first
few terms in Eq. (4.1) are not essential for the argument
presented here.]

(b) As shown in Appendix B, the spectrum (4.1) de-
scribes a specific example of a cascade process in which
the shape of the distribution is invariant with respect to
the number of generations in the cascade. This property,
if indeed verified for the quark and gluon jets, should put
an interesting constraint on the (still poorly known) pro-
cess of hadronization of partons.

(c) If k is interpreted as the number of jets, we expect it
to increase approximately logarithmically with energy. If
this is the case, one has k~4 at 100 GeV and one can
again give prediction for the multiplicity distribution in
the full rapidity region, using the formulas of Sec. II. It is
shown in Fig. 2. Comparing Figs. 2 and 1(b) one notices
that in this case (k=4) the distribution at 100 GeV is not
far from the data at 34 GeV; i.e., there is apparent scaling
between those two energies.

To conclude this section, let us repeat that the argu-
ment presented here is of speculative character. Neverthe-
less, it shows that a measurement of the multiplicity dis-
tribution at higher energies (particularly in the central ra-
pidity region) shall be very interesting for studying the
processes of hadronization.

V. CONCLUSIONS

We have analyzed kinematic corrections to the multipli-
city distribution observed in the process e *e ~—hadrons
at 14 and 34 GeV. Our conclusions can be summarized as
follows.

(i) The observed shape of the multiplicity distribution in
the full rapidity interval is strongly influenced by effects
of energy and momentum conservation. The measure-
ments of the KNO function in the central region of ra-
pidity, where the kinematic constraints are minimized,

would thus give much more direct physical information
on the particle production process.

(i) The KNO function in the central rapidity region is
predicted to be of the form

Y(z)= k* Zk—le—k (5.1)
I'(k) ’
with 2 <k <3 in the (15—34)-GeV range and thus much
broader than the one observed in the full rapidity inter-
val.® Checking this prediction would provide a most cru-
cial test for our argument.

(iii) If the form (5.1) is confirmed by the data, it means
that the KNO function in the central rapidity region is
not very different from that observed in pp collisions.® It
follows that fluctuations in impact parameter (which can-
not play any role in e *e ™ collisions) do not influence sig-
nificantly the multiplicity distribution in hadronic col-
lisions.* This seems consistent with the color-exchange
picture of particle production,'> but inconsistent with
some of the current models.'®

(iv) Possible energy dependence and physical interpreta-
tion of the obtained results depends crucially on precise
determination of the KNO function in the central rapidity
region, which was not possible by the indirect method em-
ployed in the present paper. Some speculations on this
subject are nevertheless given in Sec. IV. Conclusions in
this respect must wait till more complete data are avail-
able.

Note added in proof. The recent measurements of mul-
tiplicity distribution in central region of e *e ~—shadrons
at 29 GeV [M. Derrick et al. (unpublished)] confirms our
predictions, as shown in Fig. 1(b).
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APPENDIX A: DISTRIBUTION OF PRODUCED AND LEADING CLUSTERS FOR DEFORMED
LONGITUDINAL PHASE SPACE

In this appendix we derived the Stodolsky-Benecke formula (2.2) from longitudinal phase space, using the method of

Ref. 10. Let us define the function

A" " ae Ap;
Q0= 5 [ | T1e™— [8(Qo—e1—
n ) i=1 i

—€,)8(Q —p1— - —pu) . (A1)

This function is proportional to the sum of longitudinal phase-space integrals of the type

1 r api
S UM P TL = [8(Qo—€1— -+ —€)8(Q—pi— "+ —py). (a2)
° i=1 i
where matrix elements | M, |2 are given by
n
| M, |2=A" ] ™. (A3)

i=1

This is an uncorrelated jet model with longitudinal distribution e *€.
De Groot observed that the presence of 8 function in integrals (1) and (2) allows us to take the factor

[1 e =explate,+ - +6,)]

i=1
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out of the integral and thus gives

04(Q0, Q) =e “"°2 I ) (20— 3]s |o-Zn

i=1 €i

=¢"%C,(00,0) - (A4)

The function C;(Q,Q) was calculated by De Groot in the high-energy limit. We shall use here only the leading term
(which corresponds to the Stodolsky formula for a=0). In this limit one has

Ci(Q0,0)=AANQ>— Q"= AANQo— QM Qo+ O 1. (A5)

The function Q,(Q,Q) can be used to express the inclusive distributions if multiparticle production is described by am-
plitudes given by Eq. (A3).

The cross section to find leading clusters with momenta L, and L, in the c.m. frame (and any number of produced
clusters) is

do(x,x,)=BQ,(2E —Lg—L,y;—L,—L,)dLdL,
=BA(Mexp[a(2E —L 19— L)1+ (2E)* 1 —x * (1 —x,)* " dx dx, . (A6)
Here we denote by 2E the total c.m. energy and introduce the scaling variables
=Lio/E=|L;|/E . (A7)
The constant B is to be determined from the normalization condition
f do=o, (A8)

where o is the total inelastic cross section.
Similarly, the inclusive cross section to find a produced cluster with four-momentum (€,k) and two leaching clusters
with momenta L,,L, is

dU-‘-‘—BQA(ZE—L]o—'LZO—-‘G, —L1 '—Lz —G)dleLzﬁ}\. e%€

A(M(ZE)uke @expla(2—x; —x;—x)](1—x; —x)* 1 (1—x )~ ldx,dx, . (A9)

The condition (A8) can be exploited using Eq. (A6). We have

A(M(ZE)Z’“I dxxf dxze““ xp) all= —x) X1y !
B AN G4 M7, (A10)
where
#la,\)= f e®z=1dz (A1)
and a=akE.

Thus the distribution of leading clusters is
_(ig _ 1 a(2—x;—x,)
o [¢aM)]

and for the inclusive distribution of produced clusters we obtain

(1—x A 1(1—x,*~2dx,dx, (A12)

do 1 dk ! a—1 @(l—x,) pl1=% _1.a(l—x—x;)
—a—=mke“"— fo dxy(1—x,) e 2 fo dx(1—x —x;)* e !
dk ¢(a(1—x),A)
=Ae™(1—x— . Al
e®(1—x)*— Sah) (A13)
|

Finally, let us note that for a=0, for each of the leading clusters. Furthermore, formula

#(0,0)=1/A (A14) (A13) reduces in this case to
as is easily seen from Eq. (A11). Thus for a=0 we have 14 =M1—x )"—‘yi:}»(l——x))‘dy . (A16)
from (A12) g €

do —A(1—x)A~ldx (A15) Thus for a=0 we obtain the formulas of the Stodolsky

bremsstrahlung model.
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APPENDIX B: THE CASCADING PROCESS

A cascading or branching process starts with a cluster
which decays into »n particles with probability P,. Each
particle in turn splits into n particles with the same distri-
bution. A cascade of successive generations thus
develops, each element in a generation being both particle
and cluster.

At the I/th generation the probability distribution is
given by

Pn;Izsz;I——l 2
m P

Pm

2pi=n

as a function of P, and the original distribution P,.
The corresponding generating function is

G(l)(z)= zzn n;1=G(1—1)(G(Z)) ,
GG (2)=G(2),

PP]PPZ o Ppm

where G (z)= 3, z"P, determines the cascading process.
Let us consider the case of a geometrical initial distribu-
tion!” given by

P, =(1—MA""1, Py=0. (B1)

The generating functions are

(1—A)z
— s TE B2
G(z)= I , (B2)
(1=1)z

1—[1—(1=2)"z

GV(z)= (B3)

The generating function keeps its shape from generation
to generation. This is a remarkable feature of a geometric
distribution. From the expression of G'”(z) we obtain

Ppy=(1—M[1—(1-2)1""", Py;=0 (B4)
and
1
__ 1 (BS)
ndi=0"0y
(nn—1)"(n—k+1)), <
=k!|1 (B6)
(n)F (n)y

The average number of particles in a generation increases
with generation number, and the normalized moments in-

crease correspondingly. In the limit where n— o,
z=n/{n) fixed, the distribution becomes scale invariant
in the following sense:

lim (n )P, =e"*.

n— o

z fixed

Scale invariance is a characteristic feature of branching
processes. In the language of Ref. 6 the asymptotic
behavior corresponds to emission from one hadronic
source. If there are k-independent sources, the generating
function is simply the product of k factors equal to G(z).
Taking for G(z) the function corresponding to the
geometric distribution (1), one has

(1—A)kzk
Gi(2)=[G(2)f=—"T""—
HD=16@) =" %

from which follows, after expansion in z of the denomina-
tor,

’

k
__ (n=12 I—A |,
Prin 2= o |77 | M
P,(n <k)=0
and the average value
k
(n)= R
In terms of (n ), the multiplicity distribution becomes
(n —1)! 1
P,(n>k)=
P2 20—k ((n) /k —1)F
k n
X |1 ==
(n)

In the limit n— 0, z=n/{n) fixed, this distribution,
when multiplied by (n ), tends to the scaling function

v (z):k—kz""‘e"‘z
k (k—1) :
where k denotes the number of sources.
The identical asymptotic form is obtained in Ref. 6,
where the multiplicity distribution, based on optical con-
siderations, is given by

1
1+{n)/k

1
1+k/{n)

_(n+k-—1)
" oplk —1)
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