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Lehmann spectral representation for anti —de Sitter quantum field theory
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The O(3,2) invariance properties of field theories in a background anti —de Sitter space-time are
used to derive a nonperturbative Lehmann spectral representation for two-point functions of scalar
operators. A suitable integral transform is defined and the transform of a two-point function is

shown to satisfy a dispersion relation in a variable which is the eigenvalue of the Casimir operator of
O(3,2).

Field theory in anti —de $itter (AdS) space has emerged
as a research topic of some interest because AdS space
occurs as a natural space-time background in gauged ex-
tended supergravity and in Kaluza-Klein theories. It was
once thought that AdS space is not a suitable arena for
field theory because it is not a globally hyperbolic space-
time' and the basic Cauchy problem is not well posed. It
was then suggested that this difficulty could be overcome
if suitable boundary conditions were imposed at spatial in-
finity and these conditions were implicitly contained in an
earlier group-theoretic approach. 3 The free-fleld problem
in both scalar and supersymmetric field theories ' now
appears to be solved, and the boundary conditions ensure
conservation of the generators of the isometry group
SO(3,2) and the supergroup OSp(1,4) of the theory. One
may begin to explore the properties of AdS quantum field
theory with interactions, and the boundary conditions
play a role in recent treatments of the effective potential
and the vacuum energy problem. 7

In this paper we study a nonperturbative aspect of AdS
quantum field theory and derive a Lehmann spectral rep-
resentation for the two-point function of' scalar operators
(composite or elementary). The standard Lehmann repre-
sentation follows from the Poincare invariance of flat-
space quantum field theory, and it is derived for AdS
space by expanding in intermediate states and exploiting
SO(3,2) invariance. The standard Lehmann representation
is most useful in momentum space where it leads to a
dispersion relation and to the nonperturbative definition
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After introducing intrinsic coordinates t,p,x, with

p =x'x', and the usual spherical coordinates via

y =a sint seep,

y'=(ap) 'x'tanp,

y = —a cost seep,4 —1

(2)

one finds the induced line element

of physical mass as a pole of the propagator. The Fourier
transform is not natural in AdS space, but there is an
analogous transform which is natural. ' When this is com-
bined with the Lehmann representation, one finds that the
transform of the two-point function satisfies a dispersion
relation as a function of a variable which is essentially the
eigenvalue of the quadratic Casimir operator of SO(3,2).
The notion of "physical mass" as a pole of the transform
then follows naturally. Readers who wish to preview the
key results are invited to peek at Eqs. (25), (29), (30), and
(34) below.

Let us start the discussion with the fact that four-
dimensional AdS space (AdS)4 is really the hyperboloid
riz~y"y =a embedded in 8' with Cartesian coordi-
nates y", A =0, 1,2, 3,4 and flat metric
=(+,—,—,—,+ ). In this setting infinitesimal transfor-
mations of $0(3,2) are realized by Killing vectors

ds =(acosp) I(dt) —(dp) —sin p[(d8) +sin 8(dy) )J

and the Killing vectors take the form Kzz E~tt"B„with——
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For more details, see Ref. 4.
In any field theory on the fixed AdS background, such

as the scalar theory with Lagrangian

,'g"—"a„~a~ ,'—m—~ ,'—g~—

the SO(3,2) transformations are realized by Hermitian
operators

Mgg= d x —g T

where T„„(x)is the stress tensor. (Additional "improve-
ment" terms in these generators are required in supersym-

metric theories, but this is irrelevant for the present pur-

pose which is to fix conventions. ) These operators have
comm utators

Energ

X +5

X++ — o

X+5

X +P

X+(

[HMk ]=—Mk .

Thus the Casimir eigenvalue is easily verified using the
expression

2MggM" =M04 —3M04+Mk Mk +~ (10)

9AcMBD /BDMAc+ 9ADMBc)

and act on any scalar field, such as (()(x) or a composite
scalar, as

[MAB, Q(x)) = iKAB—Q(x) .

The derivation of the Lehmann spectral representation
requires some factss'"' about the positive-energy infinite-
dimensional unitary irreducible representations of (the
covering group of) SO(3,2) which we now review. Each
such representation is specified by the pair of numbers
(A,,s) where A, is the positive lowest eigenvalue of the ener-

gy operator M04 and s is the total angular momentum of
the unique state with energy A, . For s =0 or —,

'
unitarity

requires A, &s+ —,, while for s & 1 this condition becomes
A, &s+1. The lowest states of the representation are the
(2s + 1)-dimensional rotational multiplet denoted by

~
(A, ,s)A, ,s,m) where —s &m &s. Other states are ob-

tained by acting on these by repeated application of the
energy boost operators Mk+ =iMok Mk4 w—hich increases
energy by one unit and change angular momentum as any
spatial vector would. The resulting normalized states are
denoted by

~

(A,,s)co,j„m) where co, j(j+1), and m are
the eigenvalues of, respectively, M04, J =-,'MJ, and

Js ——Mi2. For s &1, there is a further degeneracy, i.e.,
typically more than one rotational multiplet of given j and
co. However, we do not wish to elaborate our notation
further to incorporate this. All of this information is con-
veniently pictured in the weight diagram of a representa-
tion, given for the (A, ,O) irreducible representation (irrep}
in Fig. l.

The quadratic Casimir operator C2 ———,
' M&~M" has

eigenvalue A(A, —3)+s(s+1) in the irrep (A,,s). The key
property of the lowest multiplet

~

(A,,s)Asm } is that it is
annihilated by the energy deboost operators
Mk ——Mok+ Mk4 which satisfy

0 2 4
FIG. 1. %eight diagram of the {A,,O) representation of

SO(3,2). Each circle indicates the presence of a {2j+1)-
dimensional rotational multiplet.

Let us now consider the spectrum of states of an in-
teracting field theory such as (5). Because of SO(3,2) in-
variance, it is reasonable to assume that there is a unique
vacuum ~0), which satisfies MAB ~0)=0, and that the
remaining states can be classified in irreps (A, ,s) and
denoted by

~
(As)cojm (a)). The label (a) denotes addi-

tional SO(3,2}-invariant quantum numbers which would
be required to specify states uniquely. For example, the
same representation (A, ,s} might occur in the two- and
three-particle sectors of the theory.

The free scalar theory in (AdS}4 has been well stud-
ied. If the Lagrangian mass parameter is m, then
single-particle states belong to either of the two irreps
(A, +-,0), where A,

+-= —', +( —,'+m /a )'~. The eigenvalues
A,

+- correspond to regular (irregular) scalar modes, respec-
tively. Note that m /a & ——, leads to a stable vacuum,
and that in the range ——', & m /a & ——,', one can impose
either set of boundary conditions and choose either the
regular or irregular modes. The upper limit is determined
by the unitarity condition A, & —,'. If mila & ——', then

only the regular modes I,+ are acceptable. Although the
multiparticle states have not been examined in detail, it is
quite clear that they are determined by direct products of
the representation (A,—,O). By inspection of the weight di-
agram, it is clear that the two-particle sector contains the
representations (2A, +-,0), (2A, +-+2,0), and infinitely more.
Thus the allowed values of the quantum number A, are
discrete, and related to the basic A,

-+
by A. =A, -++ (non-

negative integer). It is this picture of the spectrum of the
free theory which we carry over to the interacting case.

Let us now derive the Lehmann representation by a
method similar to one used in the simpler situation of the
O(2, 1)-invariant quantization of the Liouville theory. '

Let A(x) and 8(x) denote two Hermitian local scalar
operators, either elementary or composite, and let us con-
sider the Wightman function (0

~
A (x)8(x')

~
0}. We ex-

pand in a complete set of intermediate states
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g (oI ~(» I(l »)~P «))((J»)~im(a) IB(x'}Io) .
(A,,s)(a) cujm

We now show that only irreps which contribute in (11}have s =0, although s+0 irreps may be present in the theory.
From the first-order differential equations obtained from (8) it follows that the time and angular dependence of the ma-
trix elements in (1 1) is

(0
~

A (x)
~

(A,,s)am (a) ) =R (p)e '"'I' (H, p), (12)

where j is an integer and R (p) is an unknown radial function. Froin (8) applied to the energy deboost Mk, one finds, us-

ing the fact that the lowest-energy multiplet is annihilated by Mk, the three differential equations

(iEoi+E;4)(0
~

A (x)
~

(A, ,s)Asm(a}) =0,

i sinpx' —+, ,
—x~xj . +cospx xj . (0~ A(x)

~

(A,,s)Asm(a))=0,~I'~ P
dt slnp

where (4) has been used to obtain the last line. Since x JB/Bx J=8/Bp, the longitudinal component of the set of differen-
tial equations is JUst

k slnp+ cosp (0
~

A (x)
~

(A,,s)iism (a) ) =0 (14)

which has the unique solution

Ri, (p) =C(cosp)~ .

From the transverse components of (13) one finds that angular derivatives of the lowest mode matrix elements vanish.
Hence ordy s =m =0 contributes.

It is no accident that (15) coincides with the known radial wave function of the lowest mode of a free scalar field
whose states transform in the irrep (A, ,O). From fairly straightforward manipulations using (8) one can deduce the action
of the Casimir operator

(0
~ f —,

' MqaM", A (x)]
~

(A, O)colm (a, ) ) = —,
' EzsE" (0

~

A (x)
~

(A, ,O)colm (a) )

=a Cl(0
(
A(x}

)
(A„O)colm(a)) . (16)

The fact that the second-order differential operator —,'EzzE" is the invariant d'Alambertian on (AdS)& comes as no
surprise but requires a nasty computation. The equation above can be rewritten as

(Cl+mi ) (0 ) A (x)
~

(A, ,O)colm (a) ) =0, (17)

(19)

Thus we can write

where mi ——a A, (A, —3}can be interpreted as the Lagrangian mass of a free scalar field for the irrep (A, ,O), and (17) is the
corresponding wave equation.

Since (8) implies that all the operators Mqii have standard action on the matrix elements, it follows that these matrix
elements are proportional to the known scalar mode functions

P i~(x)=QN„i~e ' 'Fi (H, q)( i spn) (cosp)"Pk +' ' '(cos2p),

where the PI", ' are Jacobi polynomials, co=iL+l +2k, and N„i is a normalization constant determined from the stan-
dard scalar product

(y'„,,. ..y"„, )=i I d'xV' gg~(y"a—P) =S„..S,.,S.

(0 i
A (x)

i
(A,,O)a)lm (a) ) =N(A, X,(a))P„"i (x), (20)

where N(A, A, ,(a) ) is a constant which depends on the scalar operator A and the invariant quantum numbers.
Thus we can go back to (11}and rewrite it as

(0~ ~(x)B(x') ~0) = gp(&, &,B)g p.i (x)4.i (x'),
67EN!

(21)

where the weight function p(A, ,A,B) is given by

p(A, , A,B}=QN(A, A, ,(a))N (B,A, ,(a)) .
(a)
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The sum over mode functions in (21) actually gives a biscalar which is an invariant function of a free scalar field in
(AdS)4, specifically the Wightman function. It is more useful to examine the time-ordered function"

(Oi TA(x)A(x')
i
Oj= gp(A, , A, A) g [8(x,x')P t (x)P„t (x')+8(x', x)P„"t (x')P„t' (x)] . (23)

CdENt

The mode function sum in (23) is simply one way to ex-

press the scalar propagator, which has indeed been com-
puted by doing the explicit sum' and by other methods. '

The propagator is given by

0 d
id~(x, x', A. )= Qi i(1 —u),

4m' du
(24)

where u = —,'ai(y" —y'") is the O(3,2)-invariant chordal
distance variable for the points designated by y "(x) and
y'"(x') as in (2},and Q„(z) is the Legendre function of the
second kind.

Hence we can rewrite (23) as

(0
~

TA (x)A (x')
~
0) = y„p(A, &,&,)t'&p(x, x', ~), (25)

whose weight function is clearly positive. This is the first
form of the Lehmann spectral representation and it holds,
under the stated spectral assumptions, as a nonperturba-
tive result in anti —de Sitter field theory.

As one application of (25) let us take A (x) to be the
canonical scalar field of the Lagrangian (5). Differentia-
tion with respect to t and the canonical commutation
rules give the Lehmann sum rule

1= gp(A, ,y, y)=Z+ g p(A, ,gr, p), (26)
A, )A, +

where Z =p(A, -+,P,P) is the contribution to the weight
function of the single-particle intermediate state with
physical eigenvalue A, +-.

The standard Lehmann representation is most useful in
momentum space, since it directly incorporates the
analyticity properties of the Fourier transform of the
propagator. The Fourier transform is not natural in AdS,
since "plane waves" are not eigenfunctions of the wave
operator. However there is a generalized Fourier
transform, called the Gelfand-Graev transform, which is
described in the monograph of Vilenkin. The elegant
geometrical basis' of the transform (which involves the
notion of horospheres and generalized plane waves) has
been discussed in connection with AdS field theory by
Davis. '

The Gelfand-Graev transform is actually developed for
functions on the hyperboloid H4, defined as an embedded
hypersurface by the equation T}„sy"y =a and y & 0
with rlzs ——( ————+). The induced metric on H4,
with isometry group SO(4, 1), can be obtained from (2,3)
by the Euclidean rotation t~i r (or y ~iy,
y "~y "3& 1). Thus H4 is a natural candidate for the
Euclidean section of (AdS)4. The analysis we now give
does not rely heavily on the properties of the Euclidean
field theory, and possible consequences of the global
structure and the reflective boundary conditions are not
considered.

*
A global set of coordinates for 8& is given by

yi'=a 'sinh8x", @=0,1,2,3,

y
~ =a ' cosh8, 8 &0,

where 2" is a Euclidean unit vector which can be further
resolved into angular coordinates on the 3-sphere of unit
radius. Details are not needed. The chordal distance vari-
able on H~ is

u = —,'a (y"—y'"} =1—cosh8 (28)

if y '"=(0,0,0,0, 1). Thus u ranges over the region u (0.
For any function F(u) on (AdS)4, the analytic continua-
tion t~i ~ takes us to the region u &0 which is the space-
like region contiguous with the point of zero separation.
See the Penrose diagram in Fig. 2. The integral
transform, which we use, applies to functions F(u) and
can be thought of as defined in the contiguous spacelike
region of (AdS)4.

P=
I

P=o

FIG. 2. The Penrose diagram of anti —de Sitter space. Light
cones from the origin at the center reflect at spatial infinity
p=m. /2. The region marked I is the spacelike region contiguous
with the origin in which the integral transform of the text is de-
fined.
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XP.-'(z)(z2-1)-'",

where the transform f(o ) is given by

f{cr)=f dzf(z)(z —1)' P '(z) .
1

(30)

The integral over the vertical contour can be placed any-
where in the range —2 & b ~2, but b = ——,

' is most con-

venient because of the symmetries of the associated
Legendre function P~ '(z). [Formulas (29) and (30) are

The transform discussed by Vilenkin takes a simple

forin for square integrable functions on H~ which depend

only on the single hyperbolic angle 8 in (27). We set

z =coshe. A function f(z) can then be represented as

f (z) =—I der(cr 1)—cr cotncrf (.u)b-i ce

obtained from those of p. 541 of Ref. 8 by a sjin, pie
transformation. ]

The conditions of square integrability with respect to
the invariant measure on H4 iinplies that f{z)=O(z 3~2)

as z —Poo. We will relate functions F(u) on (AdS)4 to
functions f(z) on H4 by the relation F(u) =f(z) with
u =1—z. The transform then applies to functions which
are O(u 3r ) or O((cosp) rz) at spatial infinity in AdS.
This requires that the lowest allowed energy eigenvalue of
the SO(3,2} irreps of the field theory satisfy A, & —', . This
implies that only regular modes are present. We accept
this as a restriction on the range of validity of the present
treatment, although we expect that the analysis can be ex-
tended to include irregular modes.

The transform of the propagator (24) can be obtained
either by differentiation of a standard integral representa-
tion' of Q„(z) or by direct evaluation of (30). Both
methods yield the representation

ia z &+s'~ 1
i hp(x, x', A)= , da(a —1 )cr cote ~r

g s i co— —3 —«+I +2 {z2 I)»&
(31)

F„(u)=fz (z) = {0i
TA (x)A (x')

i 0) . (33}

Then fz(z) can be represented as a transform (29) (we as-
sume that the necessary asymptotic behavior holds). Us-
ing (29) and (31) on the left and right sides of (25), respec-
tively, we can equate the transforms and deduce the result

y ( )
a ~ p(A, ,A, A)

A,(A, —3)—cr(cr+ 1)+2 (34)

Thus the transform of the exact two-point function sat-
isfies a dispersion relation, which is entirely analogous to
the situation in flat-space field theory. According to our
spectral assumptions, the lowest contributing A. value in
the sum, i.e., A, =A,+, corresponds to the intermediate state
of a single physical particle, and thus can be associated

Thus the transform of the free propagator for fields in the
(A„O) representation is essentially a "pure pole" located at
the eigenvalue A(A, —3) of the quadratic Casimir operator
of O{3,2). This is no surprise. It simply indicates that the
expansion is a natural spectral representation for AdS.
Indeed, the special function in (31) satisfies

[( 2 1)—i/2P —i( )]
= —a2[a(cr+1) —2][(z —1) 'r2P '(z)], (32)

where we regard z(x,x') =y "(x)y'(x')z as a function of
the points x and x' in AdS.

The Lehmann representation (25) [or simply O(3,2) in-
variance] shows that exact two-point functions depend
only on the variable u or z. Thus we can set

with the lowest pole in (34}. Then one can define the
physical mass of the particle in terms of this pole as
a2[cr(a+ 1)—2]= a'A+(A+ —3)=mphr, '.

The significance of the Lehmann representation (25)
and the dispersion relation (34) is not entirely clear.
Perhaps they are merely the expected consequences of
O(3,2) invariance and causality and signify little more.
Nevertheless, we are struck by the close parallel between
these results in AdS and their flat-space analogues, and
we would like to speculate about possible further develop-
ments.

One can formally define one-particle-irreducible (1PI)
vertex functions and truncated Green's functions in AdS
field theory using functional methods and combinatorics,
and one should be able to define "on-shell" amplitudes by
integrating products of a truncated Green's function with
free-field mode functions for the corro:t mass. We sug-
gest that these on-shell amplitudes can be proved to share
some of the properties of ordinary scattering amplitudes,
such as independence of the choice of interpolating field
and gauge independence (in a gauge field theory). Perhaps
they are the AdS analogue of scattering amplitudes. This
line of thinking may well fail because it is difficult to con-
ceive of scattering processes in a space-time where there
are no asymptotic regions where wave packets separate.
Therefore we will end these speculations, simply by noting
that some progress was made with the notion of scattering
amplitudes in the O(2, 1)-invariant situation of Ref. 10.

This work was supported in part by NSF Grant No.
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