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The compactification of the 10-dimensional superstring theories down to a supersymmetric 4-
dimensional vacuum is reanalyzed by allowing for the possibility of torsion in the 6-dimensional

compact manifOl. New conditions on the generalized complex compact manifold and metric are
derived. The connection and the Riemann and Ricci curvature tensors are obtained in an SU(3)
basis. There is no 4-dimensional cosmological term despite a nonvanishing Ricci tensor or scalar
curvature in the compact 6-dimensional manifold. However, if the Ricci tensor is required to vanish

due to other considerations then torsion must also vanish, yielding a Kihler metric. Solutions to the
equations are discussed and some explicit examples of 6-dimensional metrics are provided for both
vanishing and nonvanishing torsion. Ho~ever, we have not yet succeeded in solving for the gauge
field with non-nonzero torsion.

Recently Candelas, Horowitz, Strominger, and Witten'
(CHSW) have presented a very attractive scenario for
compactifying the 10-dimensional SO(32) or Es XEs
superstring theories to a 4-dimensional effective field
theory which might be relevant to the physical world.
For N =1, 4-dimensional supersymmetry to be valid at
the compactif ication scale, it is necessary that the super-
symmetric variations of the fermionic fields vanish in the
vacuum state. Although the form of these variations, or
the field theory of the massless sector of the superstring,
are not yet well determined, CHSW make the assumption
that (at least in the vacuum sector} the supersymmetry
transformations have the Chapline-Manton form' suitably
modified by the Chem-Simons terms introduced by Green
and Schwarz via the effective superstring theory. Then,
within the framework of the CHSW assumptions it fol-
lows that (i) the 4-dimensional space-time background
nlust bc Mlllkowskl space (l.c., Ilo coslllologlcal tcrlll) alld
(ii) there must exist an SO(6) Majorana spinor ri in
a 6-dimensional compact manifold K = txst,
M = 1, . . . ,6J that satisfies the equations

[a„+-,'1,,(mh —4PH'l )]~=0, (1)

( I tlt,
H'&k) ri= 0, (2)

(I „E'"El"F„'„)q=0, (3)

where I';t and I';1k are totally antisymmetric products of
SO(6) Dirac matrices I; in S-dimensional spinor space,
and co't is the SO(6) spin connection with ij = 1, . . . ,6 de-
fined in tangent space. The totally antisymmetric tensor
HstNt is the Bst~ field strength modified by the
Chem-Simons forms and is most conveniently defined in
the form notation (i.e., H =Hstttt dx A dx N A dx,
8 =Bst~dx A dx )

Hij k EiMEiN EkP~

Est is the sechsbein and E; its inverse, while the metric
in tangent space is the identity 5,&. F'=FMttdx Adx is
the Yang-Mills field strength with a belonging to SO(32}
or EsXES, and R't=RM~dx Adx is the curvature ten-
sor for the SO(6) spin connection to'J=cogdx~ which
must be torsionless:

dE'+to'J A Et=0, EJ=EQdx~ . (6)

CHSW specialized to the case of vanishing Hstttp. Di-
mensional arguments in Eq. (5) suggest that H+0 might
require a radius of compactification close to the Planck
length, in which case-neglo:ted derivative terms in the ef-
fective 10-dimensional field theory might become impor-
tant (see below). However such issues cannot be settled
until we know more about the classical vacuum solution
as well as the effective 10-dimensional theory. Since
H+0 might potentially lead to interesting features for
low-energy physics it is important to study it in more de-
tail. Thus, we will analyze Eqs. (1)—(6) generally for
nonzero Hstttt (including the case of H =0) and tackle
Eqs. (4) and (5) last. We will see that we will arrive at
generahzations of complex spaces with SU(3) holonomy
that include torsion.

First, let us define a new spin connection QI(t,

Q4 =~ttt 4PHttt . — (7)

Using Eqs. (6) and (7) we sce that H may be identified as
the totally antisymmetric torsion of the spin connection
Q, in the spirit of Ref. 5:

dE'+Q't AE~=4PH E' dx AdxN: T'—
while

(4)
Second, from the point of view of SO(6)=SU(4) the S-
component Majorana spinor q contains only 4 indepen-
dent complex components arranged as 4+ 4' or 4—4'.
Thus, by making a local SU(4) gauge transformation the 4
can be gauged to the form A,(0,0,0, 1) with iL real. We
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give the general solutions of Eqs. (1)—(3) in this gauge.
Separating real and imaginary parts, the most general
solution to Eq. (1) is given by

0 0 0

where h p ——hp, is any symmetric complex 3X3 matrix,
whose symmetry follows from the form of the r matrices.
Hence h is in the 6-dimensional representation of SU(3).
Using the defimtion of T in terms of H [Eq. (8)] and the
result of Eq. (14) along with our r matrices, we find the
torsion in the SU(3}basis written as a two-form,

0 0 0 0
,' r—,,Qgdx"=

0 0 0 0

0
0
0

0
0
0
+I

(9)

T =ePe "apish' +2@ crepe "hsr, (15)

from which one may easily extract H~~p, H3JJI, and H'J,
if desired (see below).

Turning to Eq. (3) we may expand in terms of the r's

'f'"—E EJ F3r~=r r Fp +r rpF'~

+[rP,T' ]F'p

Requiring anti-Hermiticity,

Faap (Fa )» Faa (Fap)»

where the one-form A is any 3X3 anti-Hermitian trace-
less matrix, At= —A, trA =0, corresponding to SU(3)
holonomy, and A is the transpose matrix.

We give the Hermitian 8X 8 I; matrices appropriate to
this SU(3) basis as direct products of three Pauli matrices:

~& = —&}X~ X0'2 ~2= —&~ X0'2X j

~3—v] XP3 X02' ~4— 0 P X v2 X0 J

I 5
———02Xo2Xo3, I 6——o2X1Xo2.

Then I'7 ——iI il zl 3I 4I 5I 6 is diagonal, I"7——0'3x 1 x 1. It
is useful to define the SU(3)-covariant combinations

r = 2(la+&'l a+3» T'a= i(1'a —&'l a+3)=(r'}

that satisfy tr, rpI=O=Ir, rpI, Ir', rpI =13 p, where
a=1,2, 3 and lower and upper SU(3) indices are dis-
tinguished. Similarly we define the complex one-forms

e =(E iE~+ )dx-
e =(Esr+iEsr+ )dx~=(e )'

and imposing Eq. (3) we obtain

3

Fap O=F'——aP, g Faaa=0 .
a=1

(17}

So that the general solution is provided by the 3X3 anti-
Hermitian traceless matrices F'p, or as two-forms

F'=2e hepF'~~. (18)

Thus, the spinor equations (1)—(3) are solved in terms
of the unspecified complex 3X3 matrices h p,F p and
complex one-forms ea and Q p with the conditions that h

is symmetric, F~~~ is anti-Hermitian and traceless, Q~~ is
anti-Hermitian and traceless, e =(e')'.

These functions are further constrained by Eqs. (4) and
(8). In particular, using Eq. (15) the torsion condition (8)
takes the form

de +Q pReP=ePRerep„sh' +28'~epRerhrs .

(19)

At this point it is useful to define a complex base space
via

so that E I =e r+e r is SU(3) invariant. In this basis
we write the spin connection as

1 (XIII iX Ill +3) Z
lll

2

1 (Xm+iXm+3)
2

~~JQ"= zQ prpr + 2Q ~rpr + z[rpr ]Q'p

and from Eqs. (9)—(11) identify

(12)

and write

m =1,2, 3

Q p
——gp ——(3X3 Hermitian, traceless).

(13)
d =dz +dz =el+3,

Bz Bz

e=dze +dz e, e=dze+dz e (20)

4PH'i"I ljk ——3!

0 0 h 0
0 0 0 0

0 0 0
0 0 0 0

(14)

Using our r matrices and ri in Eq. (9), we can solve Eq.
(2) generally by

dx Q3rp= dz Qm p+ dz Q

e =dz e, e =dz e~ (21}

where the condition on the one-form Qa
p
———(Qpm }'

is required for anti-Hermiticity, while e ~ is not related
to the complex conjugate of e, rather (e )'—:e~ . In
this paper we will specialize to solutions of the form
e =0, so that
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The inverses of the 3 )( 3 matrices e' and

e~ =(e )' will be denoted by e and e ~, respective-

ly. We will also define the Hermitian metric and its in-

verse

a n% n a%
%n %e (22)

If Eq. (20) were not specialized to Eq. (21) there would
have been the additional g~„,g~ components in the
metric. We have adopted Eq. (21), which is equivalent to
the requirement of a Hermitian complex space, because it
greatly simplifies the system of equations, but we have
lost generality which we intend to investigate elsewhere.
In terms of these definitions the torsion equation (19) im-
plies two independent complex conditions proportional to
dz hdz" and dz hdz":

(B[nlelll+Q[nlee]) =&)melrj&pysIi

Bsie n+Q sip a =2+ ~syesip n ~

The solution to these equations is unique:

(23)

detg= ~de«)'=[, B g "=O=B g" (25a)

Q ~=e B e„& e "—(B g&
—B g )ePgdete)

Q @p
———(Q~~ )', (24)

h ~= ——,'ep~Iag~ B g&P'"(dete) '=hp, ,

and the metric must satisfy

Thus, the Ricci tensor and the torsion [Eq. (26)] are
nonzero if the curl of the metric is nonzero. We em-
phasize that, despite a nonvanishing Ricci tensor in the
6-dimensional compact manifold, the cosmological term
in 4 dimensions vanishes, since, by virtue of the supersym-
metry properties of the vacuum assumed by CHSW, the
4-dimensional space is guaranteed to be flat Minkowski
space.

Nonlinear 0 models in 2 dimensions may be taken to
represent the vacuum configurations of the superstring
theory. According to current models of a certain type, the
finiteness of the theory requires a vanishing Ricci tensor. 6

This may not be a feature of all conceivable string models,
but may provide a rationale' for requiring Rs, ——0. Ac-
cording to our expression in Eq. (27), in 3 complex dimen-
sions these 9 conditions are equivalent to the 9 conditions,
P~~B&g&„——0, that indicate a vanishing torsion. For ad-

ditional arguments, see also Ref. 7. Thus, requiring a
vanishing Ricci tensor would eliminate torsion and solve
Eq. (25) by a unimodular Kihler metric

gz„——BsB I[. (z,z). Although this argument seems plausi-

ble, for the sake of generality and to allow for the possibil-
ity of more general finite o models, we will not yet as-
sume that the Ricci tensor vanishes.

The SO(6) =SU(4) Riemann spin connection co is solved
from Eq. (6). In the SU(3) basis we have the complex no-
net co~p, the triplets co~~, co@, and their complex conju-

gates, satisfying the torsion-free conditions that follow
from Eqs. (6) and (21),

The determinant and divergence conditions on the metric
guarantee the tracelessness of Q p [SU(3) holonomy] and
the symmetry of h @. More generally it is sufficient to re-
quire B (g detg) =0, and dete =f(z), or detg
=

~ f(z) ~, with f(z)= analytic. But since det(g) can be
mapped to identity by an analytic general coordinate
transformation Eq. (25) is a general solution to Eq. (23).
Note that the noncovariant looking divergence B„g"~ can
be rewritten covariantly in terms of a curl by using
O=Bpln(detg) =g'%pg&„as

[) B g
ll%

g /NLRB g gP%

(B gy —
Bpgy }g (25b)

Be +co p h, e~=0,

Be +e &e~ha) +m chef'=0,

d'+cop h er ——0,
and their complex conjugates. The unique solution is

a)@ =0,
OPyge 2 C 'Lllgp ~8y 2 A'~p8 yg

eK aSco p——e B esp ——,e s(B g~ —Bpgs )ePp

=Q~p+ 2 e (B~gsp —Bpgs~)e p,

(28)

4PH = T~e +T e =3(B—B)I,
4PdH =6BBJ,

(26)

We can now identify the torsion 3-form H of Eqs. (4)
and (5) via Eqs. (8), (15), and (24)

and co~ =0, co ~= —(co }', co~ p
———(co ~ )'. Note

that the co @ comes out as a traceless octet only.
It is the curvature tensor two-form of the SO(6) connec-

tion that appears in Eq. (5). Written in SU(4) notation the
contribution to Eq. (5} has the form 2TrR where the
traceless 4/4 matrix 8 is

where J is the metric two-form J=g@„dz h dz".
The curvature tensor for Q (that includes torsion) has

the components R~~„~, 8 ~+ and 8~ ~p which are ex-

pressed as two-forms (BQ+Q ) &, (BQ+Q ) &, and
(BQ+BQ+QQ+ QQ) p, respectively, and they are messy.
The Ricci tensors obtained from the first two components
vanish while the third component yields

W„—=e ~&a

(B B[xgw). B Bpgs)

with

R p——[R(2,0)+R(0,2)+R(1,1)] p,

Rp=[R(2, 0)+R(1,1)]p, R = —(R )'

and the various (p,q) forms R (p, q) given as

(29a)
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R(2,0) p ——(Bco+aP) p, R(0,2) p
——(Bee+co ) p,

R (1,1) p=(Bco+Bco+cd Aco+co Aco) p+copAcil

R (2,0)p=Bcop+co~A co p,
R(1,1)p——Beep+a) hem p,
8 =B AQ? .

(29b)

By introducing an anti-Hermitian representation matrix
i' for SO(32) or Es XEs we can write the solution of Eq.
(30a) for the gauge potential in the form

t'A~ = V 'B~ V, r'A@ ——VtB~ V (301)

where V is a unimodular group element in complexified
SO(32) or Es X Es (since A' is complex). Computing F „
we obtain

t'F' = V '[B (GB„-G '}]V, (30c}

where 6 = VV is a unimodular Hermitian group element
in SO(32) or EsXEs. Thus, from Eq. (30) we see that 6
must satisfy the equation

gmKB (GB 6 —1) 0

This is analogous to the equation of motion of a nonlinear
cr model in a curved background. Topologically nontrivi-
al solutions (e.g., analogous to the Skyrmion) may be ex-
pected.

We have shown that the torsion constraint with the
forms (21} have allowed us to determine uniquely the
forms ro (or Q), H, F' in terms of the complex unimodu-
lar e~, and the Hermitian unimodular G. In turn these
quantities are required to satisfy Eqs. (25) and (31). Of
course from the Hermitian metric g@„and the Hermitian

matrix 6 we can compute e and V by taking square
roots, up to gauge transformations U in SU(3) and S in

SO(32) or EsXEs, e =U~ (vg )„, V=V GS. Thus,

Eqs. (1), (2), (3), (6), or (8) boil down to Eqs. (25) and (31).
There remains Eq. (4) or (5}.

I.et us first consider in our formalisms the no torsion
case H =0, for which a set of solutions was given by
CHSW. We see from Eq. (26) that the curl of the metric
must vanish and from Eq. (25) that the divergence of the
inverse metric is automatically zero. Thus we must have
Kahler metric g s =B B„E~,r~. Then Eqs. (24) and (28)
simplify to the one-form cgp=Q p

——e Be+e, Be'p, and
the curvature tensor takes a form similar to the gauge
fleld in (30c):

~mnp=e B (gzpBsg )'ep

and is Ricci flat by virtue of detg =1 and the va»shing
curl. Furthermore the metric now s«isfies

g B (g, Bag~) =0

These expressions are messy when written in terms of the
metric and will not be given here explicitly.

For a sechsbein of the form (21},Eq. (17) for the gauge
field implies in base space

(30a)

det(g ) =det[B.B,Z (z,r)]= 1 . (35)

which is called the Monge-Ampere equation. Calabi and
Yau have provided the mathematical tools for character-
izing compact 6-dimensional manifolds that solve this
equation, as discussed by CHSW and Strominger and Wit-
ten. Unfortunately, these methods do not provide an ex-
plicit Kihler potential E(z,s) but allow one to find
metrics which are in the same topological class without
actually satisfying detg=1. These correspond to the
Calabi-Yau manifolds. The number of families of mass-
less chiral fermions are then determined by —,

' times the
Euler number of the manifold.

It is possible that Eq. (31}for the gauge field has solu-
tions other than Eq. (34) while still maintaining a Ricci-
flat Kahler metric. Then we may wonder what deter-
mines the number of families. To examine this question
suppose that the Euler number of the compact manifold is
zero. Then the 6-dimensional gauge-covariant Dirac
equation can still have chiral zero modes if the SO(32) or
EsXEs gauge field has certain topologically nontrivial
Chem numbers. For analogies recall instanton gauge
fields in a fiat 4-dimensional manifold which have chiral
Dirac zero modes by virtue of a nontrival second Chem
number. In fact, by the use of the Atiyah-Singer theorem
it can be shown that it is a particular combination of
Chem numbers of the gauge group element 6 that deter-
mines the number of families, for any Ualue of the Euler
number Of the manifold The resu. lt is the same even if
torsion is nonzero and the metric is not Kahler. For the
solution in Eq. (34) the Euler number and the third Chem
number are related, but this may not be the case for other
possible solutions.

Eventually the details of low-energy physics, such as
the mass matrix will depend on the explicit details of the
Kihler potential. Thus we are motivated to make efforts
toward this goal. A general theorem states that' compact
manifolds with SU(3) holonomy satisfying Eq. (35) cannot
have symmetries globally. However, looking for solutions
symmetric under certain transformations which are later
broken by identifying points in the manifold may be a
method of exploration. Furthermore, even though the
symmetric solutions cannot correspond to a global metric
they may be useful for the description of the metric in
certain regions of the manifold.

The simplest case of a symmetry is obtained by taking
an SU(3) invariant of the form K(A ) with

=z ) z1+z2z2+z3z3

Then Eq. (35) becomes a simple differential equation in

which by comparison to Eq. (31}allows one to find a solu-
tion for the gauge group element V or 6 by embedding
the space-time manifold as a 3X3 matrix in EsXE& and
taking V=e~ or

6 =g =B BX(zx),
thus leaving an unbroken gauge group E6/Es. Since we
now have 8 =Fand H =0, clearly Eqs. (4) or (5) are also
automatically satisfied. There remains the determinant
condition
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z—z„R '(-+1+R ')--'" . (36)

The (+ ) case gives positive eigenvalues for all R . The
apparent singularity at the origin is removed by restricting
the space to submanifolds satisfying the identification of
points z„=e' ~~ z„. This is possible since the solution has
a phase symmetry {and more). This solution (which we
rediscovered with D. Caldi) was suggested in a different
context by Freedman and Gibbons" and it is the generali-
zation of the Eguchi-Hanson metric. ' Unfortunately,
since R can range all the way to infinity the volume of
this space is infinite (recall detg =1) and therefore not
useful for Kaluza-Klein compactification. However, this
metric may be used, in construction of a more satisfactory
solution, as a patch at singularities similar to the con-
struction of the analogous Ei-metric in 2 complex dimen-
sions. The ( —) case gives positive eigenvalues for R & 1

and has similar properties to the ( + ) case.
We have found other explicit solutions to Eq. {35),each

having some unsatisfactory feature from the point of view
of physical applications. We have also found classes of
explicit solutions, involving arbitrary functions, to the
closely related equation det(B.B~K)=0 in any dimension.
Our effort is still continuing and the results will be report-
ed elsewhere.

We now return to nonvanishing torsion. It is useful to
establish that Eqs. (25), which determine the metric g~„,
have solutions that do not correspond to vanishing torsion
and thus generalize the Kahler metric with SU(N) holon-
omy. We provide here some explicit solutions. The first
solution is diagonal:

IFz/Fil'
0

0
I Fi/Fi

I

'

where Fi ——Fi(zi,zi), Fi ——Fz(zz, zz), Fi Fi(zi,zi) are-—
three arbitrary but nonvanishing and finite functions of
the respective variables. The determinant is unity and the
eigenvalues are positive by virtue of the absolute values.
The variables (z;,z;) or equivalently the real and imagi-
nary parts {x;,y;), are taken in any compact manifold K.
For example, if we put the 6-dimensional manifold on a
lattice and impose periodic boundary conditions then
(x;,y;) may be taken within a 6-dimensional cube. This
would require the functions F; to be periodic in the vari-
ables (x;,y;). This manifold has a zero Euler number
since it is the 6-dimensional torus. However, as pointed
out above the Euler number has nothing to do with the
number of families which are actually determined by the
Chem nuinbers of the gauge group element G that solves
Eq. (31). Similarly, solution (37) may be defined on other
compact manifolds. The functions F, must be defined so
that singularities in the metric are avoided.

A second class of solutions is obtained by taking e (z)
analytic in zi,zz,zi. In the absence of torsion this would

the variable R z and is solved by M/BR i
=(+1+R 6)'~s, leading to the metrics

g m=+8 s(+I+R ')'"

1 dH =R ——,'OF (39)

This is more clearly seen from our Eqs. (26), (29) and (30)
where dH, R, and F are expressed in terms of the dimen-
sionless metric and G. Naively, it would appear that the
left-hand side is of order 1 L while the right-hand
side is of order L so that L =I is expected. If L =1,
Eqs. (1)—(5) may need modification from higher deriva-
tive terms in the effective 10-dimensional field theory, so
that the entire analysis becomes suspect for such a vacu-
um solution. Of course, if H =0 this difficulty does not
arise and we may concentrate on compact manifolds with
L » l. ' Another way of avoiding the problem is to look
for solutions in which dH is smaller than expected on
naive grounds. That is, there may be vacuum metrics for
which the particular combination of curls symbolized by
dH is of order 1 /L instead of 1/L, while a typical
derivative is still of order 1/L. It is this type of manifold
that can be reliably used for the physics of compactified
effective string theory if torsion is not zero. We have
checked, for simpler solvable nonlinear partial differential
equations, that solutions of this type do exist. The more
difficult question of whether such a solution, or for that
matter H =0 solution, is preferred by the theory as an ab-
solute minimum solution cannot be answered with the
considerations presented so far. Our work is still in pro-
gress and further results will be reported elsewhere.

Our present conclusions are summarized in the
abstract.

Kore added. After submittal of this paper for publica-
tion we became aware of a revised version of Ref. 1 in
which nonzero values of H are discussed without arriving
at a definite solution.

I wish to thank Matt Visser, Daniel Caldi, and Paul
Yang for discussions. This work was supported by the
U.S. Department of Energy under Grant No. DE-FG03-
84ER40168 and by the University of Southern California
Faculty Research and Innovation Fund.

yield a trivial Kahler metric e (z)=B f (z). However,
with nonzero torsion Eq. (25) reduces to B„[(dete)e"]=0
whose solution is

(dete)e" (z) =e"~B~Aq (z),
(38)

(dete) =det(e"~BpAq~),

where Aq~(z) is arbitary. The determinant of the metric
now has the form detg =

~ f(z)
~

which is a general solu-
tion as pointed out in the discussion following Eq. (25a).
The metric has positive eigenvalues since g~„=e~ e „ is
the product of Hermitian conjugate matrices.

Given a metric we must still look for solutions for the
gauge group element G that satisfies Eqs. (31) and (4) or
(5). Here we must consider the size L of the compact
manifold relative to the Planck length 1. Derivatives in
the compact manifold are expected to be of order 1/L.
To be able to consider reliably an effective 10-dimensional
field theory that represents the physics of the superstring
(in the manner of Chapline and Manton) we must take
L »1. However, the left and right sides of Eqs. (4) or (5)
scale differently and the compensating scale factor is the
Planck length 1
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