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Spontaneous breaking of parity in (2+1)-dimensional QED
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The spontaneous generation of parity- (P) and time-reversal- (T) violating masses in (2+1)-dimensional
QED is studied in the large-N limit, where N is the number of two-component complex fermions. Energy
considerations of various symmetry-breaking patterns indicate that P and T are not spontaneously broken,
even though masses which individually violate these symmetries are dynamicaBy generated.

The study of (2+1)-dimensional QED has attracted a
good deal of attention recently. This theory admits a
gauge-invariant but I'- and T-violating mass term for the
photon. ' 3 Furthermore, a mass term for a complex two-

component fermion also violates2 I' and T invariance. If
one allows a mass for either the photon or the fermion, a
mass for the other will be generated perturbatively. ~ Alter-
vatively, one could start with a massless gauge field and a
massless fermion and see whether dynamical mass genera-
tion occurs. This ~ould lead to the spontaneous breaking of
the discrete symmetries P and T.

If one is careful not to violate I' and T in regulating the
massless theory, a parity-breaking mass will not be generat-
ed in any finite order in perturbation theory. Therefore
dynamical mass generation has to be investigated in a non-
perturbative setting. In this paper we self-consistently solve
the Dyson-Schwinger gap equation of the theory to study
mass generation. To this end we employ a nonperturbative
resummation of perturbation theory using the large-N ap-
proximation. Here e=e'N is kept fixed, where N is the
number of two-component complex fermions and e is the
dimensionful gauge coupling constant.

The Lagrangian of this model is

where P is a two-component spinor. The three 2X2 Dirac
matrices can be written as y =o.3, y'=ia. i, and y =in. 2,
~here o.

r are the Pauli matrices. Mass terms p, ~ »F~A„
and tttQQ (either bare or dynamically generated) for the
gauge field and the fermion change sign under the following
parity transformation

A'(x, y, t) A'( x,y, t), —

A'(xy, t) —A'( —xy, t) .

mass term for (2+1)-dimensional fermions when there is

an even number of fermion doublets. In this case it is more
convenient to write the theory in terms of four-component
rather than two-component spinors. The mass term mfQ
for a four-component fermion Q=(&,'), where Q~ and Q2

are two-component spinors, is equal to tttgg=tttfto3$$t

—tttg2o 3/2. While a single two-component mass term
would be odd' under P and T, the four-component mfQ is
even. Under a parity transformation the spinors transform
as Qt a~$2 and Q2 crtQt, leaving mQf invariant, and
similarly for time reversal. This mass term, on the other
hand, also violates a kind of three-dimensional chiral sym-
metry. Recently, the dynamical generation of such a mass
in (2+1)-dimensional QED in the large-N (even) limit,
where N/2 is the number of four-component spinors, has
been discussed by two groups. '6 Now, of course, N/2
four-component fermions are equivalent to N two-

component ones. Therefore when a parity-invariant mass m

is generated for N/2 four-component fermions, N/2 of the
N two-component fermions acquire a mass m, while the oth-
er N/2 two-component ones acquire a mass —m.

%e shall here generalize this study to allow for parity-
violating as well as parity-conserving symmetry-breaking
patterns. The Dyson-Schwinger integral equations relevant
to the dynamical generation of mass are (in Euclidean nota-
tion)

g+ X(p) = —),D„,(p —k)y. . . y„,d'k ~ —X(k)

( ) t d k 4 —X(k) p+4' —X(p+k)
(2~)' " k'+X'(k) "(p+I)'+X'( +k)

(4)

A~(x y, t) A2( —x y, t),
y(xy, t) (r,y( —xy, t) .

Under time reversal the transformations are

A'(x, t)- A'(x, —t),

A(x, t) —A(x, —t), (2b)

and 5„„ is the free Landau gauge propagator. X is the
dynamically generated mass matrix for fermions. Here we
have approximated the complete gauge vertex by a bare
one, invoking the large-N approximation. Fermion wave-
function renormalization, which is related to the higher-
order vertex by a Ward identity, is also down in 1/N and is
dropped. The complete gauge propagator can be written in
the form

P(x, t) —o2&(x, —t) .

It is also possible to write down a P- and T-conserving

i 2

( ) gyv P/Pvlp
f1 ( ) + P)L
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where Hi and 02 are given by

II~g(p)/I p I

[I —II...,(p)/p']'+ [II~d(p)/I p I
]'

II„,(p) = g„. "—,
" 11-..(p)+~,.ip. iI~d(p) .

p

Therefore, Eq. (3) yields a set of coupled integral equations
involving X, 0,„,„, and H~d.

The above set of integral equations is too complicated to
be amenable to a straightforward analytical study. To solve
these equations we make the following approximations.
First, we assume that if a dynamical mass X(p) is generated
its magnitude is much less5 than 0.. %e also assume that
X(p) is approximately constant up to the momentum scale
e. This constant mass approximation has yielded reliable
qualitative information about mass generation in previous
analyses. '6 It is supported by analytical studies of Dyson-
Schwinger equations which have sho~n that dynamically
generated masses show slow variations with p up to the
scale e and are damped above n. Therefore, as a first ap-
proximation, we choose to replace the matrix X(p) by a
constant matrix X and use a as an ultraviolet cutoff.

%e first check the possibility of maximal parity violation
by assuming that all the generated masses are of equal mag-
nitude In. So X-diag(In, m, . . . , In). To leading order in
1/N all radiative corrections are determined by one-loop
graphs. This gives

p' —4In' . lpl2 ln +
l l

sfcsttl
I r

m, i=1, . . . , N —L
Nf]=' —m, i=N —L+1, . . . , N

For n && p && m,

III= X Inr= (N —2L)In .64 64
~N

Going through the same analysis as before and using the
same approximations we find

16m& 64
InI I J dk ' — (N —2L) In

N~2 m
(14)

F« I =I, . . . , N —L, Eq. (14) gives, for me0,

and arises because II2 contributes to Eq. (12) with opposite
sign to Hi and with greater magnitude. %e could also modi-
fy our initial assumption that m && n and look for self-
consistent solutions with m )& n. In this case we find that
In —a/(Nn ) which again contradicts the initial assumption
m 0) o'.

These results indicate that dynamical masses of the maxi-
mal parity-violating kind are not generated. %e have not
yet excluded the possibility that a mass of order o. is gen-
erated dynamically. In this case the approximations made in
our analysis do not hold, and one has to resort to a numeri-
cal solution of the integral equations. However, a solution
with In/n of order one is unlikely in the large-N limit, since
in this case there will be no large dynamical hierarchy to
compensate the 1/N suppression on the right-hand side of
the Dyson-Schwinger equation.

%e now go on to consider the possibility that N —L fer-
mions acquire a positive mass m and J fermions acquire a
negative mass —m.'

2 lpl'"'"( '+4 ')»
%hen m && p,

11,„,„=—ulpl/16, 11~d= mn/(4lp I) .

Therefore for momenta p such that 0. && p && m,

1 64 (N —2L) ln —,
Nm2

while for i = N —K+1, . . . , N,
r

1 — 16+ (N —2L) ln —.1 64 A

N m

(15)

(16)

II, =16lpl/a, 112=64m/a . (10)
Equations (15) and (16) are consistent only if L/N= ~
+ 0(1/N). In this case

From Eq. (3), the fermion self-energy at zero momentum is
given by

III(k) m

N " (2m )' k'(k2+ In' )
11,(k)

l k l (k'+ In )

The integral is naturally cut off by o. in the ultraviolet and
by m in the infrared. By requiring X(0)= m we get

r

m "
d~

16 64 (12)
Nm2 "~ A; A:

Therefore,

In —a exp(Nm'/48) .

This result contradicts the initial assumption that m && o.

In = ca exp( —Nwt/16),

where c is a positive number —1 and, at least in the 1/N
approximation, half the fermions acquire positive mass m

and the other half negative mass —m.
%'e know from previous analysis6 of the effective poten-

tial that the symmetry-breaking solution [Eq. (17)] is ener-
getically preferred to the symmetric one (m=0). So there
are fermion masses dynamically generated which individual-
ly violate parity and time-reversal invariance. However, the
fact that half of the fermions acquire positive mass m and
half of them acquire negative mass —m ensures that parity
and time reversal are not spontaneously broken overall, at
least in the 1/N expansion.

The lack of parity-violating solutions to the Dyson-
Schwinger equation means that any parity-odd configuration
does not correspond to a stationary point of the composite
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operator effective potential, at least in the large-N limit.
Therefore all vacuum configurations conserve parity. Vafa
and %itten7 showed in their general analysis, based on in-

equalities of operator expectation values, that the energy is
minimized by the parity-conserving configuration consisting
of half the fermions acquiring equal positive masses m and
half equal negative masses —m. Our result agrees with
their conclusion and elucidates the dynamics of symmetry
breaking in large-N QEDq. A detailed analysis of the precise
mechanism that leads to parity conservation is currently

under investigation.
While this paper was being typed we received a copy of a

report by Stam which reaches similar conclusions. %e also
learned that Rao and Yahalom9 are studying issues related
to the ones discussed here.
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