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%e deterInine the temperature dependence of the pressure, the energy density, and the entropy
density in statistical QCD with dynamical quarks. Our results are based on Monte Carlo calcula-
tions with Wilson fermions in a fourth-order hopping-parameter expansion on an 8'g 3 lattice. Us-

ing these results, we study the velocity of sound and the thermodynamic quantities relevant for the
collective transverse expansion of the system and for the transverse momentum of secondaries in nu-

clear collisions.

I. INTRODUCTION

In recent years, many theoretical arguments were given
that at sufficiently high temperature (200—300 MeV)
and/or baryon-number density (a few fm ) hadronic
matter should undergo one or two phase transitions, in
which color is deconfined and chiral symmetry is re-
stored.

As a result of these transitions, a new state of hadronic
matter, the quark-gluon plasma, is produced. In the re-
gion of temperature and density significantly above the
transition region, some of the thermodynamical properties
of this plasma can be deduced from perturbative QCD.
The critical behavior of hadronic matter, however, is of
nonperturbative nature and hence requires some new
method of investigation. One such method is based on the
lattice regularization of QCD and subsequent Monte Car-
lo simulation.

Lattice calculations prove to be quite successful and
transparent for pure SU(3) gauge theory, where the ex-
istence of a first-order deconfinement phase transition at a
critical temperature T, -200 MeV was established. "
The situation for full lattice QCD with dynamical fer-
mions is not yet quite so clear. There is considerable evi-
dence' that for vanishing baryon number the system un-

dergoes at T, -200 MeV a rapid transition which yields
both deconfinement and chiral-symmetry restoration.
The order of the transition remains unclear, however, and
there still are problems concerning the extension of the
theory to finite baryon-number density. Nevertheless, the
lattice evaluation of statistical QCD appears to be well on
the way to providing us with the phase diagram for
strongly interacting matter.

Present estimates of the energy densities which can be
achieved in ultrarelativistic nuclear collisions, or in pp
collisions with very high multiplicities, suggest values suf-
ficiently high for the experimental formation of the
quark-gluon plasma. ' For a full understanding of the
production of the plasma and its subsequent hadroniza-
tion, however, a space-time description appears necessary.
Thus the proper theoretical treatment of the phenomena
requires an application of relativistic hydrodynamics rath-
er than just equilibrium thermodynamics. In order to
solve the hydrodynamic equations, one has to have some

thermodynamic information about the system, such as its
equation of state and the velocity of sound in the medium.
The most reliable way to obtain this information is evi-

dently lattice QCD, which thus can be considered as an

input for relativistic hydrodynamics. Besides this, if the
physical states are close to an equilibrium distribution,
then statistical thermodynamics alone can already
describe many features of hot hadronic matter. Hence the
thermodynamics of lattice QCD not only provides useful
information for hydrodynamics, but is also directly
relevant for the phenomenology of the quark-gluon plas-
ma.

Both these aspects have recently been considered: first
attempts to calculate the velocity of sound for pure SU(3)
gauge theory were made in Ref. 5, and some information
concerning the evolution of strangeness in the quark-
gluon plasma was obtained by means of lattice studies in

Ref. 6.
In the present paper, we shall use Monte Carlo results

obtained on an 8 0&3 lattice with dynamical Wilson fer-
mions to study the behavior of some physical quantities of
particular relevance for the phenomenology of the plasma
evolution.

The paper is organized as follows: in Sec. II we give a
thermodynamical description of the system, computing its
pressure and energy and entropy densities. In Sec. III we
shall then show how the calculation of the velocity of
sound, the transverse expansion, and the transverse-
momentum distribution can be carried out. In Sec. IV we
present our numerical results.

II. THERMODYNAMICS OF LATTICE QCD

The starting point of our considerations is the Euclide-
an lattice form of the QCD partition function

Z ( f3, V) = I + d U e

as is obtained after integration of the quark spinor fields.
Here

S,g ——SG +SF,

33 3747 1986 The American Physical Society



K. REDLICH AND H. SATZ 33

where SG (SF) is gluon (quark) contribution to the effec-
tive action. In the Wilson formulation of lattice QCD one
has

SG —— g (1——,
' Re TrUUUU)

gp ap p

ing the weight e '", the free energy is not a suitable
quantity for this method. We can, however, calculate
8 1nZ/Bg and then integrate over g to find

fa f—ao -3 I dI3(P +Pp 2P—)

g (1——,Re TrUUUU) (3)
0 Qg

(9)

with the sum taken over all space-time (Pp) and space-
space plaquettes (P ); a and a& are the spatial and tem-
poral lattice spacings, g and gp the corresponding cou-
plings. In a fourth-order hopping-parameter expansion,
the quark contribution to the effective action (2) with
SU(3) gauge fields is given by'

SF= 4N/(2—~) ~ g ReL
sites

—16N/a g ReTrUUUU+O(z ),
Pp, P

where L denotes the thermal Wilson loop, and ~=a(g) the
hopping parameter. From the partition function (1)—(4)
one can obtain by differentiation any thermodynamic
quantity of interest.

Since the general thermodynamics of the system
described by Eqs. (1)—(4) was studied in detail in Refs. 7
and 8, we present here only the final expressions for the
energy density e, the pressure P, and the entropy density
s. %'ith e=eF+eG, we have on an isotropic lattice
(a~=a~)

ega =18[g (P~ P~)+c~(P—P~)+cp(P —P~)] (5)—

for the gluon sector and

eF ——Ny[3(2a') ReL+144x (P Pp)+O(v )]— (6)

for the fermion sector. The constants c~ and cIi come
from the differentiation of the couplings g and g~ with
respect to ap', for color SU(3), Wilson fermions, and
N/=2, one has c' =0.19366,c&———0.132463. With
P,P~ we denote the space-space and space-time plaquette
averages on the N XNti lattice; P is the plaquette aver-
age on a large (N ") symmetric lattice. In Eq. (6), L
denotes the average of the thermal Wilson loop.

Similarly, the pressure P =(8/8 V)(lnZ/P) becomes

3P 4 4 Bg- 2NP+2N NP 1 BK R L
Ba Bg

—18(P +Pp 2P)—
with the parameters defined above; terms beyond order ~
are neglected. Finally, we want to consider the entropy
density of our system,

sa =N~(ea fa ), — (8)

where f is the free-energy density f= —(1/PV)lnZE.
Since in the Monte Carlo simulation one can only eorn-
pute the lattice averages of U-dependent observables, us-

here P=—6/g, and f ao is the integration constant. In
Eq. (9), we have neglected the contribution from a. term
in the fermion action (3), since it was found to be small as
compared to the remaining terms.

To study the behavior of pressure and entropy density
as function of the temperature, we still have to know the
relation between hopping parameter ~ and coupling con-
stant g, as well as that between g and the lattice spacing
a. FoBowing Ref. 7, we use for ~ the weak-coupling rela-
tion

~(g )= —,
' [1+O.llg +O(g )] (10)

with possible deviations of about 10—20% in the region
6&P) 5. For a(g ), we use the renormalization-group
relation

III. VELOCITY OF SOUND AND TRANSVERSE
MOTION

Having established the general thermodynamics of ha-
dronie matter, we now want to determine the properties of
some quantities particularly relevant in the study of the
evolution of the quark-gluon plasma.

Let us consider first the velocity of sound in the plasma
system; it is defined as

(12)

4m
QAI =exp — P

f
459 —57' 8~2

ln
2N/)2 33—2NI

which is obtained from the weak-coupling expansion of
the P function. The approach to the continuum limit has
not reaBy been studied for QCD with dynamical fermions.
Extrapolating the behavior found in pure gauge theory, '

we expect here as well deviations of around 20% from the
continuum value. This is in accord with the results of
Ref. 7 for N~- 3, 4, and 5, w—hich agree among each other
to within this accuracy.

The Monte Carlo results for the energy density as well
as for the average value of the thermal Wilson loop show
a deconfinement transition at P, -5.3. Since there is a ra-
pid but smooth variation of both L and e around T„ it
has been suggested that it is a continuous phase transition.
Similar results were obtained for staggered fermions in
other evaluation schemes. '
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Since v is defined as the inverse of the isentropic
compressibility, it is of interest to ask here what kind of
thermodynamic variation one in fact studies on the lattice.
When the coupling g and hence the lattice spacing a (g )

are varied for a lattice of fixed Xp and X, both the tem-
perature T = 1/(%pa) and the volume V = (X a) are
changed. However, VT =(X /Np) remains constant,
and in the ideal-gas regime at least, this quantity is just
the entropy.

As already mentioned, U has already been considered
on the lattice for pure SU(3) gauge theory. 5 Since this
theory exhibits a first-order phase transition, which im-

plies that P(e) is constant in the transition region, the
velocity of sound should become zero at T=T, . For
T ~ T„ it must eventually approach the asymptotic value
u „=—,'. In the confinement region, below T„ the depen-

dence of u on the temperature is determined by the equa-
tion of state of a gluonium gas. The results of Ref. 5

agree qualitatively with these expectations. [The actual
calculation of u for pure SU(3) gauge theory becomes
difficult directly in the critical region because of hys-
teresis behavior. This may be the origin of discrepancies
in the energy density calculated in Ref. 5 as compared to
the results of Ref. 2.]

For the full theory with dynamical fermions, we expect
a somewhat different behavior of the velocity of sound.
First of all, in the deconfinement region we now deal with
hadrons, rather than with gluonium states, as constitu-
ents. In this situation v should increase with tempera-
ture more rapidly than for a gluonium gas. Thus for a
given temperature below T„ the value of u should be
larger than the corresponding value for pure SU(3) theory.

When we cross the transition point in the case of full

QCD, we expect as before that v should vanish: v
i is in-

versely proportional to the specific heat c„, and this
presumably diverges at T,—at least for an infinite system.
In the lattice formulation, however, we deal with finite
systems, and hence a finite specific heat. Due to finite
volume effects, the velocity of sound will thus most likely
not completely vanish at T —T, .

Next, we consider the ratio P/(P+e), which deter-
mines the collective transverse expansion of the system
the average transverse rapidity (y ) z. of a volume of ex-

panding rnatter is given by

30- g/T4

20-

&0- = P/T4

0
5.0 5.5 6.0 6.5

6/g2

FIG. 1. Energy density e, pressure P, and entropy density s,
calculated on an 8 )& 3 lattice in a fourth-order hopping-
parameter expansion.

ic matter is converted from hadron gas to quark-gluon
plasma; the energy and entropy density, however, change
discontinuously. This leads to a flattening of (p, ) over a
finite range of multiplicities. For a continuous transition
there would be a similar though less dramatic effect. "

To make these considerations more quantitative, we
note that the initial energy density in the rest system of a
head-on collision has been argued to be'

~-&p, )
0

(14)

0

(15)

Here (dN/dy)u is the observed multiplicity of secondaries
per unit rapidity interval in the c.m. system of a A-A col-
lision, while Vz denotes the volume into which the energy
is deposited. Similarly, the initial entropy density is by
hydrodynamic considerations' expected to be

I' de(y)r-constX f &+I I'&

(13)

where r, is the dimension of the volume in the transverse
direction, and r the time in the local rest frame.

Finally, we want to consider the transverse momentum

(p, ) of inclusively produced secondaries in pp or heavy-
ion collisions. It has been suggested by Van Hove" that
an anomalous behavior of (p, ) as function the multiplici-
ty could be a signal for the occurrence of a phase transi-
tion in hadronic matter. His conjecture is based on the
idea that the (p, ) distribution of secondaries reflects the

temperature of the system' and its evolution in the trans-
verse direction, while the multiplicity per unit rapidity
provides a measure of the entropy.

If the system undergoes a first-order phase transition,
both temperature and pressure remain constant as hadron-

6/g. 2

6.5
6.0
5.5
5.4
5.35
5.3
5.25
5.2
5. 1

5.0

714.2
373.69
196.07
172.41
161.68
151.62
142.2
133.36
117.32
103.22

P/T

9.39
8.81
5.08
3.81
3.50
2.37
1.64
1.33
0.92
0.66

/T4

29.26
27.90
28.64
26.41
22.68
12.28
6.86
5.21
3.52
2.48

s/T3

39.0
37.4
34.15
30.18
25.48
14.66
9.0
7.18
5.35
4.23

TABLE I. Lattice results for the basic thermodynamic vari-
ables.
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FIG. 6. Energy per degree of freedom, e/s, as transverse-
momentum measure, vs entropy density s, in lattice units.

FIG. 7. Energy per degree of freedom, e/s, as transverse-
momentum measure, vs entropy density e, in lattice units.

deconfinement.
In Figs. 4—7, we study the relevant quantities for the

transverse-momentum behavior. We first note in Fig. 4
that (p, ), given according to Eq. (16) by e/s, indeed pro-
vides a measure of the temperature; it is approximately
linear in T, with an abrupt charge in slope at the decon-
finement point. Above T„ in the deconfined system, the
available energy is distributed among a larger number of
constituents, resulting in a slower growth of (p, ) with T.

Figure 5 shows e/s vs s; according to Eqs. (16) and
(17), this should mirror the multiplicity dependence of
(p, ). We see that in the critical region there is a notice-
able but smooth flattening. This behavior is qualitatively
in agreement with the results from the CERN pp collid-
er the multiplicity increase observed there appears
somewhat weaker, however. Beyond the transition region,
(p, ) increases again more rapidly with s-(dN/dy)o, as
shown in Fig. 6. A similar, slightly weaker increase
occurs as function of e (Fig. 7). This behavior is in quali-
tative agreement with recent cosmic-ray data. '

To give at least some indication of the uncertainty in-
volved in our calculations, we have included in each figure
error bars for one typical point. These are based on the
naive statistical error of the lattice evaluation only. In ad-
dition, the truncation of the hopping parameter expan-
sion, the use of the weak-coupling forms for «(g ) and
a(g ) in the range of g here considered, and the finite
lattice size all provide additional sources of error. Hope-
fully these can be brought to a point of estimate by future
evaluations using and comparing different possible
methods on considerably larger lattices.

V. CONCLUSIONS

We have determined the temperature dependence of the
pressure and the energy and the entropy densities in the
lattice formulation of statistical QCD with dynamical fer-
mions. Using these results, we have then calculated the
velocity of sound, and the thermodynamic quantities ex-

pected to govern the collective transverse rapidity and the
mean transverse momentum of secondaries in nuclear col-
lisions.

In the region of the deconfinement transition, we ob-
serve a strong suppression of the sound propagation in the
system and of its transverse collective expansion.

Relating the energy per entropy to (p, ) and the entropy
density to the central multiplicity of secondaries

(dN/dy)o we further observe a noticeable flattening of the
multiplicity dependence of (p, ) in the critical region.
This behavior, first proposed by Van Hove, " is in qualita-
tive accord with pp and cosmic-ray data.

Our study is based on extensive lattice calculations us-

ing Wilson fermions in a hopping-parameter expansion.
It should be emphasized, however, that other fermion for-
mulations and other evaluation schemes for the fermion
determinant have so far led to the same thermodynam-
ics, ' and are thus expected to yield similar results for the
quantities considered here.
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