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Observations on the T lnR term in the quark-antiquark free energy
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Consider the response of a pure gauge theory at temperature T to an external quark-antiquark

pair separated by R. In the confining phase, the leading term in the free energy at large E. is o.R. A
string-model calculation has given TlnR for the next-to-leading term. In this paper, the origin of
the T lnR term is considered in a more general context that includes the analog spin model and the
lattice gauge theory at strong coupling. The connection with transverse fluctuations is emphasized.

I. INTRODUCTION

This paper is concerned with pure, non-Abelian gauge
fields at finite temperature. It is instructive to consider
the response of the system to external disturbances in the
form of heavy-quark and -antiquark sources. These are
represented by Wilson line operators at fixed positions. It
is assumed that the theory confines quarks for a range of
temperatures above zero. Throughout this paper, we work
in the confining phase.

The line-line correlation function manifests confine-
ment by decaying to zero exponentially fast. If R is the
distance between the lines, P the inverse temperature, and
cr the finite-temperature string tension, then a finite-
temperature version of the area law is

C(R) -e -ot'" .

The corresponding contribution to the quark-antiquark
free energy F is oR.

A string-model calculation' has shown that there is a
power-law correction to (1.1) so that, at large R,

(1.2)

and

A more general approach is indicated.
The sections that follow present three different views.

Section II recalls the relationship of the line-line correla-
tion function to the spin-spin correlation function of a
spin system in the same spatial dimension. This gives the
first indication that a power correction may be present in
the gauge theory. Section III comments on the string-
model calculation. Section IV looks at the strongly cou-
pled lattice theory. In this context, the power correction
follows from the spectral representation of C plus either
approximate rotational invariance or roughness. The
rotational-invariance argument admits the possibility that
the power of R is less than minus one and that the coeffi-
cient of T lnR is greater than one. However, the other
more specific approaches indicate that this is not likely to
be the case.

Each argument reveals in a slightly different way that
the power correction is a consequence of the transverse
fluctuations of the fiux tube. The result depends upon the
number of transverse spatial dimensions into which it can
move. The power R ' is correct for our world of three
spatial dimensions. In d spatial dimensions the power is
—(d —1)/2. The Ornstein-Zernike decay of correlations
in spin systems has the same power and analogous phys-
ics.

F=oE.+T lnR . (1.3) II. SPIN MODELS

This paper will show that the same correction arises in the
analog spin model for the lines and in the lattice gauge
theory at strong coupling. In each case, it is associated
with transverse fiuctuations.

The T lnR term in the free energy is universal in the
sense that it does not depend upon the details of the
theory. In particular, it is insensitive to the gauge group
and the coupling as long as one remains in the confining
phase. In this way, it is similar to the large-distance R
term in the zero-temperature, quark-antiquark potential.

As a consequence, the T lnR term does not appear in
straightforward weak- or strong-coupling expansions of
C(R,g ). The weak-coupling expansion is not valid at
large R. Lattice strong coupling is better in that it corre-
sponds to large physical separations. However, the
roughening effects that will turn out to be important are
not incorporated in the usual strong-coupling expansion.

Evidence for the power-law correction can be found in
consideration of the relationship of the finite-

temperature gauge theory to a spin model. While these
indications are suggestive, they are far from conclusive.
Stronger arguments are given in Secs. III and IV.

It has been pointed out that Wilson lines in finite-
temperature lattice gauge theories are in some ways simi-
lar to the spins of lattice spin models. More sptx:ifically,
the line-line correlation function of SU(N) lattice gauge
theory is related to the spin-spin correlation function of a
Zz spin system of the same spatial dimension. For exam-
ple, SU(2) gauge theory in 3+ 1 dimensions is related to
the Ising model in three dimensions. The confining phase
of the gauge theory corresponds to the high-temperature
phase of the Ising model.

The on-axis correlation function of the Ising model has
an Ornstein-Zernike decay:
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(2.1)

Since this is a general property of the model that does not
depend upon the details of the interactions, we might ex-
pect that the simple area law

T lnR term comes entirely from the modes of the surface

that are independent of w. Since all fixed-r slices of these

surface modes are the same, they are equivalent to the

transverse fluctuations of a one-dimensional object in a
three-dimensional space.

—era XTI2

8 (2.2)
IV. LA I i ICE MODEL AT STRONG COUPLING

for the line-line correlation function should be corrected
to

gg2N II' (2.3)

The continuum limit of this gives (1.2) and (1.3).
One may inquire as to the origin of the I ' factor in

the spin model. For our purposes, it will be most useful
to note that it has been explained in terms of the trans-
verse fluctuations of random walks that connect the two
sites in the correlation function.

III. STRING MODEL

xi(r+ p,z) =xi(r,z),
xi(r, O) =xi(r, R)=0 .

The action is taken from Ref. 8:

(3.1)

The string picture is particularly well suited to the
problem. It automatically selects the confining phase, and
the fixed-coupling, large-R limit is straightforward. This
section reviews the string-model calculation of the quark-
antiquark free energy in which the next-to-leading T lnR
term appears.

Consider a string in three spatial dimensions with ends
fixed at (0,0,0) and (O,O,R). Finite-temperature effects are
incorporated by applying periodic boundary conditions in
a fourth dimension of length p. The string is described by
giving its two-dimensional transverse displacement xi as a
function of z and ~:

As noted already, a straightforward strong-coupling ex-

pansion of the line-line correlation function does not in-

clude the power correction. However, two general proper-
ties of the theory that hold at strong coupling together
imply that the power correction is present.

The first property is that the lattice line-line correlation
function C(I) has a spectral representation with a positive
weight. Except for the lack of rotational invariance, this
is the same as the textbook result for continuum theories.

The second ingredient relates to the rotational proper-
ties of C(I). I.et us restrict our attention to the behavior
of C on the 3-axis C(O, O, I3). The power-law correction
to the exponential decay of this quantity at large I& is
closely related to the behavior of C(I&,I3) as Ii increases.
Both are determined by the spectral density of the 3-axis
transfer matrix at threshold.

Two approaches are discussed. The first simply as-
sumes that C(I) is approximately rotationally invariant at
large I. It applies to the region of the (NT, gz) plane
where this is the case. The second uses roughness, which
is a crude sort of nearly on-axis rotational invariance, that
is present at any finite temperature.

A. Spectral representation

Consider a lattice gauge theory with Ns sites in each of
three spatial directions and NT sites in a fourth imaginary
time or inverse temperature direction. Take periodic
boundary conditions in all directions and Ns~ oo. Keep
NT finite for a dimensionless temperature aT=NT
The bare coupling is g . If I labels positions on the spa-
tial lattice and L(I) is a Wilson line at position I, the
correlation function is

S=crpR+ —f d~ f dz(x x +x' xi) .
2

(3.2)
C(I)=(L (I)L(0)) . (4.1)

The free energy is obtained from the logarithm of the
functional integral

C(R) Qc f Dxie

cc e ~~"[det( —B,~—8 )] (3.3)

The determinant with these boundary conditions has been
calculated. ' lt gives the leading terms

m R RC(R) =exp —oPR +———ln—
3 P P

(3.4)

F= m ——T R+T 1' .
3

We have evaluated the determinant by a different
method and obtained the same result. We find that the

We seek an expression for the on-axis behavior of C at
large separation. The 3-axis is arbitrarily selected.

Begin the spectral decomposition of C by introducing
the 3-axis transfer matrix. The discussion that follows is
quite familiar if one imagines interchanging the names of
the 3 and 4 axes. The result is a zero-teinperature Eu-
clidean theory with finite extent and periodic boundary
condition in one spatial direction.

The steps' in obtaimng a spectral representation for C
are standard: %'ork in the gauge where the group ele-
ments on links in the 3-direction are unity. Show that the
functional integral with the Wilson action is a product of
transfer matrices in the 3-direction. Introduce a Hilbert
space of configurations at fixed I& and, in that, a basis
that diagonalizes the 3-axis transfer-matrix and the
translation operators in the 1-, 2-, and 4-directions.

I.et f ~g)J be this basis. The 1,2-translation eigen-
i P~-I~

values of
~ P) are e " ' and the transfer-matrix eigen-
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values are A,~. ~

vac) is the translationally invariant state
with the largest eigenvalue ko. For the other eigenvalues,
we write

R(o )=4ir5(o —M ) .

It gives the familiar result

p= 5—(E P—i M—2) .

(4.9)

(4.10)

Since the Wilson line and all other operators that ap-
pear are invariant under 4-direction translations, states
with nontrivial behavior under these translations make no
contribution. That leaves sums and integrals over posi-
tions and moments in the 1,2-transverse plane.

After the usual manipulations, we are left with the rep-
resentation

To handle o.' & 1, use the representation

e —Mx

f dM'(M' —M)'
I (e) I x

(4.11)

valid for e&0. It follows from (4.6), (4.10), and (4.11)
that

C(li, Ip) = f d Pi f dE e ' 'e 'p(Pi, E) .

It is crucial that the weight

(4.3)
8(E Pi —M)—

2mI e (E' P, 2)'~'

(4.12)
p= /5(E Ey)5 —(PJ Py) [

(—l//[1- [
vac) [ (4.4)

is, for each Pz, a positive measure in E that vanishes for
E ~M. There is such a positive M because we are in the
confining phase. Its value and dependence upon g play
no role in this work. The representation (4.3) also reveals
the important fact that the large-I3 behavior of C is
determined by the functional form of the spectral weight
at threshold.

—MI

j (4.5)

at large I:
~

I ~. M is small and fixed. This large-I
behavior of C is fixed by the strength of the singularity in

its Fourier transform at P = —M . Our strategy is to
compute the Fourier transform of (4.5},express it in terms
of a spectral weight, and compare with (4.3) and (4.4).
Consistency will require that a be greater than or equal to
one.

The singularity of the Fourier transform at P = —M
is adequately approximated by replacing the sum on I by
an integral

C(P)= f d x e' '"C(x) . (4.6)

B. Rotationally invariant forms

This discussion is valid for the region of the (Ez,g )

plane that is confining and approximately rotationally in-
variant. For this case, the argument is simple and stan-
dard.

Begin by assuming that C has the approximately invari-
ant form

p= —— 5(E Pi —M —) .BM' (4.14)

Since (4.14) is not a positive measure in E at fixed Pz, it
is inconsistent with the spectral representation. Thus the
a =0, straight-exponential decay is ruled out.

Similarly, the p that gives

C= e ™with 0&a(1—Mx

X
(4.15)

is the M derivative of (4.12). As in the a=0 case, this p
is a distribution that is not a positive measure. The con-
clusion is that values of a less than one are ruled out
while the faster decays with a & 1 are possible.

C. Strong coupling

We have seen that the large-distance behavior of C
de«rmined by the spectrum of the transfer matrix near
threshold. In this subsection, strong-coupling methods
will be applied to the problem.

To precisely identify the property of the spectrum that
gives the power correction, substitute (4.10) into (4.3). In
performing the E and Pz integrations, one finds that the
power correction is associated with the I'z term in

This is a positive measure that is consistent with the spec-
tral representation in (4.3) and (4.4).

Now consider o.=0. Combining

e = — —e
—Mr 8 1 hfx—

aM x

and (4.10) one finds that p is the distribution

If this takes the form

280
p2+ ~2

2

E(Pi)=(P, +M ) =M+—2 2 1/2

2 M
(4.16}

(4.7)

p(Pi, E)= R(E Pi2I . —
(2m )

(4.8)

For a= 1, the Fourier transform has the form of (4.7)
with

then an integral over I'3 gives the equivalent spectral
weight

Without assuming rotational invariance, we can use
strong-coupling methods to show that E(Pi ) has a Pi
term. It is equivalent to the fact that the theory is rough
at any finite temperature. "

The expansion is in inverse powers of coupling for the
plaquettes that have no 3-direction links. It is very simi-
lar to Hamiltonian strong coupling' except that the cou-
pling and lattice steps for the 3-direction remain finite.

To define the operators, consider the basis
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U(l) . .
& in which the group elements on 1-, 2-,

and 4-direction links have definite values. The gauge
choice has 3-direction links equal to one. Define opera-

tors U(l), R(l,gi), and U(p) by

Since the perturbation can eventually connect the states of
different Ii, the order Pi term in a momentum expan-
sion of (4.23) does not vanish. It is equivalent to a Pi
term in the expansion

U(I)
I

. U(I) . .
&
—U(I)

I
U(&)

U(p)= 1I U(I),
I EBp

~(I~gl)
I

U(1) .
&
=

I gl

The transfer matrix for the Wilson action is then

(4.17)

E(Pi)=M+ , KP—i +

This is all we need to know.
These states contribute

&(E E(P—i )) I &Pi
I
L(0)

I
vac&

I

(4.24)

(4.25)

(4.18)
to the spectral weight. The corresponding contribution to
C(O, O,Ii) is

with

and

4 1~ = g f dg exp, Tr(g—i) B(I,g )

links g 2

J d2Pie ' " '
I &Pi IL(0)

I
vac& I

(4.19)
For large I3, the leading term is

e ' Jd Pie ' ' I&Pi IL(0) vac&I

(4.26)

B=exp — g —,Tr[U(p)] (4.20)
2 gs plaq

The products and sums do not include 3-direction links
or the plaquettes that contain them. The line operator
L(Ii) is half the trace of the product of the Nz link
operators in the 4-direction at position Ii.

The unperturbed basis states for the expansion are the
gauge-invariant states that diagonalize A. This is the
analogue of the basis used in Hamiltonian strong cou-
pling. The vacuum has all link variables in the trivial rep-
resentation of the group. Excited states have chains of
links in higher representations. The expansion is in

powers of 4/g, '.
The operators L(Ii) create states

I
Ii & that cannot be

reconnected to the vacuum in any finite order of the ex-
pansion. For sufficiently small 4/g, 2, their E values are
positive. In lowest order, these states are degenerate and
unmixed. However, siilce NT is finite, they can be mixed

by enough powers of lnB. The states that do not mix have
definite momentum

(4.21)
Ij

The initial degeneracy of these states is lifted when the ex-
pansion connects states with different Ii.

If Q is the operator that projects on the space orthogo-
nal to

I Pi & and D is the perturbation defined by

(4.22)

—MI3
e I &Pi =0

I
L(0)

I
vac & I

27r (4.27)
3 K

This result depends upon the Pj term in E, which is
also closely related to roughening. ' If E(Pi ) is indepen-
dent of Pi, the theory acts one dimensionally and is not
rough. With K nonzero, there is roughening and the on-
set of the restoration of rotational invariance. For any fi-
nite ET, it occurs in a finite order of the expansion.
Thus, the finite-temperature theory is always rough.
Green has given a detailed discussion. "

All of this originates in the ability of the perturbation
to move the line from one Ii position to another. These
transverse fluctuations are responsible for the power-law
correction.
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