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A detailed analysis is given of chiral-symmetry breaking in the large-flavor (Ã) limit of quantum
electrodynamics in I;2+1) dimensions. Analytical and numerical solutions of the homogeneous
Dyson-Schwinger equation for the fermion self-energy combined with a computation of the effective
potential for the fermion bilinear show that it is energetically preferable for the theory to dynamical-
ly generate a mass for fermions, The magnitude of the mass is roughly exponentially suppressed in
N from the fundamental dimensionful scale 0.:—Xe' of the gauge coupling constant, but the scale at
which the self-mass begins to damp rapidly appears to be of order a, so that there is no spontaneous
breaking of an approximate scale invariance that the underlying theory possesses at momentum
small compared to u. Higher-order 1/X corrections are analyzed and it is sho~n that the 1/X ex-
pansion can be used consistently to demonstrate chiral-symmetry breaking. Open issues and possi-
ble improvements of the analysis are given and some avenues for future investigation suggested.

I. INTRODUCTION

Among all the hadrons the m meson is believed to play
a special role. The underlying theory of strong interac-
tions possesses a near chiral symmetry SU(2)L XSU(2)tt
because of the approximate masslessness of the up and
down quarks. This symmetry must then break spontane-
ously in order to explain the effective 300-MeV masses
that these quarks appear to possess as the constituents of
hadrons. The spontaneous breaking of any continuous
symmetry necessarily leads to the existence of massless
Goldstone bosons, and in the case of chiral symmetry, the
m mesons approximately play this role.

Although this picture of meson dynamics is widely be-
lieved and supported by much circumstantial evidence, no
complete derivation of the Goldstone nature of the tr
meson has ever been produced starting with the underly-
ing gauge theory, QCD. What one would like to see is a
direct analysis of the problem along the lines of, say, the
original discussion of dynamical spontaneous symmetry
breaking in quantum field theory by Nambu and Jona-
Lasinio. This discussion of a four-fermion interaction
theory and the corresponding study in two space-time di-
mensions provides prototypes for the analysis of realistic
gauge field theories. With strong-coupling effects neces-
sarily playing an important role in QCD, however, a treat-
ment along these lines is not yet possible. In the face of
these difficulties, people have turned to a variety of ap-
proximation devices and indirect arguments ' to but-
tress the picture of the m- meson as a Goldstone boson.

In this paper, we will describe a gauge field theory in
which the problem of dynamical chiral-symmetry break-
ing can be systematically analyzed. The model is quan-
tum electrodynamics in 2+ 1 dimensions (QEDs) treated
in a 1/N expansion. ' Although this model is not QCD
and not even four dimensional, it is a genuine gauge field
theory. It is in fact the first quantum field theory we
know of, above two space-time dimensions, that permits a
systematic treatment of chiral-symmetry breaking.

The model, furthermore, has properties reminiscent of
four-dimensional theories. It has an intrinsic dimensional
parameter, the gauge coupling constant, that plays a role
similar to the renormalization scale in four dimensions.
The relative size of this parameter and a possible chiral-
symmetry-breaking scale, a fermion mass, is then a ques-
tion of considerable interest. Within the framework of a
I/N expansion, it will be seen that the dynamically gen-
erated fermion mass is much less than the coupling con-
stant. There is, of course, no evidence for any large
hierarchy in QCD4 and indeed none would be expected in
a theory without a small dimensionless parameter. " In
four-dimensional theories other than QCD, however,
hierarchies might well exist with interesting experimental
consequences. In particular, some dynamical theories of
electroweak symmetry breaking contain small parameters
that can lead to hierarchies. "' The hierarchy in these
theories, however, is inverse to the one appearing in
QED3, leading instead to a relatively large fermion mass.

In any theory with a hierarchy between the intrinsic
scale and a spontaneously generated fermion mass, an im-
portant question arises. If the intrinsic scale approximate-
ly drops out of the problem at the energy scale where the
mass arises, the underlying theory will be approximately
scale invariant. The fermion mass would then spontane-
ously break scale invariance, leading to the existence of a
dilaton. The dilaton would in turn presumably pick up a
small mass once the effects of the intrinsic scale are in-
cluded. This question will be investigated in QED3 (Ref.
13). We shall argue that even though the dynamical fer-
mion mass is small compared to the coupling strength, the
energy scale at which the mass turns on and off is on the
order of the coupling. Therefore there is no approximate
scale invariance to be spontaneously broken and there is
no approximate dilaton.

In Sec. II the features of QED3 will be presented. Its
continuous symmetries with and without a fermion mass
will be described. It will be shown that the massless
theory is both ultraviolet and infrared finite order by or-
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der in the I/X expansion. The infrared finiteness is asso-
ciated with an effective scale invariance in the infrared
which arises because of the existence of an infrared-stable
fixed point. It is noted that spontaneous chiral-symmetry
breaking will not occur to any finite order in I/X.

In Sec. III the possibility of spontaneous chiral-
symmetry breaking will be investigated by solving the
Dyson-Schwinger gap equation. The gap equation, which
in effect sums dominant contributions in the I/X expan-
sion, will be solved both analytically and numerically.
The different mass scales in the problem will be explained
and the question of spontaneous breaking of scale invari-
ance will be addressed.

The effective potential will be constructed in the same
approximation in Sec. IV. Functional differentiation of
this potential will produce the gap equation. The ex-
tremum value of the potential (its value at a solution to
the gap equation) will then be computed. It will be argued
that the spontaneous breaking of chiral symmetry is ener-
getically preferred.

In Sec. V higher-order corrections in the I/S expan-
sion will be estimated. It will be argued that these correc-
tions are indeed down in I/X, that is, that the leading
terms in the expansion have been correctly summed in our
solution to the gap equation. Section VI will contain a
summary of our results and a list of open questions.

There will then be two 4)& 4 matrices,

1
5

0 ) g =l
0 1

(2.5)

that anticommute with y, y', and y . The massless
theory will therefore be invariant under the "chiral"
transformations

(2.6)

For each four-component spinor, there will be a global
U(2) symmetry with generators

1, y, y, and [y,y ], (2.7)

and the full symmetry is then U(2N). A mass term mug
would break this symmetry to the subgroup

SU(E) x SU(&) x U(1)x U(1) . (2.8)

To elucidate the difference between the two-component
and the four-component spinor theories it is helpful to re-
call the discrete symmetries of these theories. In 2+ 1 di-
mensions, parity corresponds to inverting one axis, since
inversion of both axes could be undone by a m. rotation.
Thus under the parity transformation P, (x,y)~(x,y)p
=(—x,y) say. The corresponding operation on the two-
component spinors is

II. THE MODEL AND SOME OF ITS PROPERTIES

In this section we will define the model to be studied,
discuss its symmetries, its ultraviolet and infrared
behavior, and the use of the I/X expansion in analyzing
chiral-symmetry breaking.

The Lagrangian for massless quantum electrodynamics
in three space-time dimensions (QEDi) is

(2.1)

Pg(t, x)P '=oif(&, xp),

and on the gauge field

PA'(r, x)P '=A'(&, xp),

PA '(t, x)P '= —A'(&, xp),

PA'(r, x)P '=A'(t, xp) .

Time reversal is given by

rg(r, x)r '=cr, i)'j( —t, x),

(2.9)

(2.10)

(2.2)

A spinorial representation of the Lorentz group SO(2, 1)
in three dimensions is provided by two-component spi-
nors, with the corresponding 2X2 representation of the
Dirac algebra being given by the Pauli matrices

rA (t, x)r '=A ( t, )x, —

rA(t, x)r '= —A( —t, x) .

(2.11)

A two-component mass mfa is odd under both P and r.
Writing a four-component spinor as

0 1=02, f =1CT3, P =ACCT) (2.3)

003 lO)
0 1

0 —cr ' ~ 0

There is, however, no other 2)(2 matrix that anticom-
mutes with all these y„. There is, therefore, nothing to
generate a chiral symmetry that would be broken by a
mass term mtPQ, whether it be explicit or dynamically
generated. The massless theory has no more symmetry
than the massive theory.

Consider therefore the basic fermion field to be a four-
component spinor. The theory will be taken to contain X
such fermions. The three 4/4 y matrices can be taken to
be

the chiral-symmetry-breaking, four-component mass term
m gg becomes

mgg=mgio3$, —m$2o3$2 .

The parity transformation becomes

&z-~i~i

(2.12)

(2.13)

and therefore m gg is parity conserving.
This point is being stressed because there is an alterna-

tive possibility in three dimensions. Another acceptable
candidate for a mass term is

(2.4) m 0 , l Z' )"14= m &—i~3&i+m +~~34~ . (2.14)

0 —I o.
2 This term is invariant under the chiral transformations
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L = g g; (i 9' eg )P; —, F—„, — (2.15)

In an expansion in 1/N with a=e N fixed, only the
graphs shown in Fig. 1 contribute to leading, zeroth order.
It is simplest to proceed in Landau gauge and we shall do
so throughout the paper.

The gauge-boson propagator D„„(p)is given by

2
gpv Pppv/P

p'[1+ II(p)]

where, to leading order in 1/N, and for a constant fer-
mion mass m,

(2.16)

(2.6) but clearly not invariant under the parity transfor-

mation (2.12). Such a parity-violating mass is in fact the

only possibility in the two-component formalism. It is

known that it will induce a Chem-Simons mass term for
the gauge field via one-loop vacuum polarization. ' That
such a fermion mass and the corresponding Chem-Simons
mass could arise spontaneously, leading to the spontane-
ous violation of parity in QEDi, is an interesting and im-
portant possibility. ' In this paper„however, attention
will be restricted to the possible spontaneous appearance
of a parity-conserving, chiral-symmetry-violating mass.

We describe next the perturbative properties of QEDi
and then introduce the 1/X expansion. Since the square
of the gauge coupling constant has dimensions of mass,
the theory is super-renormalizable. It is not difficult to
see in fact that once gauge invariance is taken into ac-
count, the Green's functions of the theory are completely
ultraviolet finite.

In the infrared, however, severe divergences force the
breakdown of the loop expansion for the massless
theory. ' ' Already at two loops, infrared divergences ap-
pear in Euclidean Green's functions. Although they are
presumably an artifact of the loop expansion, their conse-
quences and the way in which they would be removed in a
nonperturbative treatment are not yet clear in general.
One possibility that suggests itself is that chiral symmetry
will be forced to break spontaneously giving the fermion a
mass. ' This is what happens in the two-dimensional
Gross-Neveu model. It has been argued, however, that
the infrared divergences in massless three-dimensional
theories can disappear without mass generation. ' ' In
the one nonperturbative scheme that is known for this
model —the 1/N expansion —it can be shown that the
theory does indeed stay massless while becoming infrared
finite. ' Whether this finite theory in turn exhibits spon-
taneous chiral-symmetry breaking is the central problem
of this paper to which we shall turn after describing the
1/N expansion.

With N four-component spinors, the Lagrangian is

FIG. 1. The summed gauge-boson propagator to zeroth order
in the 1/N expansion.

II(p) =
Sp

(2.18)

The momentum p is Euclidean. It follows that in the in-
frared limit p «a, the propagator behaves like 1/ap
rather than 1/p . A simple power-counting exercise then
shows that the Euclidean Green's functions are complete-
ly infrared finite. '

The behavior of the theory for all momenta is best
described in terms of the dimensionless running coupling
constant:

a(p) —=a/[ 8p [1+II(p) ] I . (2.19)

This object, formed by multiplying the natural dimension-
less coupling a/8p by the zeroth-order (in 1/N) gauge
propagator renormalization factor Z&(p) =—[1+II(p)]
characterizes the interaction strength of the theory. It
corresponds to the renormalization-group P function

P=a(a —1) . (2.20)

In the ultraviolet a(p) approaches zero rapidly, as expect-
ed for a super-renormalizable theory. Zero is an ultravio-
let stable fixed point. In the infrared, the 1/N expansion
leads to the existence of an infrared stable fixed point
a =1. The infrared well being of the theory can be traced
to an effective scale-invariant behavior associated with
this fixed point. The scale invariance is evident since in
this limit, equivalent to taking a to infinity at fixed p, a
completely drops out of all computations.

Because questions of scale invariance arise naturally in
connection with chiral-symmetry breaking, it is important
to discuss this effective symmetry in a bit more detail. In
the limit p «a, each graph in the 1/N expansion looks
like a three-dimensional Feynman graph with a gauge
propagator behavin like 1/p and a dimensionless cou-
pling constant 1/ N. The power counting is very simi-
lar to four-dimensional field theory and one might worry
that the effective scale invariance is broken by ultraviolet
divergences just as it is in four dimensions. Here, of
course, the divergences would get cut off at a since the
complete theory is ultraviolet finite. Still, this would
bring a back in at the quantum level, destroying the naive
effective low-energy scale invariance.

A simple power-counting exercise for the infrared ef-
fective theory gives the degree of divergence to be

2 4 2

II(p) = 2m+4'
g arcsln

2 2 I/2(p +4m )

In the zero-mass theory being considered so far,

(2.17)

where 8 (F) is the number of external boson (fermion)
lines. The possible "divergences" (a dependences) are as
follows.

8 =2, F=0, (d =1): The gauge propagator. It is re-
duced to d = —1 by gauge invariance.

8=1, F=2, (d =0): The vertex. Its divergence (lna)
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is canceled by the fermion wave-function renormalization,
just as in four dimensions, because of the Ward identity.

8=0, F=2, (d =1): The fermion self-energy. It is
reduced to d =0 in the usual way. The wave-function
divergence (1na} is canceled by the vertex. In the massless

theory, there is no mass renormalization to any finite or-
der in X—chiral symmetry forbids it.

One concludes therefore that the effective low-energy
scale invariance of the massless theory holds to any order
in the 1 /N expansion. If spontaneous chiral-symmetry
breaking takes place at momentum scales much less than
o;, there will clearly be an approximate spontaneous break-

ing of scale invariance.

nite order in the 1 /N expansion. To go beyond finite or-
ders, we utilize the homogeneous Dyson-Schwinger equa-
tion for the fermion propagator. We investigate whether
this equation, which effectively sums over all orders in the
1/N expansion, admits a nonzero fermion mass as a solu-
tion. To make the equation tractable some approxima-
tions must be made and the resulting equation will corre-
spond to a selective resummation of terms in the 1/X ex-
pansion. The reliability of these approximations will be
discussed in Sec. IV.

The Dyson-Schwinger gap equation will now be set up
and its analytic and numerical solutions will be discussed
in the various momentum ranges. The inverse Euclidean
fermion propagator is written in the form

SF ' ———p[1+A (p)]+X(p), (3.1)
III. CHIRAL-SYMMETRY BREAKING

The properties of QED3 make it clear that spontaneous
chiral-symmetry breakdown will not take place to any fi-

I

where X(p) is the dynamically generated effective mass.
The Dyson-Schwinger equation, using the lowest-order (in
1/N) vertex and gauge propagator, is

D„„(p k)y" I
4'—[1+3 (k)]+X(k) ] y"—&(p)+X(p)=-

(2m}3 [k2[1+A(k)] +X (k)I
(3.2)

with D„„(p—k) given by Eqs. (2.16) and (2.18). X(p)
must be determined self-consistently by this equation.

The right-hand side of the Dyson-Schwinger equation
contains an explicit factor of 1/N. A solution X(p) will

clearly have to exhibit some X dependence to cancel this
factor in the integral equation. It will then have to be
checked, and that is the business of Sec. V, that the
higher-order terms (in 1/N), that would be added to the
right-hand side of the gap equation, really are down in the
1/X expansion.

The wave-function renormalization A(p) will be gen-
erated perturbatively in 1/N. It is therefore expected to
be suppressed in the large Nlimit b-y 0(1/N) and we

drop it to leading order. Consistency, in fact, demands
that wave-function renormalization be dropped in Eq.
(3.2). The full vertex I „has already been replaced by the
lowest-order vertex y, and the wave-function renormaliza-
tion and vertex are connected by the %'ard identity. These
higher-order corrections, along with similar corrections to
the gauge propagator, will be analyzed in Sec. V. The
lowest-order equation is pictured in Fig. 2.

In general, D„„(p—k) in (3.2) will depend on X(p) itself
through the vacuum-polarization graph (Fig. 1). One is
then faced with a complicated set of coupled integral
equations. (It would presumably be possible to solve these
equations numerically. ) For momentum scales large com-
pared to X(p) itself, however, X(p) can be ignored in

D„„(p) so that II(p) is approximately given by Eq. (2.18).
After angular integration, the gap equation then becomes

a ~ kX(k)
1

k+p+a/8
2~'Np 0 k'+X'(k}

~

k —p ~

+~/8

X
k +0p+a/8

k + 0 ~ ~

p +a/8

a ~
dk

kX(k)+ 2rr'Np ~~ k'+X'(k)
'3

x ~ +0k+a/8 @+a/8

(3.4)

For both large p and small p (relative to a/8), asymptotic
forms may be found for X(p) by retaining only the first
term in the perturbative expansion of the logarithm. In
this approximation, the integral equation may be convert-
ed to a more manageable second-order nonlinear differen-
tial equation:

T

d dX(p) p (p+a/8) a p X(p)

dp dp 2p+a/8 ~ N p +.X (p)
(3.5)

an infrared cutoff and a qualitative measure of the non-

linearity at low momentum.
To study Eq. (3.3) analytically it is convenient to break

the momentum integration into two regions and expand
the logarithm appropriately for each region:

a sdk kX(k)
n. Np k +X (k)

'3

For momentum k of order X(k) in this integral, where the
nonlinearity becomes relevant, Eq. (3.3} is not reliable in

detail. %e nevertheless retain X(k) in the denominator as

FIG. 2. The lowest-order approximation to the full homo-
geneous Dyson-Schwinger equation for the fermion self-mass
x(p).



APPELQUIST, BOWICK, KARABALI, AND WIJEWARDHANA 33

In the limit p «a/8, this equation simplifies to the

2 dX(p) 8 p'X(p)
dp dp ~'N p'+X'(p)p (3.6)

If it is further assumed that p »X(p), the equation may
be linesrized to the form

d p dX(p) 8

dp dp ir'N
(3.7)

It must be checked later that the use of this linear equa-
tion is self-consistent. Strictly speaking, only if the result
X(p) «a/8 emerges from the full nonlinear equation will
this linear equation be relevant in any regime at all. This
question will be addressed shortly using a numerical
analysis of the nonlinear equation. Equation (3.7) has
solutions of the form

X(p) =Ap', where a = ——+ —1—1 1

2 2

1/2
32

(3.8)

For large X the two solutions are

X( )-, X( )-l 1

8/e S 1 —8/m X
p p

(3.9)

Xi barely falls asymptotically while X2(p) is roughly of
order 1/p. For N &32/n. the solutions fall like I/Mp
times a function that oscillates in ln(p). Whether these
oscillations are seen in the solutions depends on the range
available between X(p) and a. We will return to this after
discussing the numerical solutions. For these values of N,
of course, the use of the 1/N expansion becomes less than
reliable. It is easily seen that both of the above solutions
are consistent with the truncation of the logarithm expan-
sion in Eq. (3.4). Substituting them back, the higher-order
terms are suppressed by powers of p/a. In other words,
they both solve the integral equation as well as the dif-
ferential equation in the infinite-a limit.

The solution Xi(p) has the form of a hard (bare) mass
in the sense that it is not rapidly damped at high momen-
tum. Instead, it is nearly constant, varying only with s
small anomalous dimension. It can be equivalently gen-
erated by insertion of a bare mass into the theory and
summation of the logarithmic mass renormalizations in
each order in 1/N. The solution X2(p), damping rapidly
(-1/p) as p increases, corresponds to spontaneous chiral-
symmetry breaking at the momentum scales (p «a) be-
ing considered here.

The question of which of these two solutions is chosen
by the nonlinear equation (3.6) is very important. If it is
the latter, then spontaneous chiral-symmetry breaking will
take place at momentum scales on the order of X itself-
fsr less than o. since X~&a. In this range, as we dis-
cussed in Sec. II, the theory is approximately scale invari-
ant to any order in 1/¹ Therefore the X2(p) solution
~ould correspond to an approximate spontaneous break-
ing of scale invariance. The X1 solution, on the other
hand, looks like a bare mass, explicitly breaking both
chiral and scale invariance. ' Even this solution could, of
course, evolve into a rapidly damped effective mass once

momentum scales on the order of a are reached. If this
happens, spontaneous chiral-symmetry breaking takes
place, but at momentum scales on the order of a. In this
case, the dimensionful parameter 0; plays s central role in
the dynamics and there is clearly no approximate scale in-
varisnce to be spontaneously broken.

We now argue that the X1 solution is the only possibili-

ty for p «a. A solution X(p) of the nonlinear Eq. (3.6)
must be finite at p =0 if it is to correspond to mass gen-
eration. On physical grounds, it should in fact by analytic
in p about p =0. A power-series solution to Eq. (3.6),
about p =0, takes the form

X(p)=Xo 1 — + '4p
2

3~ XXo
(3.10)

and, therefore,

—vr'A/8 (3.11)

One sees clearly the nonperturbative nature of the solu-
tion (3.11)—it falls with N more rapidly than any polyno-
mial in 1/¹ The explicit factor 1/N in the gap equation
has been compensated by the exponential hierarchy be-
tween a and m.

We turn now to an analysis of Eq. (3.5) in the asymp-
totic regime p &&a/8. There are two possible asymptotic
solutions:

aX (p) — 1+~—+. . .
p p

(3.12)

where Xo—=X(p=0). The boundary conditions at p =0,
expressed by Eq. (3.10), are the same whether the Xi or Xz
solution emerges in the linearized regime p » X(p).
These conditions determine the solution for all p and
there is nothing to rule out the X1 solution. This solution
will therefore necessarily be the asymptotic (p »X) forin
of the solution to the nonlinear Eq. (3.6) (Ref. 20). This
conclusion has also been verified by a numerical analysis
of Eq. (3.6). One concludes that at momenta much less
than a, the effective mass looks very much like a bare
mass. It varies very slowly with p.

A possible flaw in the above argument is that Eq. (3.3)
[and therefore Eq. (3.6)] is not really reliable when

p &X(p). A set of coupled integral equations must then
be solved as noted above Eq. (3.3). The coupled set might
then be analyzed in the same way we have just discussed
the approximate equation.

It is interesting to compare the above discussion, lead-

ing to the solution X,(p), to the analysis of Ref. 9. The
approach there is to assume that X(p) takes on a constant
value m «a for all values of p less than or on the order
of a. This is simply our Xi solution in the infinite-N lim-
it. It, even more than our true solution, looks like a bare
mass at these momentum scales. For p ~ cx, the integrand
damps rapidly so that the integral in Eq. (3.3) can be cut
off at p=a. The infrared cutoff is provided by m itself,
and the integral can be evaluated at p (~a to give

m =X(0)=m ln(a/m ),8
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0.'
Xs(p) =8 1+b —+ (3.13)

It is easy to see, however, that the Xii(p) solution, corre-
sponding to a bare mass, is not compatible with the homo-
geneous integral equation (3.3). A bare mass has simply
been banished from the theory by not including an inho-
mogeneous term in this equation.

The first solution X„(p) corresponds to dynamical
chiral-symmetry breaking setting in at a momentum scale
on the order of a. The coefficient a is given by

A function that solves the truncated lower-integral equa-
tion in Eq. (3.4) is

ap+
8

(3.15)

Its contribution to the upper integral is suppressed by a
factor a/Np relative to X~(p) itself. It agrees with the
first term in the asymptotic series for p »a/8 and with
the second term for large N. When p approaches a/8,
however, we do not expect it will be reliable, since the oth-
er integral becomes important in this regime. While the
asymptotic power-law behavior Xz (p) -1/p has been re-
liably determined, even the coefficient of this leading term
is sensitive to small momentum scales (on the order of a).
This behavior can be further elucidated by rederiving it
using the language of the operator-product expansion. '

The operator-product expansion for the fermion propa-
gator has the form

Ci(p') «/1
I
0)+C2(p')(o

f gg f
o)+ . .

To the leading order, C, (p )=1/p, C2(p ) is of dimen-
sion —3 and the dynamically generated mass X is propor-
tional to p C2(p )(0~//~0). The diagrammatic expan-
sion for Cz and dimensional analysis show that for
p »a, C2 behaves like a/p . Therefore X falls like 1/p
for p gpss.

In the regime p ~~a/8, the dynamical versus hard mass
solutions are clearly distinguished for all N, in contrast
with the infrared regime p «a/8. This is reasonable
since the 1/X expansion does not play a central role in
this regime. It enters only in the corrections to the dom-
inant asymptotic behavior.

Now we turn to the numerical study of the Dyson-
Schwinger equation (3.3). In our discussions of analytic
solutions we have made the assumption that the dynami-
cally generated mass is much smaller than o;—=Ne . Yet
the explicit solutions that we have obtained so far come
from the linearized equations, and their magnitude is not
determined until the nonlinearities are taken into account.
A numerical analysis of the full nonlinear equation was
performed for this purpose.

The Dyson-Schwinger equation has been solved using a
self-consistent iterative procedure. Nonzero solutions for

X(p) have been found. They have the expected qualitative
behavior discussed above. We see that for fixed N, X(p)
falls sharply to zero once p goes past a/8, as required for
a dynamically generated mass. Our study has so far been
limited to values of X from 1 to 3, including intermediate
nonintegral values. The main reason for this is limitation
of computing time. To achieve sensitivity to the shape of
the integrand, the integration grid has to be chosen to be
smaller than the maximum size of X(p). But the overall
size of X(p), represented by X(0), falls sharply with in-

creasing N. Pisarski anticipated this falloff to be ex-
ponential with N. For the values of N that we have used,
the falloff is even faster than e . Therefore to track
solutions for large N we have to reduce the integration
grid size appropriately. This leads to a significant in-

crease in computer time and we decided to stop our
analysis at N =3. Given sufficient computing capacity,
there appears to be no reason why we should not continue
to find solutions for arbitrarily large N.

As a function of p, X(p) starts at a finite value X(0)
and begins to fall monotonically once p »X(p). We have
not so far seen any qualitative change in the rate of falloff
as p passes through a/8. The method of solution made
use of an ultraviolet cutoff A »a/8 on the integral, and
solutions are quite insensitive to A. A plot of X(p) vs p
for N=2. 6 is shown in Fig. 3.

The ratio X(0)/(a/8) is a measure of the hierarchy be-
tween the chiral-symmetry-breaking scale and the funda-
mental scale of the theory. The numerical results for
—ln[X(0)/(a/8)] for different values of N are shown in
Table I. For low N the falloff is of the form e, and for
N &2 it is even faster. Since we have not gone to very
large N, however, we decided not to attempt a fit. The
large range between X(0) and a suggests that the solution

Xi(p) to the linearized, infinite-a equation should indeed

play a role in the nonlinear, finite-a theory. This question
must be studied further, both numerically and analytical-
ly, f()r larger values of N.

Earlier in this section we found that for N &3.2, X(p)
has oscillatory behavior. The gap between X(0) and a/8
for this range of N is not so large that the oscillatory solu-
tions found will obviously play a role in the region

X(p) «p «a/8. We have found no numerical evidence
for oscillations in our analysis.

IV. THE COMPOSITE OPERATOR
EFFECTIVE POTENTIAL

In this section we describe the composite operator effec-
tive potential formalism that naturally accompanies the
Dyson-Schwinger gap equation. Such a potential as a
function of (P(x)ir'j(y)) [i.e., as a function of X(p) and
A (p)] can be constructed following Cornwall, Jackiw, and
Tomboulis. Dyson-Schwinger equations are then obtained
be extremizing the potential with respect to X(p) and
A(p). Therefore a solution of the Dyson-Schwinger equa-
tion represents a stationary point of the effective poten-
tial. Furthermore the value of the potential at an ex-
tremum is the energy density of the corresponding field
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configuration. Hence the effective potential coinputation
enables us to determine whether the symmetry-breaking
solution of the gap equation that we have found is ener-
getically preferred to the symmetric one.

First we review the composite operator effective poten-
tial formalism. The quantity (0

I P(x)g(y)
I
0) can be

computed by extremizing the Euclidean effective action I
defined as follows. Let

F2Z= f dA dij(Idit(Iexp —f d x /pe —+g(x)K(x,y)f(y) (4.1)

where K(x,y) is an external source that induces explicit
chiral-symmetry breaking (CSB).

Let W(K)=lnZ and

5W(E)
E (4.2)

1(Ii), ) = IV—f p, (x,y)K(x,y) .

Then

(4.3)

P, at X =0 is the required expectation value one needs to
compute. Let

I

behavior of vertices and propagators in setting up the
Dyson-Schwinger equation. For example we neglected A

altogether because its effects were down in 1/N. There-
fore we must do the effective potential computation to the
corresponding order, to make energetic comparisons of
our symmetry breaking solution with the symmetric one.

To discuss the solutions to the gap equation (3.2), it suf-
fices to carry the computation of the potential to second
order in the 1/N expansion. Continuing to neglect wave-
function renormalization A(p), the zeroth-order potential
[Fig. 4(a)] is

r E(x,y)—

and the-solution for P, of the equation

r =0

(4 4)

(4.5)

Vo =Tr(S ' —9')S —Tr lnS

2 X'(p)
1

X'(p)
o p2+X2(p) p2

(4.7)

gives the required expectation value. As shown by
Cornwall, Jackiw, and Tomboulis, and also Peskin,

I =Tr(S ' —N))S —TrlnS ' —2PI graphs, (4.6)

where 2PI graphs is the sum of 2-particle-irreducible
graphs shown in Fig. 4(b). Here S is the full fermion
propagator S '=I/(1+3)+ X(k). The gauge field con-
tribution to the potential comes from the 2PI graphs. We
shall see that this contribution makes the symmetric vacu-
um unstable and leads to CSB.

Integral equations for A and X can be obtained by let-
ting

5I 0 51
5X 5A

They are equivalent to the equations for A and X derived
from (3.2). We restricted our attention to the leading I/N

a ~ X(p)
pdp

2m o p +X(p)

)&k dk ln
X(k)

k'+X'(k)
Ik —p I+

g

(4.&)

TABLE I. The fermion self-energy at zero momentum X(0)
as a function of the number of flavors ¹

where a subtraction has been performed to normalize Vo

to be zero at X(p)=0. The next-order term corresponds
to the emission and reabsorption of a photon from the fer-
mion loop [Fig. 4(b)]. After angular integration it takes
the form

0.3 x 'to 5

0.1 xlO ~
0 )O-4

FIG. 3. Numerical solution showing the momentum depen-
dence of the dynamically generated fermion mass for %=2.6
fermion flavors.

1

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

X(0)
a/8

2.3
2.9
3.6
4.3
5.1

6.1

7.2
8.6

10.7
13.8
19.5
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FIG. 4. The two leading contributions to the effective poten-
tial involving (a} a pure fermion loop and |b) a fermion loop
with a gauge-boson exchange.

[We have omitted an extra term in (4.8) which is part of
wave-function renormalization and is down in 1/N. ]
Note that V& also vanishes at X(p}=0.

If the potential V= Vo+ V, is extremized by setting its
functional derivative with respect to X(p) equal to zero,
the Dyson-Schwinger gap equation (3.3} is obtained. The
value of the potential at this extremum is

(c}

g2 g2—ln 1+
p2+ +2 p2

(4.9)

It can easily be seen that this expression is less than or
equal to zero by noting that x/(1+x) —ln(1 + x) is nega-
tive for all positive x. Therefore if a symmetry-breaking
solution can be found it will always be preferred to the

symmetric one.
Note that we did not have to make any large-p/a or

small-p/a approximation in the previous argument. It
can only be vitiated by large-E corrections. In the next
section we shall argue that this is not the case.

V. HIGHER-ORDER 1/X CORRECTIONS

The analysis described so far has concluded that chiral
symmetry is spontaneously broken in a 1/N treatment of
QED3. It was emphasized that this does not happen to
any finite order in 1/N. The homogeneous Dyson-
Schwinger equation (3.3) contains an explicit factor of
1/N on the right-hand side and, in effect, describes a
selective resummation of the 1/N expansion. The factor
of 1/N is compensated dynamically by the N dependence
of X(k).

We now look more carefully at higher-order corrections
to the right-hand side of the Dyson-Schwinger equation.
These will contain explicit factors of 1/N, 1/N', etc.,
and might naturally be expected to be small corrections.
What must be checked is that these terms are not dynami-
cally enhanced, in the way that the leading term is, to
bring them up to O(1) in the expansion. In this section, it
will be shown that this enhancement does not take place
for momenta p «a. A brief discussion of the region
p )o, will conclude the section.

The leading corrections are shown in Fig. S. The gauge
propagator represents the leading-order expression (2.16)
in the 1/N expansion. Each graph contains a cross
representing the insertion of a single mass factor X(k) in
the fermion propagator. In the limit k »X(k), the
Dyson-Schwinger equation can be linearized and there is
only this one insertion to be made. In general, however,
this is not the case. For external momenta p on the order

FIG. 5. The leading corrections to the right-hand side of the
Dyson-Sch winger equation. In this figure, the wavy line
represents the full propagator computed to leading order in the
1/X expansion.

of X(p), the nonlinear structure as shown in Eq. (3.3) must
be retained. In this limit of course, even Eq. (3.3) is not
completely reliable since the massless approximation for
Il(p} can no longer be used. To begin, therefore, we make
the linearized approximation and examine in turn each of
the corrections shown in Fig. 5. The role of the nonlinear
structure will be described after considering the linearized
problem.

We first recall how the factor of 1/N is canceled in the
leading-order equation (3.3) corresponding to Fig. 2. For
p «a, it is the near-constant behavior of X,(p) that
solves the linearized equation (3.7). For p&a, we have
obtained an analytic form (-1/p ) only for the asymptot-
ic regime p »a. The cancellation of the 1/N factor de-

pends on details of the solution X(k) for k in the neigh-
borhood of a where we have not obtained an analytical
solution.

The graphs of Fig. 5 represent higher-order corrections
to the gauge-boson propagator. For k &&0., the gauge
propagator corrections each give contributions to II(k) of
order (1/N)ln(a/k). In the limit p «a, the 1n(a/k} fac-
tor will play an important role in the dominant integra-
tion region from p to a. When convoluted with the lead-

ing expression for the insertion X&(k) in (3.9}, it will in
fact give a contribution of order X, canceling both the
overall factor of 1/N and the additional factor of 1/N ac-
companying the In(a/k). This is exactly what we did not
want to happen. Fortunately, the ln(a/k) factor can be
shown to cancel between the two graphs of Fig. 5(a). The
cancellation follows from the %'ard identity, and is in fact
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1 k
A(k) cc —ln —.

N a
(5.1)

It is not difficult to see that if this correction is inserted
into the right-hand side of Eq. (3.3) [more specifically, the
upper integral in Eq. (3.4)], it gives a contribution of order
unity. T'he essential integral is proportional to

the same cancellation described at the end of Sec. II.
Without it, the effective low-energy theory would not re-

tain its scale invariance in the presence of quantum
corrections since o: ~ould reenter in the logarithm.
Equivalently, the cancellation of the ln(a/k) terms is
essential to maintain the existence of the infrared stable
fixed point in the running coupling constant (2.19). After
cancellation, the higher-order 1/N correction simply
shifts the position of the fixed point but does not elim-
inate it. We conclude that for p «a, the graphs of Fig.
5(a) combine to give a contribution that is of order 1/N.

The graphs of Figs. 5(b) and 5(c) must be taken together
to produce a correction that is down in the 1/N expan-
sion. Figure 5(c) represents the wave-function renormali-
zation correction appearing in Eq. (3.2). For momentum

p «a, it is not difficult to estimate the effect of the
correction. The dominant range of integration is then

p & k «a, and in this range A (k) takes the form

(3.9) once p »X(p). It is clear from this that the factor
of 1/N in the Dyson-Schwinger equation (3.3) must be
compensated predominantly by the integration range
k »X, even if p &X. The contribution from the non-
linear regime itself will be of order 1/N compared to the
leading piece. One concludes, therefore, that the contribu-
tions of Fig. 5 are indeed higher order in the 1/N expan-
sion for all p «a.

We conclude with a brief discussion of the momentum
range p &a. As described in Sec. III, the 1/p momen-
tum dependence of X(p) has nothing to do with the 1/N
expansion. It emerges from a short-distance analysis of
the Dyson-Schwinger equation or, equivalently, from an
application of the operator-product expansion. The
higher-order contributions of Fig. 5 will not affect this
asymptotic behavior. The form of the solution X(p) for
p=a has not yet been determined analytically. The nu-
merical solutions, however, reinforce the qualitative ex-
pectation that the solution to Eq. (3.3), X(p), will evolve
smoothly from its slowly falling low-p form into a rapidly
damping solution at high p. %e expect that, once analytic
solutions are found for @=a, it should be possible to show
that the higher-order corrections of Fig. 5 are suppressed
in the transition region, just as they are for both sinall
p/a and large p/a.

1 &dk 1 k 1 1—ln— (X
p k N a ksy+w sy+x

' (5.2) VI. CONCLUSION

The same result can be seen by making the approxima-
tion that X(p) is constant up to u and cutting the integral
off at a. The corrected integral will then be proportional
to (1/N )ln (a/rn)=l.

To eliminate this problem, the Ward identity again
comes to the rescue. In the limit p ~~k ~~a, , the leading
k dependence of the vertex correction in Fig. 5(b) is
—A (k) [Eq. (5.1)]. Thus the logarithm cancels between
these two graphs and there remains nothing to overcome
the two factors of 1/N. The combination of the two
graphs will give a contribution to the right-hand side of
the Dyson-Schwinger equation that is of order 1/N.

The remaining correction in the linearized approxima-
tion is shown in Fig. 5(d). The X(k) insertion in this
graph sits on the fermion propagator that is common to
the two vertex subgraphs. There is therefore no vertex or
self-energy subgraph that could lead to a behavior of the
form of Eq. (5.1). It is not difficult to see that when X(k)
is convoluted with the two overlapping loop integrals,
only one of the two factors of 1/N is canceled. One con-
cludes, finally, that for p «a, each of the contributions
of Fig. 5 is down in the 1/N expansion relative to the
right-hand side of the Dyson-Schwinger equation pictured
in Fig. 2. It should not be difficult to extend this argu-
ment to higher-order terms in the 1/X expansion.

When p becoines as small as X(p), the nonhnear struc-
ture of the Dyson-Schwinger equation must be retained.
As already emphasized, Eq. (3.3) is not completely reliable
in this regime since the gauge-boson propagator then is
sensitive to X(p) and is not simply given by Eq. (2.18).
The expected behavior of X(p) in this regime, however, is
shown in Eq. (3.10). It has a finite value at p =0 and
then begins to evolve into the slowly falling form Xi(p) of

In this paper we have given a detailed analysis of
dynamical chiral-symmetry breaking in QEDi in the
large-N limit. Massless QEDi has been shown to be in-
frared finite order by order in the 1/N expansion. This is
due to an effective scale invariance at low momenta, aris-
ing from the existence of an infrared stable fixed point.
Therefore chiral-symmetry breaking with ensuing mass
generation is not essential for solving the infrared prob-
lems.

We have solved the Dyson-Schwinger equations of this
theory both analytically and numerically in the large-X
limit. To obtain analytical solutions we used the linear-
ized equations. Therefore the overall mass scale of the
solution was not fixed. For p «a/8 there were two solu-

tions, one slowly falling like p ~' ' and the other rap-
idly falling like ( I/p)p ~' '. We have given arguments
that the relevant solution for low p is the slowly falling
one. This justifies the constant X(p) ansatz used in earlier
work. For p&~a, the solution to the homogeneous
Dyson-Schwinger equation falls like 1/p, corresponding
to a dynamically generated mass and the spontaneous
breaking of chiral symmetry.

The infinite-a solution p " ' can only be relevant to
the finite-a theory if there is a large range between X(0)
and a. To establish this hierarchy, the full nonlinear,
finite-a equation was solved numerically for values of N
from one to three. The numerical evidence, presented in
Table I shows that X(0)/a is small even for N =1 and
that it falls at least as fast as e . The dependence of
X(0)/a on N should be studied further, both numerically
and analytically, for larger values of N. In particular, it is
important to extend the numerical study to values of N
well beyond 32/m. , where the power-law solution X&(p)
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takes over from the oscillatory solution.
Because X(p) begins to fall like I/p for p »a, it cor-

responds to dynamical mass generation and the spontane-
ous breakdown of chiral symmetry. Even though the ac-
tual size of X(0) is small compared to a, the momentum

scale at which the dynamical mass turns on and off is of
order a. The slowly falling solution that appears well

below a would not correspond to spontaneous chiral-
syminetry breaking if it were to persist to infinite p. Since
the chiral-symmetry breaking appears at @=a, there is no
approximate scale invariance to be spontaneously broken
along with chiral symmetry.

We have computed the Cornwall-Jackiw-Tomboulis
composite operator effective potential for (PP), and
shown that the symmetry-breaking solution is energetical-
ly favored to the symmetric one. Therefore we have es-
tablished that dynamical chiral-symmetry breaking in fact
occurs in QEDi, provided the large-S expansion is justi-
fied.

We have also given arguments to show that the I /N ex-
pansion is reliable. First we have shown that logarithmic
corrections to II(p), of higher order in I/X, which could
have vitiated the infrared fixed point structure of the
theory, do not arise. A careful analysis of the Dyson-
Schwinger equation showed that our use of the I/N ex-

pansion is consistent. The higher-order vertex correc-
tions, and the wave-function renormalization, do not con-
tribute to X(p), to leading order in 1/X. This analysis has
so far been carried out only for p «a. The extension to
the region p ~&o. was hampered by the fact that we do not
yet have analytic solutions for p of the order of a.

It would be nice if one could give a formal proof for the
symmetry breaking in QEDq (Ref. 8). It will also be in-

structive to investigate the Goldstone sector of QEDi,
perhaps deriving the effective nonlinear cr model. Finite-
temperature restoration of the broken symmetry could
also be studied. Finally, we offer the gratuitous remark
that the knowledge gained and the techniques developed
in studying this model field theory should be utilized in

the investigation of more realistic four-dimensional
models.
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