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In this paper we apply a new self-consistent truncation scheme to the infinite coupled hierarchy of
transport equations that describe a relativistic plasma. In particular we describe in detail the trun-

cated transport equations for a charged scalar plasma and a neutral scalar plasma in the pairing-

approximation limit. %e include a brief discussion of particle production within our language. The
quantum-mechanical dynamical equations for a positive-energy electron plasma are also cast in a
form suitable for approximation within our truncation scheme.

I. INTRODUCTION

The study of relativistic kinetic theories and generali-
zations that include the mechanism of particle production
continue to be topics of interest. In addition to the gen-
eral theoretical motivation in developing a self-consistent
truncation scheme for the relativistic kinetic theories there
is considerable experimental effort in studying particle
production phenomena from both two- and many-body
collisions. Of particular interest to us are heavy-ion col-
lisions in the energy range 1—200 GeV/A. These are
currently used or proposed as tools with which to study
both transport properties and particle production. At in-
termediate energies, i.e., 1 GeV/A, pion production from
heavy-ion collisions is usually calculated using thermal
equihbrium models ' applied at the final stage of the nu-
clear expansion phase. At fully relativistic energies, i.e.,
heavy-ion collisions at 10 GeV/A and beyond, there is
considerable speculation on the formation of a quark-
gluon plasma. Once again theoretical studies of the evo-
lution of this plasma are typically based on classical hy-
drodynamics together with thermal equilibrium assump-
tions. In addition to these assumptions the particle pro-
duction mechanisms that would signal the transition from
a quark-gluon plasma to the hadron phase remain un-
known. It does seem clear that any measured signature
would reflect collective transport of color degrees of free-
dom thus making transport theories based on QCD
relevant. To date, classical relativistic theories of the
quark-gluon plasma have been formulated but the ab-
sence of a consistent truncation scheme has meant it is
difficult to gauge the level of validity of earlier classical
or equilibrium models.

In this paper we develop an approxitnation scheme for
the quantum statistical mechanics of relativistic matter
that does not assume the concept of local thermodynamic
equilibrium or assutne the existence of a convergent itera-
tive series via Green s functions for the scattering ampli-
tude. Our approximation scheme exploits the language
associated with the covariant-transport-equation approach
to multiparticle production. %ithin this language the

quantum-field equations for the amplitudes are replaced
by so-called transport equations for the covariant phase-
space distribution functions f(R,P) where for our fully
relativistic problem R and P are the four-vectors for posi-
tion and momenta, respectively.

By rewriting the dynamical field equations as transport
equations we have developed a self-consistent approxima-
tion scheme which describes the evolution of relativistic
matter including particle production and which makes
full use of the classical insight provided by the phase-
space representation. That is, we have developed an ap-
proximation scheme that allows the introduction of quan-
tum corrections to any order of truncation and does not
require the concept of thermal equilibrium to achieve clo-
sure. The approximation scheme discussed in this paper
should enable theoretical questions regarding the validity
of earlier models to be addressed. We expect our ap-
proach to be useful in describing transport problems in-
volving large numbers of degrees of freedom, that is,
when classical limits associated with coherentlike states
are expected to be quite accurate. Although it is well
known that reactions between composite fermion systems
with many degrees of freedom exhibit a large degree of
classical behavior many quantum features will not be
negligible.

In a series of papers Carruthers and Zachariasen have
shown how the field-theoretic description of multiparticle
production processes can be recast in the form of relativis-
tic transport theory. In particular they show how the
phase-space distribution functions are directly related to
observable single, double, etc. , inclusive differential cross
sections. Most of the discussion in these papers has cen-
tered on the Klein-Gordon field equation for the neutral
pion with a generalized source function j(x). Although
these authors note that a phase-space representation
should allow a full use of classical intuition they prefer
not to exploit this aspect at all and develop an approxima-
tion scheme for the transport equations that goes beyond
an iterative or Born-series expansion for the scattering
amplitude. %e do not want to utilize the Born-series ap-
proach to simplify the transport equations.
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The work presented here developed from an earlier
study' of the nonrelativistic N-body problem. By rewrit-

ing the Schrodinger equation for the N-body amplitude as
a quantum Liouville equation for the density matrix the
usual transport equation for the Wigner function" can be
defined. Using the phase-space representation an identity
was introduced' in which the off-diagonal elements of
the density matrix were expanded in deviations from the
mean momentum value. On truncating this expansion it
was possible to derive a hierarchy of closed self-consistent
dynamical equations for the deviations which is exact to
the order of truncation. Hence using the phase-space
language directly enabled the quantum corrections for the
time evolution of the classical density and momenta to be
described. By working with the transport equation for the
Wigner function we found a closed approximation hierar-
chy which does not assume thermal equilibrium but rath-
er makes full use of the classical analogy provided by the
phase-space variabIes. The classical solution was restored
by looking at the lowest order in the expansion of the
quantum density matrix.

In this paper we extend these ideas to relativistic matter
considering both scalar and spinor fields. For the scalar
field we extend the problem studied by Carruthers and Za-
chariasen; that is, a transport equation for both neutral
and charged plasma based on the laein-Gordon equation
with an arbitrary source function j(x). In this way it is
possible to qualitatively compare our truncation scheme
with that suggested earlier by these authors. For the spi-
nor field we study the problem of a relativistic quantum
electron gas embedded in a strong magnetic field. ' This
problem has many similarities to the transport problem of
QCD which will be investigated in a later publication.
Hakim and Sivak have studied the electron gas problem
by expanding around the thermal equilibrium' limit. As
these authors point out, relativistic magnetized matter
occurs in astrophysical situations with white dwarfs, neu-

tron stars, and possibly the earlier Universe. The develop-

ment of a transport-equation truncation scheme for this
system which does not assume thermal equilibrium and
would further enable the equilibrium assumption to be
studied is of current interest.

This paper is organized as follows. In Sec. II the gen-
eral considerations of our truncation scheme are
developed and the common notations and definitions are
introduced. In Sec. III the scalar and spinor field ampli-
tude equations are written as transport equations in the
phase-space language. In Sec. IV the closed set of self-
consistent equations are derived in lowest order of quan-
tum correction for the neutral- and charged-scalar-particIe
transport problem. In addition we briefly describe the
role of our truncation scheme directly on particle produc-
tion. In Sec. V a discussion of our results is given includ-
ing reference to future applications of our ideas to the
very complicated non-Abelian QCD plasma transport
problem.

II. GENERAL CONSIDERATIONS

For reasons of clarity and notation we introduce our
truncation scheme by briefly reviewing' the N body o-ne-

dimensional problem in the nonrelativistic limit. %'e will
also restrict ourselves to the Hartree approximation and
assume our N particles to be distinguishable. In addition
to providing insight into our truncation scheme for the
fully relativistic problem, reviewing the nonrelativistic
Hartree approximation provides a useful analogy to the
form we will finally assume for the source functions in
the relativistic problem. Although in this paper we only
consider transport problems where phase-space distribu-
tion functions are defined in terms of a single set of
phase-space variables, extensions of our truncation scheme
to include distribution functions of the form
f(8 iP„RzPz), etc., have been derived and will be pub-
lished shortly. We define the n-particle Wigner function
as

N

ftv (Xip2 Xzpi ' X p» t) II (d pjd XJ')f~(xip Xzp» ' Xlvp t)(n) 3 . 3

j=n+1
(2.1)

where in the Hartree approximation

fthm (Xipi Xzp2 ' ' ' ».p. t)= II fN (X p ') .( pg) . (1) (2.2)

f~"(xjpjt)= d yje ' '
(2iriit)

1 l
Xp(XJ 2ppXJ+ Tyj)t) (2.4)

e~ii' pj e~" 2 . ~ a~ ~ a«~
+— +—sin

dt Pi BxJ A 2 Bxi Bpj
Ueff(xj )f%

(2.3)

where f~" is related to the one-body density matrix p by'0

In the nonrelativistic domain the transport equation in
the Hartree approximation for the one-body reduced
Wigner function fi "(~p xtj) iJs given by'

Equation (2.3) can be derived by inverting Eq. (2.4) and
substituting in the quantum Liouville equation for the
density matrix in the usual way. In Eq. (2.3) xi and pj
are the position and momentum coordinates, respectively,
for particle j, 8'"'/Bxj means this operator acts on func-
tloil U ff only, and U,tt(xj) is the effective one-body mean
field in the Hartree approximation for particle j. At this
point we drop label j because each one-particle density
matrix may be treated as an independent function in the
Hartree approximation.

We develop our approximation scheme for the trans-
port equation (2.3) by defining the moment function
(p "(x,t) ) in one dimension as'
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po(x, t)(p "(x,t) ) =
e)x;

Xp(Xk, X(,t)
& =xk =x

(2.5)

=f f(x p»)p"4» (2.6)

where po(x, t) is the diagonal density and where for in-
stance n =1 corresponds to the time-dependent momen-
tum distribution function (p(x, t) ). Using definition (2.6)
the transport equation (2.3) may be recast' exactly as an
infinite set of coupled equations for the moments
(p(x, t) ), i.e.,

—(po&p") ) = —— (po&p"+') )
dt m e)x

4po n

odd k=1

~ U.tt
X (2.7)

where n =0, 1,2. . ..
Equation (2.7) is an alternative representation of Eq.

(2.3). It is this set of infinite coupled equations that we
close using our truncation scheme. %e suggest that the
most physical truncation scheme is not to simply say

(p "(x,t)) =0 for all n & m, where m is the order of trun-
cation and n the running index of (2.7), but rather to use

((p —(p))")=0 for all n &m. The motivation for this
arose partly from the following identity we have intro-
duced for the density matrix

density matrix at some order in (x' —x)"((p —(p))")/Pi
it is possible' to derive a closed self-consistent set of
dynamical equations for the diagonal density and the de-
viations ((p —(p))") from the mean momentum value.
That is by putting ((p —(p ) )") =0 for all n & m where m
is the order of truncation in (2.8) and n is the running in-
dex in (2.7) we have shown it is possible to close the set of
infinite coupled equations (2.7) without assuming the ex-
istence of local thermal equilibrium. This is not possible
for a simple moment expansion in terms of (p "(x,t) ). On
writing the density matrix in the form (2.8) the dynamical
evolution equations describing the deviations may be real-
ized by recasting the Liouville equation in the forms (2.3)
and (2.7). In addition the coupled equations may be
closed self-consistently using the identity (2.8).

In the classical limit we require ((p —(p) )")=0 for all
n In .this limit the diagonal density in Eq. (2.8) may be
called the classical density. In this limit we also obtain
the result (p") = (p )"; a result often associated with the
classical limit of coherent states. This result is also not
realized if the simple moment expansion is truncated for
n & m. When our condition for a classical limit is applied
to the set (2.7) the closed classical equations of motion
may be realized.

Further insight into the nature of the classical limit

may be gained by substituting Eq. (2.8) into the one-

particle Wigner-function definition (2.4). In this way the
function fz '(xjpjt) is given by the series

f~"(x)p)() p(x;) (ex=p —(p) —(p, ))

(2.10)

p(x, x', t) =pa
I

, t exp (x' —x)(p)

where our notation means

(X' —X)(P —(P ) )

\

X exp x —x p —p (2.8)

Hence in the classical limit writing the diagonal density
matrix for a point particle as 5(xt —xj') and setting

((pj —(pj ) )")=0 for all n in the phase-space function
becomes

fry' (xjp/t) =6(x, —XJ')5(pj pj)—(2.11)

as required. The symmetry of the phase-space variables in

the definition of fq" also suggests the existence of the
series

fxt '(x, p, () p(p; ) exp —(x=, —(x, ) )

)BXJ.

—— -(X'—X)'&(P —&P ) )')+ X6(x —(x ) ) (2.12)

and

&(p —&p))")=po ' f f(x p)(p &p))"&p, —

Equation (2.8) represents an expansion of the density
matrix in powers of (x' —x )"((p —(p ) )") /i)'t " for
n =0, 1,2, 3. . . , and where p is the momentum coordi-
nate. Using this expression we have introduced a power-
series expansion for the off-diagonal matrix elements of
the density matrix which is directly related to the devia-
tions from the mean momentum value. By recasting the
transport equation in the form (2.7) and truncating the

The lowest quantum correction in (2.8) has terms up to
((p —(p ) ) )(x' —x ) /A' . The closed self-consistent
dynamical equations for po, (p), and ((p —(p)) ) to-
gether with a constraint equation are derived in Ref. 10
explicitly for the nonrelativistic X-body problem in the
Hartree approximation. For this order of truncation the
n =0, 1 equations from the set (2.7) remain unchanged.
The n =2 equation describes the evolution of the devia-
tion ((p —(p)) ) and the n =3 equation reduces to a
constraint equation relating this deviation to the effective
potential and diagonal density. ' The n =4 equation
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thus closing the set of coupled equations. For higher-
order truncation of (2.8) the pattern described here is re-

peated. The mechanics of this is shown in some detail in
Sec. IV.

At this point we mention that the dynamical equations
associated with expansion (2.8) always respect the conser-
vation of current conditions for the problem of interest.
For instance the self-consistent equations describing the
evolution of a charged-scalar plasma conserve charge
through the mell-known continuity equation. The proper-
ties of the unusual strictly neutral plasma are also natural-

ly reflected in a modified form of Eq. (2.8). For this plas-
ma Eq. (2.5) shows all moments corresponding to odd n

are identically zero. This is correctly reflected by the
complete absence of a dynamical equation for conserva-
tion of either charge or mass. These points are also
shown in more detail in Sec. IV.

For relativistic matter the truncation scheme is analo-
gous to that discussed above for the nonrelativistic prob-
lem. The field equations are replaced by a relativistic
Liouville equation which is recast as a transport equation
in the phase-space functions. A relativistic generalization
of Eqs. (2.5)—(2.9) leads to a closed form for the infinite
coupled set of relativistic moment equations. The four-
vector nature of the density matrix expansion consider-
ably corn plicates the truncation procedure. For the
positive-energy electron plasma it is not desirable to work
with a single Liouville equation for the density matrix be-

cause of the negative-energy component properties of the
Dirac spinors. For this problem the single Liouville equa-
tion is represented by conjugate transport equations. For
the spinor problem it will also prove useful to expand the
Wigner function on a basis of the independent representa-
tions of the Dirac y matrices.

In the same spirit as the Hartree approximation we will
restrict ourselves in this paper to the collisionless plasma.
Extending this approximation is fairly straightforward
and would permit a systematic study of quantum effects
on the collision integral.

From a general point of view we do not propose expli-
citly calculating the phase-space function for any order of
approximation as in the conventional moment method. '

Instead we have utilized the classical intuition provided
by the phase-space representation to approximate the time
evolution of the density matrix.

III. TRANSPORT EQUATION FOR SCALAR
AND SPINOR PARTICLES

A. Scalar particles

f(R,p)= 4 J d «e'~'
(2ir)

(CI+Ju )p(x)=j(x), (3.2)

where p is a mass term, j(x) is a source function to be
specified later, and CI is taken for the D'Alembertian.
The form of j( x) is related to the interaction Lagrangian.
For low-energy heavy-ion collisions and so-called sub-
threshold pion production the single source of pions has
been associated with bremsstrahlung. ' For this and more
general problems it would not be possible to express the
source j(x) in terms of a single-particle distribution func-
tion. However, in order to draw a close analogy to earlier
work on the nonrelativistic N-body Hartree problem and
to set a basis for future developments including correla-
tion functions we choose our interaction Lagrangian as
one in which the Hartree limit may be realized. More so-
phisticated interaction Lagrangians including the coupling
of baryons and mesons could be accommodated but would
complicate the overall development introduced in this pa-
per. Constructing a Liouville-type equation from (3.2) we
find

(&q —C3i)(P (xi)$(x2)) =((( (xi)j(xq)) —(j (xi)(I)(xi))

(3.3)

or

2 P R ——PR+—8 3 r
BR B«2 2

j R+—

X ( tt
~
4 (R —,

'
«)—d(R + —,«)

~

it ),
(3.1)

wheie
~
1() is the normalized incoming state, p is the field

operator for the produced charged particle and antiparti-
cle, p is the relative momentum four-vector, R,«are the
center-of-mass and relative position four-vectors, respec-
tively, and p-r is equivalent to p r&. For the relativistic
problem we assume fi=c=l. For the neutral spinless
plasma, Eq. (3.1) is simply modified to read
4(R ——,'«)P(R+ —,'«). The choice of

~ P) depends on the

problem of interest. For particle production
~
l() would

be the two incident particles that collide, i.e., two nucleons
or two heavy ions. The field equation is taken to be a
solution of

In the same spirit as Carruthers and Zachariasen we
consider the evolution of spinless particles during a two-
body collision. %e consider separately the charged and
neutral spinless particles. Extending the definition of
these authors of a covariant one-particle distribution func-
tion a relativistic generalization of (2.4) for charged spin-
less particles is given by

—j R ——6 R+—,(3.4)
2 ' 2

where R =(xi+x2)/2, «/2=(x2 —xi)/2.
Hence using (3.1), Eq. (3.4) can be converted into a

transport equation for the phase-space distribution func-
tion f (R,p) giving

2' f(R p)= I d «e'i'" j R ——P R+-
BR

'
2 2

R ——j R+—
2 2

(3.5)
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In order to study our truncation scheme for a simple but nontrivial example we choose the interaction Lagrangian to
be of the form

LI ———kp™p",
n

(3.6)

where n =2 but we retain generality for insight into the pairing approximation. By assuming this approximation may
be applied, a close analogy can be drawn between our final relativistic transport equation and the nonrelativistic X-body
problem in the Hartree limit. Like the Hartree limit the pairing approximation is based on the idea that correlations are
weak. Using Eq. (3.6) the transport equation becomes

2ip f(R,p)=k I d re'~' P" R ——(t" ' R ——P R+-
BR 2 2 2

T

r
R —— f(" 1) R+r "R+r

2 2 2
(3.7)

The pairing approximation assumes the expectation value of a product of fields can be expressed as a sum of the ex-
pectation values of all possible pairings, i.e.,

2 2 2 2 2 2

=I.—iI (y""-" ~ ——" y"-' ~ ——" —4""-" z+ —" s"-' ~+ —" y" ~ ——"
y ~+ —" ).2 2 2 2 2 2

(3.8)

If we define

r r
u R ——=it(n —1) P

'" ' R ——(()" ' R ——
2 2 2

(3.9)

r
u R+ —=A, (n —1) P

'" " R+ —(()" ' R+—
2 2 2

(3.10)

then the transport equation (3.7) for the charged spinless plasma can be reduced to final form

2ip f(R,p)= d re'~'" u R ———u R+ — P R ——P R+-r r y r r
M '

2 2 2 2
(3.11)

2 . iti 8"' 8'fI
sin 2M Bp

u(R)f(R,p), (3.12)

u R ——=k(n —1) $" R ——2, 2
(3.13)

u R+ — =A(n —1) P" ' R+—
2 2

(3.14)

for an interaction Lagrangian ( n =4)
1

LI ———Ap" .
n

{3.15)

The analogy between Eqs. (3.12) and (2.3) is now clear.
If the pairing approximation had not been used then the
transport equation would be defined in terms of the

where Eq. (3.1) has been used in going from (3.11) to
(3.12).

The transport equation for the neutral-scalar plasma is
of the same form as (3.12) but the function u is defined by

many-particle distribution function f(R~p~,'R p 2),2etc.
We shall not try to justify this well-known technique but
assume correlations are weak enough for the Hartree limit
to be realized. Within this context we have extended the
truncation scheme described in this paper to reduce the
more general X-body problem to one involving correla-
tions up to and including N-particle-reduced Wigner func-
tion. ' The scheme discussed here has been applied to
more general problems which include correlation func-
tions.

An earlier suggestion" for calculating {3.12) considered
U to be slowly varying and hence only the first term of the
operator expansion was kept. This simplified equation
was then recast as an integral equation which was ex-
pressed as a Born or iterative series in U. We suggest how-
ever that a more physical truncation scheme may be
developed by first rewriting {3.12) as an infinite set of
coupled equations for the relativistic moments and then
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developing the closed set of equations for the density and
deviations as for the nonrelativistic problem.

B. Dirac particles

We now consider the transport equations for the prob-
lem of a relativistic quantum electron plasma embedded
in a strong external magnetic field. In analogy to the non-
relativistic Hartree problem and the pairing approxima-
tion for scalar particles we replace the mutual interactions
between the electrons by a single field A (x). Because of
the spin degrees of freedom it will prove more convenient
to expand the 16-component Wigner function in the usual
basis of 16 independent combinations of y matrices. In
addition the constant external magnetic field allows the
introduction of a simplifying gauge condition. All of
these features will play a central role in future discussions
of relativistic QCD plasma dynamics.

In this section we utilize the derivation of Hakim and
Sivak for the multicomponent Wigner function. These
authors were interested in developing a Chapman-
Enskog —type series by expanding around a thermal
equilibrium form. We do not want to assume this condi-
tion as part of our approximation scheme but develop a
formalism in the same spirit as earlier sections of this pa-
per.

The 16-component covariant Wigner function is de-
fined as the normal-ordered product:

F, )s(R,p)=, J d re1

1.e.)

F(R,p) =
4 [f(R,p)I +f„(R,p)y" + , f„—„(R,p)cr"

+fs(R,p)r'+fs„(R p')r"rsI (3.22)

where

I 0
0 —I
0 —I
—I 0

(3.23)

( K y+2im )F=y MF,

F(y K ' 2im—)=M' yF,
where for arbitrary X(R,p)

g(A) g(X)
K„g(R,p) = '(3p Zips ——e Ap"' Y(R,p)

(3.24)

(3.25)

and the source term of interest here is given as

(3.26)

In this way the transport equations for each of the com-
ponents f„(R,p) can be formulated without explicit refer-
ence to the y matrices. Using the definition (3.16) the in-
homogeneous field equations of interest here can be recast
as transport equations in the form

x:pR+ —~R ——
2 2

(3.16)

M X(R,p)= d R'd p'e
(2n. )

X A (R —R')X(R,p') . (3.27)

where rr r=n&r", p and m. are the momentum four-
vectors, r and R are the position four-vectors, (a,P) are
spinor indices, and the bra-ket stands for statistical
averaging. The Dirac fields Pg satisfy the equations

(iy () —m)/=0, (3.17)

P(iy (3+m)= 0, (3.18)

where W=p" +eA&„( and A",„, is the electromagnetic
four-potential corresponding to an external magnetic field.
Using (4.1) the four-current is defined as

J"(R)=e Tr I d p y"F(R,p) (3.19)

and the canonical momentum-energy tensor is given by

T""=TrJ d p ir)'y"F(R,p), (3.20)

where Tr means trace over spinor indices. By defining
our Wigner function in terms of the canonical momenta ir
rather than the kinetic momentum p has the advantage
that Eqs. (3.19}and (3.20} are formally identical with the
nonquantum expressions. ' It is much more convenient to
expand the matrix F(R,p) on the basis of the 16 y" ma-
trices written as

y"= I,y",~"= iver" r"I y'=
4, e, pr"r r y, rsy"

where F""is the electromagnetic field tensor. This linear

gauge which is valid for a constant external field simpli-
fies the full operator expansions in the homogeneous part
of (3.24) or (3.25), as can be seen in Eq. (3.26).

Expanding F(R,p) on the basis of 16 y" matrices and
substituting in Eqs. (3.24) and (3.25) yields a set of
dynamical equations for the 16 components fA defined by

fA=T«rAF) . (3.29)

These dynamical equation have been tabulated else-
where. ' At this point we depart from Hakim and Sivak
and rewrite these dynamical equations for the components
of F in the following form:

Equations (3.24) and (3.25) are equivalent to the single
Liouville equation discussed earlier for both the relativis-
tic scalar field and the nonrelativistic Hartree problem.
The spinor nature of the field equations (3.17) and (3.18)
dictates the use of two transport equations for F is(R,p).
Hakim and Sivak choose the Lorentz gauge for the exter-
nal magnetic field, i.e.,

(3.28)

(A =1,2, . . . , 16), (3.21)

aDI ~I + eXt, l
Bp

(3.30)
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g(A) g{f)
D f"=—2e sin

2 M (}p
A„{R)f", (3.31)

Using this approximation the momentum-energy tensor
(3.20) becomes

g(A} g(f}
Dzf = —2e sin A„(R)f, (3.32)

g[&} g[f}
D'f~, —2e——sin A'(R)fq,

g(A) g(f)
+2e sin — A„{R)f,

2 M Bp
(3.33)

g{A) g(f)
D"fs~ ———2e sin

2 M (}p
A)'(R )f5„, (3.34)

(3.35)

g(A) g{f)
p f"=mf+e cos — A (R)f",P 2 (}R (3p

(3.36)

g(A) g(f)
p{f=mfp+e cos Aq(R)f, (3.37)

p»f p, +e~x)(Q fs +mf)(»

g(A) g(f)'"' 2M ap
A, (R)fq

l g(A} ~(f}
+e„q„~cos — A'(R)fs, (3.38)

2 M Bp

g(A) g(f)
p4fq„——e cos — A "(R)f»+mf 5,

2 M Bp
(3.39)

(3.40)

(p„—A„'"')f"=mf,

(p„—A„'"')f=mf„.

(3.41)

Equations (3.30)—(3.35) were introduced from the sum
and difference of the tabulated dynamical equations for
the components' f~. In this form several redundant
equations may be realized and have been omitted from
this list. The format of these equations is now close to
that studied extensively in previous sections and
represents the most useful form of the transport equations
for our truncation scheme. Equations (3.36)—(3.40) can
be approximated using the truncation scheme introduced
in Sec. II. Note that for many of the components the
transport equations are not coupled suggesting that each
component of F may be studied independently.

Equations (3.33)—{3.37) were also derived from the sum
and difference of the tabulated equations and can be
thought of as constraint conditions for the electron plas-
ma that relate the various spinor components of the ex-
pansion (3.22). In addition, if the field A (R) can be as-
sociated with the Lorentz gauge (3.28} for the external
magnetic field the first two constraint equations can be
written as

T" (R)=—I d p(p" eA—")(p eA—)f(R,p) (3.43}

A. Charged scalar particles

In this section we extend the ideas introduced for the
nonrelativistic X-body problem to approximate the scalar
transport equation (3.12). Scalar particle production will
be addressed at the end of this section. The spinor trans-
port equations (3.30}—(3 40) are now written in the same
form as (3.12) and can be approximated along the same
lines as the techniques introduced here for the scalar prob-
lem. The main difference arises from the requirement
that each dynamical equation for the component of
F p(R,P) be treated separately.

By analogy with Eq. (2.6) we write the relativistic mo-
ments as

p, &p" & = f d'p p "f(R,p) (4.1)

and in addition write the relativistic density matrix as
r

p(x, x') =pa exp[ —i(x' —x)&p &]
X+X

2

X &exp[ —i(x' —x)(p —&p & )]&, (4.2)

where x'=R+rl2 and x =R rl2 are four-vec—tors and

po now represents the charge-density distribution.
Equation (4.2) is vahd for the charged spinless plasma

when all moments &p "(x)& should contribute in principle.
However for the neutral plasma the field {}}is real and

hence Eq. (2.5) shows &p "(x)& =0 for all n odd. For the
neutral plasma only Eq. (4.2) reduces to

p(x, x')=pa &cos(x —x')p& .X+X
2

(4.3)
»

Unlike the density matrix expansion which is valid in
the nonrelativistic domain, truncating the relativistic ex-
pression (4.2) or (4.3) at some order n in
(x' —x )"

& (p —&p &
)"&/fi" suggests the deviations from the

mean four-momenta must now satisfy the identity

&(po- &po &) '(p —&p &) '(p —&p &) '(p —&p &) '&

=0, (4.4)

where ko+ki+k2+k3 & n. In other words for some or-
der n in the truncation scheme all combinations of
ko, k&, k2, k3 satisfying this inequality need to be taken
into account. In Eqs. (4.2) and (4.4) we have introduced
the notation (po, p) for the momentum four-vector.

%e now want to develop our truncation hierarchy for
the transport equation (3.12) using the relations (4.1} and
(4.4}. In this paper we consider only expanding (4.2) to

which is similar to the classical relativistic expression. In
practice if A„(R) can be approximated as a Taylor-series
expansion in 8" then these constraint equations may save
much computational labor. This could be important for
the QCD plasma description when many more corn-
ponents for F would be introduced.

IV. TRUNCATION SCHEME FOR SCALAR
TRANSPORT EQUATIONS
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lowest order in the quantum corrections. That is we trun-
cate Eq. (4.2} at order n =2 in (x' —x)"((p—(p))")/iri".
This order of truncation will enable us to show in some
detail the mechanics of our approximation scheme. Gen-
eralization to higher n is straightforward and the dynami-
cal equations corresponding to truncation up to and in-
cluding X =7 have been worked out and will be published
elsewhere. '

Using Eq. (3.14) for the definition of pp,
(p), (p ), (p ) the four relevant coupled moment equa-
tions for the n =2 truncation are easily derived. For ease
of writing we work in 1+ 1 dimensions and remove the
subscript from the diagonal density matrix. Choosing p3
as the relevant spatial dimension the equations we wish to
close to order n =2 are given explicitly as [compare with
(2.7)]

(p(pp ) )+ (p(p3 ) )=0,
axo ax 3

a 2 a
(P(Po ) )+ (P(PoP3) ) = ——P

1 au

BXO X3 2 axp

a
(p&p.p, & }+ (p&p, &}=——,p,

a 2 1 au

aXo X3 2 aX3

(P&Pp &)+ (P&PO P3 &) = ——
P 2

a (Pp)
a 3 a 2 1 au

aXp X3 XQ

(P&po'P3&)+
a

(P&PQP3'&)
aXo ax 3

(4.5)

(4.6)

(4.6a)

(4 7)

1 au= ——p &p3 &+ &po &, (4.7a)
CIV

XQ X3

a
(p(ppp3 ))+ (p(p3 ))= ——

p 2 (p3)
a 3 1 au

aXp X3 2 X3

(4.7b)

(p&po &)+ (p(po p &)
Xp ax 3

= ——p 3 (po ) —3, , (4.8)
1 BU 2 I BU
2 BXO &2 BXO'

(P&po'P3 &)+
a

(P&Po'P3'&)
aXO X3

1 au= ——P 2a &PQP3&+ a &Po & —,2 axp X3 axp ax3

(4.8a)

(P&PO'P3') )+ (P&POP3'&)
Xp ax 3

1 au 2 au 3 a v= —
2p a &P3 &+2a &pop3& —,2aXp ax3 axoax3

(4.8b)

P&PoP3 &)+ (P&P3
X3 X3

= ——p 3 (p3 ) — . (4.8c)
au, 3 a'u

2 aX3 ax3

Equation (4.5) is the continuity equation showing expli-
citly charge conservation. Now let us introduce the con-
straints ((p —(p ) ) ) = ((p —(p ) ) ) =0 which are con-
sistent with truncating (4.2) at n =2. These constraints
together with Eq. (4.4) lead to a set of relations between
the moments which are tabulated in Appendix A. For the
order of truncation considered here Eqs. (4.5} for the
charge conservation and (4.6) and (4.6a) remain un-

changed. The results from Appendix A are used to elim-
inate extraneous variables from Eqs. (4.7)—(4.8c). For in-
stance substituting (Al) and (A2) into Eq. (4.6) leads to
the equation

[p(po & &(po —(pp) )')]+— (p(po & &po'&)+(p&po) )
Xo 2 axp aXO

[p(p3&&(pp —&pp))(p3 —&p3&)&]—— (p&pp)(p3 ))——,(p&pp)), (49a)
1 a BU

X3 2 aX3 ax 3

[p&p &&(po —&po&)(p —&p &))]+— (p&p &&p
1 a 2

BXO 2 aX3

[P(P3&&(P3—&P3)) &]—— (P&P3)(P3 )) (P(P3))
1 2 BU

BX3 2 BX3 BX3

8 U

[p((p. ) )'&(p. —&p. ) }'&]+, [p(&p. &}']+-,' p(p. '&, ——,p
BXO BXO axp 8 axo3

(4.9b)

6

+3 [P(&po&)'&(Po —&Po&)(P3 —&P3&)&]+3 [P&poP3&&(po —&Po&)'&1+ [P&P3&(&po&)']=o
BX3 BX3 BX3

(4.10)

[P&Po&&(po —&Po&)(P3 —&P3 &) &] — (&p3&(po &) (49)
ax 3 2 ax3

In a likewise manner substituting the results of Appendix A into Eqs. (4.7)—(4.8c) leads to the following set of reduced
equations tabulated in the same order as the set above:

[P&PQ)&(po —&Po&}(P3—(P3&}&]+
2 a

(P&P3&&po'&}+-'(P&P3&}a
aXO 2 axp aXO
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[p(&po))'&(po —&po))(p —&p &)&]+3 [p&p p &&(po —&po&)'&]+ [p&p &(&po))']
Bxo Bxo axo

+P&pop3& +4 [P&pop3&&(po —&po&)(p3 —&p3&)&]+ [P(&po&) &(p3 —&p3&} &]
BU 2 2

BX3 Bx3 BX3

83
+ , [p(&p, &)'&(p. —&p. ))'&]+ , [p(&p. ))'(&p, &)']+ —,

'
p&p. '), ——,p

BX3 BX3 BXp BX3
(4.10a)

4 [P&pop3 &&(po —&po&)(p3 —&p3 &) &I+ [P(&po &)'&(p3 —&p3 &)'&]+ [P(&p3 &)'&(po —&po &)'&1
Clx o Bxo Bxo

3u
+ [p(&p &)'(&p &)']+ —,'p&p '), +3 [p(&p &)'&(po —&po))(p —&p &)&]

BXp Bxo

8 u+3
&

[P&pop3 & &(p3 —&p3 &)'&1+
z [P&po &(&p3) ) l+P&pop3 &

g P 0 (4 10b)
BX3 BX3 ~X3 8 BXPCIX3

[P(&p3 &)'&(po —&po &)(p3 —&p3 &) &]+3 [P&pop3 & &(p3 —&p3 &)'&1+ [P(&po & &p3 &)']
axo Bxo Bxo

8 U+6 [P(&P3i ) &(P3 &P3)) )]+
g

(P&P3)) + P&P3 &

&
—

8PX3 Bx3 BX3 8 ()X3
(4.10c)

Equations (4.5)—(4.6a) and (4.9)—(4.10c) represent the
closed set of transport equations for the charged-scalar
plasma up to the lowest order of quantum correction.
The next set of equations analogous to n =4 in Eq. (2.7)
gives identically 0=0. The closed set of equations given
here are complicated but suggest the important result that
expansion (4.2) and the corresponding cutting condition
(4.4) are the correct relativistic generalization of the tech-
nique introduced for the nonrelativistic N-body problem.
The truncation scheme developed here allows for a none-
quilibrium approximation for the statistical mechanics of
relativistic matter. Comparing the set of equations above
with the nonrelativistic equations of Ref. 10 reveals the
role played by the time variables xp. Although this vari-
able results in more terms in the dynamical equations
there is still a similarity in form with the nonrelativistic
dynamical equations for the Hartree problem. Equations
(4.5)—(4.6a) and (4.9)—(4.9b) represent dynamical equa-
tions for the variables P, &Po) &P3), &Po ),&PoP3),
&p3 ). The function u defined by Eq. (3.9) for the
charged scalar plasma is in general related to p. In analo-

gy to the nonrelativistic problem Eqs. (4.10)—(4.10c) are
constraint equations that relate the function u with the
moments for this order of truncation. These equations are
not to be utilized directly in solving Eqs. (4.5)—(4.9b), but
rather represent relations which can be used to test the nu-
merical accuracy of various calculated moments at this
order of truncation. If these relations are badly violated it
may be necessary to go to higher order in the truncation
scheme and use the constraint equations valid at this
higher order to test overall accuracy.

In Appendix B the transport equations for this plasma
in the classical limit are given where this limit corre-
sponds to &(p —&p))")=0 for all n In addition the. cut-
ting and isolation of the moment equations is shown ex-
plicitly for this limit.

B. Neutral-scalar particles

For the strictly neutral plasma all odd moments are
zero and Eq. (4.3) defines the density-matrix expansion.

I

On putting all odd moments equal to zero in Eqs.
(4.5)—(4.8c) we find the transport equations valid to the
same order as the charged plasma to be given by

a3u
& p, '), (p&p. '&)=-, (4.11)

xo 8 BxoBx3

83
&Po'&

~
P&P3'& =—

BX3 Bxo x3

83 8 u3&po'), = &p3'& (4.12)
BxoBx3 Bxo

3 8 U3&p3'&, = &po')
Xo X3 Bx3

(4.11a)

(4.12a)

Because &po ) = &p3 ) =0 there is no continuity equation
for this plasma. Once again Eqs. (4.12) and (4.12a)
represent constraint conditions between U and the mo-
ments of interest. The simplifying moment condition sug-
gests the resulting transport equations can be solved nu-

merically.
The formula for particle production in a neutral-scalar

plasma has been worked out by Carruthers and Za-
chariasen. The inclusive differential cross section is gen-
erally given by

2oi =
3 (p —p ) f d Rf(R,p)

d3p (2n ) p —m

(4.13)

V. DISCUSSION

In this paper we have introduced a nonequilibriurn
truncation scheme for relativistic matter and applied our

where o3 is a normalization factor. The relativistic gen-
eralization of Eq. (2.10) or (2.12) shows the particle pro-
duction mechanism is direct1y dependent on the zeroth
moment only, i.e., the diagonal density. Of course this
moment is coupled to higher moments through the closed
set of transport equations.
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truncation scheme to both scalar and spinor plasmas. For
the charged-scalar and neutral-plasma problem the closed
set of dynamical equations valid to lowest quantum order
were explicitly derived. For the spinor problem it was
shown that decomposing the Wigner function into 16
components led to a set of dynamical equations for these
components similar in form to those encountered in the
scalar or nonrelativistic formalism. In principle these
equations could be cut using an equation like (4.2); howev-
er, the definition of the current (3.14) together with the
close connection between the first moment (p(x) & and the
current [i.e., Eq. (2.5)] suggests a slight reinterpretation of
expansion (4.2) will be necessary for spinor particles, i.e.,
each spinor component has its own density-matrix expan-
sion.

The ability to cut the infinite set of moment equations
using (2.8) and form a closed self-consistent set of dynam-
ical relations for the diagonal density and momentum
fluctuations strongly suggests that Eq. (2.8) reflects the
underlying physical content of the infinite set of coupled
moment equations. In particular it is possible to gain fur-
ther understanding of Eq. (2.8) by noting from Eq. (2.5)
that p(x)(p(x)& =j(x) where j(x) is the current. Thus
Eq. (2.5} can be thought of as an expansion around the
current density that respects the overall current continuity
equation for the problem of interest. This was shown in
detail for the neutral-scalar plasma where no continuity
equation should exist and this was found to be the case for
our truncation scheme. The problems tackled here cen-
tered on the Hartree limit or collisionless plasma and thus
were limited to the one-body Wigner function. We are
currently investigating the neutral-scalar plasma including
many-body dynamics as explicit two-point Wigner func-
tions ""

Other applications of our truncation scheme under in-

vestigation include the transport equations for quarks
with color degrees of freedom. For this problem the na-

ture of the gauge condition leads to an additional equation
for the generators of the color field that is coupled to the
quark transport equations. Thus for positive-energy
quarks there will be three dynamical equations to cut. In
addition there is strong evidence' that the plasma is un-

stable with respect to small fluctuations of the glue field.
This suggests that the classical or quantum mean-field
limit may not be a good approximation. Hence inclusion
of higher-order terms in the so-called Bogoliubov-Born-
Green-Kirkwood-Yvon hierarchy may also be necessary
in describing the evolution of the QCD plasma.
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APPENDIX A

In this appendix we list the required relations between
moments for the truncation order of interest in Sec. III.
The subscripts i or j stand for either timelike subscript 0
or spacelike subscript 3:

&(p; —&p; &)'& =o,
(p & =3(p; &(p &

—2(&p; &)',

((p; —&p; &)'(pJ —(p, &) & =0,
&p p, &=2&p~p;pJ&+&pJ&&p &

-2&p, &(&p, &)',

&(p; —&p; &)'& =0,
(p &=6(&p;&)'&p &

—5(&p;&)',

&(p, -&p, &)'(p, -(p, &) &=o,

&p pJ&=3(&p;&)'&pp, &+3(p &&p~pJ&

-5(&p, & }'&p, &,

&(p; —&p; & )'(pJ —(pJ &)'& =0,
(p p, '& =4(p;p,p p, &+(&p; &)'&p, '&

—5(&P;&)'(&PJ &)'+&P &((PJ &}'.

(A 1)

(A2)

(A3)

(A4)

(A5)

APPENDIX 8

The classical limits for the transport equations may be
realized by substituting the identities between the mo-
ments that result from the relations ((p; —(p; &

)2
& =0 and

((p; —(pJ & )(pJ —(pJ & ) & =0. For this limit Eq. (4.5)
remains unchanged but Eq. (4.6) becomes

3
[P(&Po&) ]+ 2P g

+ (P&POP3 &)=o2 1 BU 8
Xo 2 Bxo xo

or

&&po&
[((po &) +U] — 2(p3 &

Bxo BX3
(B1)

where Eq. (4.5) has been used. Using symmetry argu-
ments Eq. (4.6a} reduces to a similar form, i.e., subscript 0
and 3 are interchanged.

In this classical limit Eqs. (4.7), (4.7a), and (4.7b} yield
0=0 identically and thus cut the infinite coupled set.
This is realized by the additional conditions

((p; —(p; &)"& =0, where the consequence of this is given
in Appendix A. Substituting the relations between mo-
ments in Eq. (4.7) gives
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[P(&Po &)']+(P&Po &) + [P&P3 &((Po &)']=o .
Xo Bxo l3x 3

This may be easily reduced to 0=0 using Eq. (Bl). The
symmetry between Eq. (4.7) and (4.7a)/(4. 7b) obviously
leads to the same result for these equations.
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