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%'e discuss the calculation of statistical averages of variables lying on Sl or S2 using (complex)

Langevin equations. Assuming that the drift term is proportional to the gradient of a possibly corn-

plex function $((x;(), x;ES~ or S2 we give the general form of such Langevin equations. These

variables cause unphysical singularities and computational problems; thus we transform them to
those of the embedding Euclidean space. %e show in several examples that these modified (com-

plex) Langevin equations have good convergence properties using an improved two-stage Runge-

Kutta algorithm.

I. INTRODUCTION A. Elementary examples on Sl and Sz

A variety of problems of physical interest can be for-
mulated as multidimensional integrals involving variables
that individually lie on the unit circle (S& ), or when taken
in pairs, lie instead on the unit sphere (S2). On the one
hand, such problems include the partition function for
classical rotors or Heisenberg models, or, on the other
hand, they include the partition function for suitably for-
tnulated quantum spin systems that have applications to
both statistical physics and quantum-field theory. When
the integrand involves a non-negative weight function, as
in classical partition-function calculation, then a standard
importance-sampling Monte Carlo estimation is entirely
appropriate. However, when the weight function is com-
plex, as frequently occurs for a quantum partition func-
tion, the standard Monte Carlo approach is inapplicable.
Instead an alternative approach based on the long-time
average of appropriate functions of the solution of a
Langevin equation with a complex drift becomes a candi-
date to estimate such integrals. ' The Langevin method
is, of course, not limited to complex weight functions and
thus it is appropriate to consider its general use in the sta-
tistical estimation of many-dimensional integrals.

Although the Langevin equations are originally formu-
lated in variables on the manifold St or Sz there are two
reasons to recast them into another form. One reason has
to do with the presence of trigonometric functions and the
non-negligible computation time they involve. The
second reason has to do with unphysical singularities in
the Langevin equations and the computational problems
they lead to. In this paper we shall develop and apply al-
ternative Langevin equations that avoid both problems.
For simplicity we confine attention here in Sec. I to a sin-
gle integral on Sl or S2 reserving to Sec. II an extension
to the particular many-dimensional form of interest to our
examples, several of which are, in turn, discussed in Sec.
III.

For a circle variable a, 0&a &2m, the integral average
given by

2%' 2~a= a(a)e ' 'du e ' 'da,
0 0

based on some periodic (action) function S(a), may be es-

timated by the quantity

aT —=— a az v, T&~1,1

0
(1.2)

where a(r) is a solution of the stochastic differential
(Langevin) equation (SDE)

da(r)= —— dr+dw(r), Og~,1 S
2 Ba(r)

subject to a fairly general initial distribution at v=0
Such equations are shorthands for their integrals, viz. ,

1 & 5a(r) —a(0)= —— dr+w(r) .
2 o Ba(r)

(1.4)

( w(r~)w(rz)) =min(rt, r2) .

In addition we have used the shorthand

(1.5)

BS BS
t)a(r) t)a (,)

and shall continue to do likewise.
Remark: The foregoing scenario holds true for suitable

complex actions S, which initially must satisfy

0~ f e ' 'da & f ~e
' '~da&oo.

0 0

Here w(~) denotes a standard Wiener process, a normally
distributed stochastic variable characterized by the fact
that w (0)=0, ( w(r) ) =0, and
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Finally, we observe that if sufficiently many long-time
averages actually converge, e.g., if for all real s

T
lim — e" '"d~=C s

T oo T 0

then the action S is a suitable one and
2~ 2%'

e isae —s ( a)d & e GA
0 0

{1.8)

(1.9)

J
aT q

= g f a{aj(T))dT, TJ ))1
TJ .J=1

(1.10)

as desired. For unsuitable actions, long-tine averages
generally fail to converge, which is an effective way to
judge the suitability of an action S, albeit a posteriori
Thus the present working rule is to compute and let the
quality of the convergence judge the suitability of the
method. Examples that converge slowly can frequently be
speeded up by sample averaging as well, namely, in place
of (1.2) to use

dw(1)—:[N(1+dT) —N(1)] =d1 (1.16)

holds with probability one. Other differential products of
interest are

B. Ito calculus

To properly carry out the transformation of variables
we have in mind we shall rely on the so-called Ito cal-
culus. This will ensure that we obtain an Ito-type SDE
for which suitable Runge-Kutta integration routines for
multiplicative noise have been found. ' Thus a few words
on the Ito calculus are in order. If w(T) is a standard
Wiener process it is straightforward to show that

[ N (T+AT) w(—T)] exp f s (t)w (t)dt

=5~ exp s tm tdt +0 5 1.15

for bT) 0 and s(t) a general smooth function. For infini-
tesimal b,T it follows, therefore, that

where Iaj ] denotes J solutions for generally independent
initial values and noise samples.

As a second basic example consider the integral average

a= a(8,$)e ' ~'sin8d8dg
S2

dw(T)dT=O,

and, for two independent Wiener processes,

dw](1)dwi(T)=0 .

(1.17a)

(1.17b)

aT—=— a ev,I
(1.12)

where 8(T) and p(T) satisfy the coupled stochastic dif-
ferential equations

d8(T) = —— IS—ln[sin8(1)] IdT+dw, (T),1

2 a8(T)

(1.13a)

sin8(T)dp(T)= —— . dT+dwi(T) .
1 8 IS —ln[sin8(T)] )

2 s1118 T 8 T

(1.13b)

In obtaining these equations we have used the fact that
the effective action is S—ln(sin8), and also that the
metric on the sphere has the form d8 +sin 8dg . As d8
and sin8dg are orthogonal vectors it follows that wi and
m2 should be taken as two independent standard %iener
processes. Equation (1.13) may then be rewritten as

x e-"'&'sin8d8dy
S2

in terms of the usual angular variables 8 and P on Si. In
this case the average may be estimated by

=f'(w (T) )dw(T)+ —,
' f"(w (T))d T, (1.18)

where the first term is defined as a stochastic integral by
the limit

J, = f f'(w(T))dw(T): lim g f—'(wk)(wk+i —wk),
e~O

(1.19)

Wl'tli Wk =N (ke), E)0. '

Remark: It is worth noting that a common alternative
definition of stochastic integral exists: the Stratonovich
rule, defined by the limit

JS= f f'(N(T))odw(T):—lim g —,[f'(wk+ i)+f'(wk )](wk+ ~ wk ) . (1.20—)
p~o

That these limits are generally unequal is just a reflection
of (1.16) since

Js —Jt = 1'm X 1 [f'(wk+i) —f'(Nk)1(wk+i —Nk)

The differential of a function of a Wiener process needs to
be taken to second order, viz. ,

df(w(T)) =f'(w(1})dw(T)+ —,
' f"{w(T))dw(T)'

d8(T) = cot8(T)dT — —dT+dw ~—(T), (1.14a)
1 1 BS
2 2 88(T)

dg(T) = — 1T+ . dwi(T},1 BS 1

2[sin8(T)]2 8 T sin8 1

(1.14b)

X Y~f (wk)(wt+i —Wk}
e~O

= —, f f"(N(T))dT .

This relation implies the simpler-looking relation

df(w(T) )=f'(w(T))oaw(T),

(1.21)

(1.22)

which is essentially the form previously given. ' These
equations exhibit both the trigonometric functions and the
coordinate singularities mentioned earlier.

but such equations are harder to deal with in higher-order
Runge-Kutta numerical integration schemes (see Refs. 5
and 6).
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C. Euclidean space reformulation

The transformation of variables we have in mind is to
those of the embedding Euclidean space. For Si we intro-
duce

as as , asdz= —zdr ———xz —yz +(1—z ) dg+dv3,
c}y Bz

(1.31c)

x=cosa, y=sina

subject to the constraint x +y = l. It follows that

dx = —sina da ——,
' cosa(da)

dy =cosa da ——,
' sina(da)

or, in other words,

(1.23)

(1.24a)

(1.24b)

where

XZ ydUj)~dw)dw2(1—z) (1—z)
yz X

dUp —
2 ) dN)+ dw2

(1—z ) (1—z )

dug ——(1—Z )' dNi

(1.32a)

(1.32b)

(1.32c)

as asdx= —2XdS— y y —X dX —ydN
2 ax ay

(1.25a)

1 as asdy= —hydr+ —x y —x dvr+x diu .
2 ax ay

(1.25b)

Note that coordinate transformations typically result in

multiplicative noise equations, the rules for which (here
Ito rules) need to be specified. If the constraint is satisfied
at ~=0 then it is preserved by the equations for all ~ since

—,d(x +y )=x dx+y dy+ —,'(dxi+dyz)

=x dx+y dy+ , (xz+y—z)dr, (1.26)

and, according to (1.25), the right side vanishes. This
change of variables clearly eliminates all coordinate-based
trigonometric functions since

e+-'" =(x+iy)" (1.27)

x =sin8 cosP, y =sin8 sing, z =cos8 (1.28)

for all n &0. It does not eliminate those in the example
S =sin[sin(a)] =siny, however.

The analysis of the variable change for Sz is qualita-
tively similar only algebraically more complicated. We
first introduce

With the notation (xi,x2,x&)=(x,y,z), and assuming the
constraint g x; (v ) = 1, it follows that

du)z(r) = [1 x, '(—r)]d~ .

Thus it readily follows that

pd gxj = Qxjdx)+ p gdxj

(1.33)

= g XJdx~ + 2 g duj.

= gxjdx~+ —,
' g (1 x i)dr—

du; ( r)dUJ ( 7 ) = —x; (7 )xJ (v)d 7 (1.35)

while (duj(r)) =0 and dvj(r)dvk(r')=0 if w&w'. All rep-
resentations of duj with the indicated properties are sto-
chastically equivalent to each other, i.e., just a reshuffiing
of the ensemble of random functions. One alternative
choice is provided by

= gxjdx~+dT, (1.34)

which vanishes according to (1.31) and (1.32).
Equations (1.31) have eliminated any dependence of

trigonometric coordinates, but the noises seem to contain
points of difficulty when z=+1. It is not hard to elim-
inate these potential problems as well. It follows, for i &j,
that

,
' sin8cosg(d8 +—dP ) cos8sing d8dg— (1.29)

subject to the constraint x +y +z =1. It follows that

dx= cos8cosgd8 —sin8singdg
dU ) =y dw3 —Z dW2

dU2 ——z dw& —x dw3,

dU3 =X dN2 —y dN i

(1.36a)

(1.36b)

(1.36c)

dO =dw)

dP =(sin8) dN2 ——(sin8) dr, d8dP=O.

When these relations are combined it follows that

(1.30)

l 2 BS BS BSdx = —x d~ —(1—x ) —x—y —xz dv+dui,
2 Bx By Bz

plus similar equations for dy and dz. The Ito rules tell us
that expressed in terms of three independent, standard Wiener

processes, which is easily seen to satisfy the proper condi-
tions and furthermore is singularity-free.

Thus we are led to the final form for the S2 reformula-
tion given by

1 i as as asdx= —xd7 ——(1—x ) —xy —xz d~
2 Bx By Bz

(1.31a)
+y dw3 —z dw2 (1.37a)

1 as i as asdy= —y dr ——xy +(1——y ) —yz dr+du&,
2 Bx By Bz

as, as as
dy = —y d~ ——xy +(1—y) ——yz dv

2 Bx By Bz

(1.31b) +Z dN) —X dN3 (1.37b)
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as as , as
dz = —z dr ———xz —yz +(1—z ) dr

2 Bx By Bz

%e will use the temporal gauge. In the temporal gauge
the action has a very simple form in the Euchdean repre-
sentation.

+X GNp —f Qt8] (1.37c) M, .V
S = —P g (x„+'x„+y„+'y„), (2.6)

As noted these equations preserve the constraint
x +y +z =1, and are free of singularities and have no
trigonometric coordinates. They do involve multiplicative
noise terms, which are necessary to stay on the manifold
S2.

The Euclidean form of the Langevin equations will be
extended in Sec. II to many coupled variables appropriate
to integral representations of classical and quantum parti-
tion functions. Numerical solutions of such equations
will be discussed in Sec. III.

II. LANGEVIN EQUATIONS FOR
MANY-DIMENSIONAL Si AND S2 VARIABLES

As a first example we study the example of many cou-
pled S& variables given by

(
M+1 M+1) (

1 1) (2.7)

with U „=x„+iy„.One has to be aware that using
the temporal gauge implies making a slight error due to
the boundary condition [Eq. (2.7)]; i.e., closed paths with

Uz ——1 are existing for all configurations. Because of the
analytical solubility of this model we are able to test the
convergence properties of such a system and to have an
idea about the effects of the finite size superposed by the
effects of the temporal gauge. The numerical results we
discuss in Sec. III.

For variables on Sz statistical averages for a classical
Heisenberg problem may be generally written in the form

~ ~ ~

-$~~i ~ ~ ~M)
a(Qi, . . . , cx~)8 dc9i ' ' ' dlx~

f —$(ai, . . . , u~ )
e

''' '
dai du~

(2.1)

g g g

X gsin8 d8 dP /Z, (2.8a)

The generalization of (1.3) and (1.25) is straightforward,
and we content ourselves with a statement of the latter.
The relevant Langevin equations read

1 BS BS
+m 2Xm 3m 3m ~ +m

2 ~&m 03'm
—ymgm ~

(2.2a)

The Euclidean-form Langevin equations are direct exten-
sions of (1.37), and are given by

, as aSx = —x ——(1—x ') —xy
xm Byrn

as as
ym= 2ym+ 2xm ym ~ xm ~ +xmgm ~

OXm O3'm

{2.2b)

AS
xmz

m
+y g —z (2.9a)

where 1(m (M, and [g~ t denotes M independent stan-
dard Gaussian white-noise sources for which

as , as
y' = —y —— —y x +(1—y )

Bxm By

(g. (r)) =0,
(g.(.g. (.))=s..s(.—.) .

(2.3a)

(2.3b)
BS

ymzm +zmkm xm0m
zm

(2.9b)

These Langevin equations are to be interpreted according
to the rules laid out in Sec. I. The solution is subject to
the initial condition that x~ +y~ =1 for all m, and the
statistical estimate for a is given by

1
z —zm m Zm+m

~&m

BS—Zm3'm
~3'm

1
ar =— a(x, (r) y, (r), . . . , x~(r) yM{r))dr, T ~~1

T

(2.4)

+(1—z ) +x g —y
BS

m

(2.9c)

in terms of the suitably transformed function a.
These equations apply also to the Euclidean time for-

mulation of a U(1) lattice gauge theory. For this example
we choose the d =2 %ilson action:

(2.5)

for 1 & m (M, subject to the initial condition
x +y +z =1 for all m

These equations also apply to statistical averages for
quantum-spin systems. To see this let us first derive an
integral representation for the partition function
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where the Hamiltonian H =H(IS„I ) is a function of N
independent sets of spin operators which obey the usual
commutation relations

Now with M a positive integer and @=P/M, then

e-'"= f e-'"'('~)'l Ig, yI && lg, (ltl di +O(~') .

ISn. »S, n, 2] =+nn Sn3, (2.1 I) (2.19)

plus cyclic permutations. We assume g,. S„; =s(s + l)1
independent of n (although that is not necessary). In the
spin- —, case Sn; is given by

It follows that

Z Tr(e eH—. . . eH—
) (2.20a)

Sn, i= 2 ~ri(ri)

where we have

n —1

ir(n)= e Iso; 8 I .
k=1 k=n+1

(2.12a)

(2.12b)

~e —e/((8, $)m)d+(
I g yIm)+O (&)

(2.20b)

cr; are the standard Pauli matrices. For a given spin value
s let us introduce the spin coherent states

S
I
Ig.kl &= , I

g. 0. & (2.13a)

(2.13b)

where tg, p] +':—Ig,p]'. For M sufficiently large so
that the term O(e) may be neglected we have achieved
our goal of an integral representation over (Sz) " of a
quantum-spin partition function. While A is real for a
self-adjoint operator H, the coherent-state overlap is com-
plex. In particular,

s, l~&=s l~& . (2.13c)

S; are the generators of the irreducible representations of
the SU(2). These states admit a resolution of unity in the
form

(2.14a)
n=1

cos
gm +1 gn3

n n
pm+1 ym

cos

'+' g sing„dg„d((i„,
n=l

(2.14b) + leos
gm + i + gm pm +1 pm

sin
2

H= f,„~(I8(()1)
I Ig ((!&& Ig (r)I idi (lg ((l)

2

If H is a sum of multilinear terms,

(2.15)

and, moreover, admit a similar representation for a gen-
eral operator such as the Hamiltonian

(2.21)

The variable m labels a lattice space of thermal time, an
extra parametrization needed in rendering the quantum
problem into a c-number (path-) integral representation.

It is clear that quantum statistical average can be put
into the form (2.8), where

H= Q ai,n, . . . , i nSn, i,

then the function 8, for s = —,', is given by

(2.16)

s= —2 [»& lg, ((I "I Ig, NI &
—~~(I8, (t I )1;

n/i/, . . . , n i(2) Tn/i/ Tn i

where

Tn =(xn~y znn) .

(2.17)

(2.18)

(2.22)

thus, it falls into the class of problems covered by (2.9).
After some straightforward algebra taking into account
the explicit form of (2.21), it follows that the Euclidean
form of the complex Langevin equations is given by

+ (1—z„+')[1 x„(x„+—iy„)](x„' iy„')—

+(x„+'+iy„+')[1 x„(x„iy—„)](1—z—„') I

——,
' [[I—(x„) ]A —x„yn 8—x„z„C)+y„g„—z„g„, (2.23a)
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+ (1—z„+')[i —y„(x„+iy„)](x„' —iy„')

—(x„+'+iy„+')[i+y„(x„—iy„}](1—z„)I

„y„g+[1—(y„) ]8—y„z„CI+z„g„—x„g„ (2.23b)

—I(1—z„+')[1—(z„) ](1—z„')—(x„+ +iy„+')[1—(z„) ](x„' iV— )

——,
'

I x„—z„A y„—z„++[1—(z„) ]C I +x„g„y,g, —, (2.23c)

where we have

D —= (x„+'+iy„+')(1+z„)(x„' iy~ — )

+(1—z„+ )(x„+iy„)(x„' iy„—)

+(x„+'+iy„+')(x„iy„—)(1—z„')
+(1—z„+')(1—z„)(1—z„'),

BA' BA' BA

(2.24a)

(2.24b)

For our Hamiltonian we end up with the XX model with
a space-dependent external field:

n=1

1
[&1(n)a 1(n +1)+o2(n)o2(n +1)]

4a

+ [o3(—n)+ 1](—1)"
2

(2.27)

Using spin coherent states we obtain a complex action,
which reads, in the x,y, z representation,

g„, ri„, and g„denote 3%M independent standard white-
noise sources.

Although these equations may appear rather complicat-
ed, they have the distinct advantage that they are free of
unphysical coordinate singularities and involve only ra-
tional expressions without any coordinate-based tri-
gonometric functions.

%e have used these equations to discuss several model
problems. In particular, we will discuss here a free rela-
tivistic fermion system in d =2. As an example for an in-
teracting fermion model we choose the Thirring model'
in the lattice formulation.

A system of free relativistic fermions in d =2 can be
described by the following Hamiltonian:"

4 (xn xn+1+Vn~y„+1)+m —,( —1)"z„] (2.28)

& = ——,(x„+1+x„ 1 ),
(V +1+V —1}

C= —;(—1)"m .

(2.29a)

(2.29b)

(2.29c)

with M =P/a and m =ma.
We are now able to use straightfo~ard equations

(2.23), where we have

(c„c„+1+c„+lc„)+mc„c„(—1)"
20

(2.25)

The lattice Hamiltonlan for the Thlrring model in
Kogut-Susskind form reads

(2.26b)

o (n) = —,[o 1(n) —icr2(n)] . (2.26c)

[N =4(k —1}+2, kCN, implies antiperiodic boundary
conditions. ] Via a Jordan-Wigner transformation' every
Hamiltonian of X fermions can be mapped onto a multi-
spin problem [ g denotes f or nothing (no ~)]:

n —1

c„~= g [—o (j)]o (n), Vn & 1, (2 26a}
j=1

cf =[o '(ll]~,

l
(C+Cn +1+Cn +1Cn ~

2Q

2
g 2(C„C„—Cn + 1Cn + 1 ) (2.30)

In a Jordan-%'igner representation this model is identical
to the XXZ model:



36S4 H. QAUSTERER AND J. R. KLAUDER 33

n=1

1
[trt(n)tTi(n + I)+a2(n)a2(n +I)]

(Re@,)&

[os(n)o s(n + 1)—1]
8

(2.31)

For the action we obtain

n, m =1

m m m m
4 (xn xn+i +3 n 3 n+ i )

0.2

9g' m m(z„z„+i)

with g =g a. For Cone gets

C=9g /8(z„+i+z„ i)

(2.32)

(2.33)

0.

FIG. l. (Re( Ut3) ) for the pure U(l) theory on 20 X 20 lattice
using %'ilson action in temporal gauge {statistical errors are
within the points); the solid line gives the exact result for the
Wilson action for (Re( Uo) ) in the thermodynamic limit.

A and 8 are identical with the results of the free system
given before.

III. NUMERICAL METHOD AND RESULTS

i,j,k EI . (3.1)

The two-stage algorithm with step size h is then given by

bi(
I kI )

g o'=a "( tx~" I »
(3.2a)

(3.2b)

As discussed in Sec. I we choose an Ito-type SDE, for
which a suitable two-stage Runge-Kutta algorithm has
been found. We give here a brief sketch of this algorithm
for a vector Ito SDE with multiplicative noise. For the
estimates of the systematical errors caused by the discreti-
zation we refer to Ref. 5.

Consider the general Ito SDE of the following form:

dx'(t) =b'( I x
"(t)] )dt+a'J( [x"(t) I )d(JJ(t),

posed by the effects of finite size are still small on a
20)( 20 lattice.

The order parameter & lt„os/„" ) of the free relativistic
fermion system in d =2 can be mapped according to Ref.
11 onto

(g„P„)—:—
( g c„c„(—1)") (3.4)

due to translation invariance.
Using the improved two-stage algorithm we calculated

the order parameter on a 10&10 lattice with stepsize
h =0.01. Reasonably good results were obtained by gen-
erating 8000 configurations again discarding the first
1000, and measuring every fifth one thereafter. Figure 2
shows the expected behavior for such a system. We also
transformed the Ito equations to a Stratonovich-type
Langevin equation. Using the algorithm given in Refs. 5
and 6 we simulated the free relativistic fermion system

g't'=a "(Ix,"+v'h/2g" z, I ),
go=a'J(Ix, +ha)i+v'h/2gti z, I ),

bi( Ix k+h k+ t/h g kmzm
~

)

x,'+k ——x,'+ ,
'

h (co'(+co'q) + ,
' V—h(g'(+ g g )z$ —.

(3.2c)

(3.2d)

(3.2e)

(3.2f)
0.8-

h=0.01

zo and z1 are two independent sets of standard normal
random variables: 0.6-

&z.') =O, &z~JIt) =S.g,, a,P=O, I . (3.3) 0.4-

Applying this algorithm to the U(1) problem we simulated
the theory on a 20&20 lattice. For each value, we gen-
erated 4000 configurations, discarded the first 1000 of
them, and measured every fifth one thereafter. As may be
seen in Fig. 1 we obtained with fictitious time step size
h =0.01 for the average of the real part of the plaquette
an excellent agreement with the exact solution in the ther-
modynamic limit, which is given by the solid line. It can
be supposed that the effects of the temporal gauge super-

0.2-

2.

FIG. 2. The order parameter (tt„g„) for the free relativistic
fermion theory on a 10X10 lattice {statistical errors are within
the points).
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Again using h =0.01 we simulated the Thirring model
on a 10X10 lattice. Since this system shows larger fluc-
tuations than the free model we generated up to 10000
configurations, otherwise we proceeded as with the free
system. As may be seen in Fig. 3 we obtained the expect-
ed behavior.

(1) There exists a coupling region where (
~

1b„17t„~ ) is
very small and about constant; thus one would expect a
vanishing order parameter due to

0.2-

3. 2.

~ ~ e ~
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FIG. 3. (
~ P„g„~ ) for the Thirring model on a 10X10 lat-

tice (statistical errors are within the points or indicated by verti-

cal bars).

based also on the Stratonovich-type SDE. Comparing the
Stratonovich with the Ito procedure we got the same re-

sults consistent within statistical errors.
For the Thirring model one expects a degenerate

ground state. Because of the finite size of the lattice the
system will tunnel between the two possible ground states
in the coupling region with broken symmetry. Using time
averaging a direct measurement of the order parameter is
nearly impossible; thus, we measured, according to Ref.
13

(3.6)

(2) There is a region for which one would expect broken
symmetry in the thermodynamic limit.

Surprising are the results for the imaginary parts of the
expectation values of both fermion models, which are con-
sistently of a magnitude 10 —10 . This is smaller than
the statistical errors of the real parts. Within our statisti-
cal accuracy a fictitious time step size of h =0.01 seems
to be the optimal choice, since we could not obtain a sig-
nificant change in the results by going to h ~0.01 for all
systems investigated using the improved two-stage algo-
rithm. The results for the systems investigated indicate
that the Langevin approach to classical statistical systems
and quantum systems and especially the complex ap-
proach to fermionic (multispin) systems show very reason-
able convergence properties in an acceptable amount of
C.P. time.
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