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Recent applications of the coupled-cluster method to the (P )z quantum field theory showed the

necessity of a detailed analysis of its convergence behavior. The anharmonic oscillator has always

served as a good test case for different approximation schemes. %e treat the model both in the

maximum-overlap condition and in the Hartree approximation. The ground-state energy is repro-

duced very well for all values of the coupling strength and already for a low-order truncation
scheme. The expansion in correlation amphtudes can be carried out in extremely high order and

shows a divergent tendency of' the amplitudes. Introducing temperature dependence allows us to
select the stable ground state out of a variety of solutions of the hierarchy of equations.

I. INTRODUCTION

II. APPROXIMATION SCHEMES, THE MODEL,
AND THE COUPLED-CLUSTER EQUATIONS

The model Hamiltonian is described by

1 ~2+ I ~2+ ~4
4

(2.1)

introducing creation and annihilation operators in the
customary way yields the familiar representation of H,

H=ata+ —'+ (a+a )
16

(2.2)

The one-dimensional anharmonic oscillator has been
studied intensively in the past by various authors utilizing
several powerful methods. Bender and Wu' derived many
high-order terms in the perturbation expansion of the
ground-state energy obtaining the unsurprising result that
the series diverges for all values of the coupling strength.
Recently, a numerically and conceptually simple approach
was proposed by Chem, Hsue, and Kiimmel. 2's Using the
familiar coupled-cluster method"' they proposed to make
use of the Hartree approximation refined by a four-
particle correlation approximation [SUB(4)]. For all
values of the coupling strength the ground-state energy is
reproduced within an accuracy of less than 1%. For a
long time it seemed to be obvious that it would be easy to
extend these manipulations to quantum field theories. In-
tensive numerical evaluations were carried out in the (P )i
model by different authors. ' It became apparent that
convergence in this model is worse that in the case of sim-
ple anharmonic oscillators. This motivated the investiga-
tion of the convergence of a SUB(n) approximation,
which, although simple, had not been carried out up to
noir.

We finish the analytical calculations with a large sys-
tem of nonlinear equations which in general do not show
a unique solution. To select out the correct ground-state
solution we require stability against thermal fiuctuations.
These ideas are easily extendable to quantum field
theories.

where

+y(o):(b+b ): (2.4)

1 —ta=
1+t

Ep(o') = +1+a 3A, z

4a 16

e(cr) = + o',1+cr 3A, z

2o 4

cr(o) = + o',cr' —1 311,

40 8

y(o)= cr'.2

16

(2.5a)

(2.5b)

(2.5c)

(2 5d)

(2.5e)

Neglecting the interaction term proportional to y(cr) and
fixing o' by cz(cr) =0 yields the ground-state energy Ep(o ).
This approach is referred to as the Hartree approxima-
tion. In the case of strong coupling the energy is

Ep(cr) — —,
'

( —,&)' ' (2.6)
A ~ cx&

which reproduces the exact energy within 2%%uo. Chem,
Hsue, and Kummel used the Hamiltonian (2.4) in the
Hartree approximation and improved their results both
with the coupled-cluster method (CCM) as well as via ma-
trix diagonalization.

The CCM assumes the ground state to be a generalized
coherent state

~

@&=e'[0& (2.7)

It is convenient to perform a Bogoliubov transformation
first and take it in its normal-ordered form with respect to
new quasiparticle operators b, b.

The Bogoliubov transformation is defined by

b tb—
0

2 ~g2
~

(1—t )
(2.3)

The resulting Hamiltonian, suitable for further calcula-
tions, looks like

H=Ep(o)+e(cr)b b+a'(cr)(b +bt )
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s= gs„, (2.8a)

with b
~
0) =0 for bosons. The operator S can be expand-

ed in powers of b: jecting onto states (n
~

e

(n ~e He ~0)=0.

(2.9a)

(2.9b)

s„= s„(b')" .
n! (2.8b)

The coefficients S„are called correlation amplitudes.
Solving the Schrodinger equation is exactly equivalent to
evaluating all S„amplitudes.

Equations for these amplitudes can be obtained by pro-
l

The first equation defines the exact ground-state energy
whereas (2.9b) determines the coefficients S„. It is a
well-known trick to proceed to expand e He in a sum
of multiple commutators. This takes into account the im-
portant linked cluster theorem. A lengthy but straight-
forward calculation yields an infinite hierarchy of equa-
tions for the S„:

0=W2a5„2+v 24y5„4+ [e+6y(n —1)]nS„+[(n +1)(n +2)]' (a+4yn)s„+i+4y(n —2)[(n —1)n]' S„

+y[(n +1)(n +2)(n +3)(n +4)]'its„+4+

+6yv n! g SxSL
KI.

X+L =n

E+L =n+2
~n! [a+ 12y(L —1)]skSL

KI.
K!L!

+yV n!
K+L =n+4

KL (L —1)(4n —K+5) S ~) ~ KLM
x' L + y ' ~ ~Kg !M! lc L M

K+L+M =n+2

+6yv n ' g SxsLSM+y~~' g S,S,S„S, .KLM (M —1) KI.MP

E+L +M n+4= x+L+M+s =.+4 &K'L!M l~'
(2.10)

We used a more general Hamiltonian (2.4) with a arbi-
trary. Within the set (2.10) the equation for S„depends
on S„+& up to S„+4. To receive an approximate solution
of the first no equations, one has to make assumptions on

5„&„.The 5„ truncation scheme assigns zero values to

all higher amplitudes than S„,.
The coefficient o in (2.5a) is up to now a free parameter

which has to be fixed by a suitable condition. Here we
discuss two manifest ways.

(1) o is a solution of a(cr)=0 and amplitudes Sz, S4,
S6, . . . , S„have to be calculated from (2.10). It should be
noted that all odd-indexed S„amplitudes vanish by the
requirement of a well-defined parity of the ground state
[Hartree approximation and SUB(n}].

(2) Here Sz should vanish and o is a solution of (2.10)
for n =2. Only amplitudes S4,S6, . . . appear (maximum
overlap condition).

We analyze both possibilities numerically but in general
problems appear because the nonlinear equations (2.10) do
not show a unique solution. To exclude unphysical solu-
tions we perform a stability analysis with respect to
thermal fluctuations. Therefore, in the next section, we
introduce a temperature-dependent coupled-cluster formu-
lation. H+ p=O,d (3.1)

lowest energy to be the physical one. Unfortunately, an
explicit calculation disproves this assumption. There are
solutions with large 5 amplitudes promoting the energy
(2.9a) significantly below the well-known exact values.
Therefore, it is desirable to have a reliable criterion not
depending on the energy which selects the correct solution
out of a variety of possible ones. Our proposal for such a
criterion is based on the property of thermodynamical sta-
bility.

Insert the anharmonic oscillator in a heat bath. Unsta-
ble states, although lower in energy than the exact energy,
can now decay in stable solutions because the energy of
the anharmonic oscillator itself is no longer conserved.
The oscillator gets heated up and finally approaches a
stable state. To describe such a process the temperature-
dependent coupled-cluster formalism' is set up. That
formalism for fermions was applied to the model of Lip-
kin, Meshkov, and Glick by one of the authors. " Here we

propose a direct transfer of the technique originally
developed for fermions to the boson case. The
Schrodinger equation for zero temperature is replaced by
the Bloch equation for the statistical operator p,

III. TEMPERATURE DEPENDENCE
AND STABILITY ANALYSIS

where we make use of the ansatz for p:

es g ~

~ )e —P(m+n)nl2

m, n =0

The truncated hierarchy (2.10) of nonlinear coupled
equations will have more than one solution in general. In-
tuitively, one would expect the solution corresponding to

X[5 „+C „(P)], ,
(n

~

e (3.2)
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S (P)=So(P)+S(P)=So(P)+ g S (P) .
n=1

(3.3)

(k e-s H+ p 1)=0. (3.4)

The P= ao ground state, i.e., T =0, is completely speci-
fied by amplitudes Sss whereas the density matrix
(m ~p~n) needs additional amplitudes C „ to avoid
overcompleteness. So(P) is a c-number function which
ensures correct normalization of the partition function. It
turns out that the Bloch equation is completely equivalent
to an infinite hierarchy of equations

be identified by this criterion.
Why did we push Po to very large values' Besides these

"decay modes" of S„ into S„' there are further solutions
which describe the "true" amplitudes S,(P) at finite P.
Certainly, at arbitrarily large P we can ignore the P depen-
dence of these solutions since they should be slowly vary-

ing functions of P whereas the amplitude solitons appear
almost as step functions, at least on the T axis very close
to T =0. Therefore, at infinitesimal temperature, the de-

viations of these true S„{P}from S„can still be ignored
and we can replace them by their T =0 values. (Sce Fig.
1.)

Here we are interested in the special case 1=0, k &0,
which yields the S„(P)equations

dSk(p) = —{k
~

e-s(I)F&s(li (3.5)

with boundary conditions Sk( oo )=Sf. Each solution, of
the p= ao hierarchy (3.10) can now be extrapolated fo fj-
nite temperature. (3.5) is not explicitly dependent on P:
therefore the solutions are translationally invariant on the
P axis and we can push a solution from finite P to arbi-
trarily large P.

Assume the P= oo equations to have two solutions S„'
and Sii. S„may be unphysical but lower in energy than
S„'. Ec[uation (3.5) has solitonlike solutions connecting S„'
and S„'. These "amplitude solitons"' can easily be ob-
tained by a numerical solution of (3.5}. They may be cen-
tered around P+0 but by translational invariance they can
be pushed to arbitrary values of P.

Now, p-independent c numbers S„' and Su are certainly
special solutions of (3.3). Assume P to be very large and
S„'(P)=S„' for P & Po. At Po there may be an infinitesimal
deviation 5S„' =S„'(Po)—S„'. It is now possible to analyze
the behavior of this 5S„' by an ansatz

5S„'(P)=5S„'(Po)e (3.6)

where v are stability frequencies and the unstable solution
S„" will have frequencies with positive imaginary parts.
Therefore, infinitesimal deviations 5S„will grow exponen-
tially. Stable states have real stability frequencies and can

Sn
u

I

!
I

d8cuy fnod&s
of S„"

}

10/I3

FIG. 1 The expected typical behavior of finite-temperature
amplitudes is sketched for illustration. S„ is a smooth function
of 1/p, whereas Sn decays via amplitude solitons into S,'.
Shifting the decay process to arbitrary small temperature allows
us to ignore the unknown temperature dependence of the true

S,' and replace it by its value at T =0.

IV. NUMERICAL INVESTIGATIONS

The numerical evaluation of the coupled-cluster equa-
tions (2.10) is by no means involved and could even be
done with a conventional microcomputer for the case that
the number of amplitudes has not been chosen too large.
First of all, we mention that there is no remarkable differ-
ence between results gained by the Hartree approximation
or by the maximum overlap condition. To compare the
calculations of the energy with the exact one, we use an
ordinary matrix diagonalization of the Hamiltonian which
shows convergence already for a 30X30 matrix.

The results for the ground-state energy are presented in
Tables I and II. First of all, it becomes obvious that the
exact energy is reproduced very well by our method. Al-
ready a S6 truncation yields an accuracy of less than
0.01% for all values of the coupled strength. This is a re-
markable result for the simplicity of the approach. Some
remarks have to be made on the dependence of the energy
on the truncation scheme.

For small values of the coupling strength (A, (2.0) the
energy converges rapidly for all values of the maximum
number of S„amplitudes taken into account (n,„(50).
Increasing the coupling strength, significant fiuctuations
around the exact values show up, depending slightly on
the applied truncation scheme. For A, =10.0 the fluctua-
tion amplitudes are only 0.007% but they become as large
as 0.03% for A, = 100.0. In this range the deviations from
exact values achieve their maximum whereas for a very

large coupling strength they decrease again. This
behavior is widely independent of the approximation
schemes used, the Hartree procedure and the maximum
overlap condition.

Tables III and IV show the values of the correlation
amplitudes if a total number of 30 S„amplitudes is con-
sidered. These tables give insight into the fluctuations of
the ground-state energy. For small values of the coupling
strength {A,=0.1) the sequence of amplitudes seems to
tend towards zero. A detailed analysis, taking almost 70
amplitudes into account, disproves this assumption. This
behavior becomes apparent if we observe the relation be-
tween two adjacent amphtudes

~
S„+2/S„~ . There is al-

ways a critical index n,„, for which this quantity is less
than 1 but also a region n &n,„, where th. e relation be-

comes larger than 1. To become concrete now, w'e find in
the case of the maximum overlap calculation that
n,„., =20 for A, =1.0 and 10.0, n,„,=18 for A, = 1000.0 In
the case of the Hartree calculation these critical values be-
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TABLE I. Ground-state energy as a function of the coupling strength and the maximum number of S„amplitudes taken into ac-
count {maximum-overlap condition).

6

10
12
14
16
18
20
22
24
26
28
30

A, =O. 1

0.517366
0.517365
0.517365
0.517365
0.517 365
0.517 365
0.51736S
0.517 365
0.517 365
0.517 365
0.517 365
0.517365
0.517365
0.517 365

A, =O.S

0.571 008
0.570947
0.570951
0.570951
0.570 951
0.570951
0.570 951
0.570951
0.570951
O.S70 951
0.570951
0.570 9S1
0.570951
0.570951

0.621 114
0.620917
0.620919
0.620925
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927

A, =S.O

0.847 630
0.846 530
0.846476
0.846 520
0.846 547
0.846 558
0.846 561
0.846 559
0.846 556
0.846 551
0.846 546
0.846 539
0.846 535
0.846 535

A, =10.0

1.010917
1.009 152
1.009031
1.009 100
1.009 154
1.009 179
1.009 187
1.009 186
1.009 179
1.009 166
1.009 142
1.009 115
1.009 101
1.009 102

A, = 100.0

2.007 326
2.002046
2.001 514
2.001 703
2.001 900
2.002020
2.002081
2.002 103
2.002086
2.001 960
2.001 729
2.001 575
2.001 525
2.001 551

A. = 1000.0

4.234215
4.230998
4.229 671
4.230090
4.230 564
4.230 872
4.231041
4.231 117
4.231097
4.231 243
4.231 221
4.231 210
4.231 182
4.231 152

Exact 0.517 365 0.570951 0.620927 0.846 554 1.009 170 2.001 996 4.230 821

come smaller, that is, n,„,= 16 for A, = 1.0, n,„,= 14 for
A, =10.0, decreasing to its minimum values n, , =10 for
values of the coupling strength larger than 10 .

It should be noted that S„amplitudes become indepen-
dent of the coupling strength for large values of A, because
of an asymptotic form of the Hamiltonian

prove or disprove analytically that they tend towards an
asymptotic value.

There is one more comment on the convergence of the
S„amplitudes. Even if it would take place, the limit of
the functions S„has no physical meaning. It is easy to
check that the norm of the e

~
0) state is given by

H =( , k)'~3[ , +b—b+ '—(b+bt)4—] (4.1) (0~ e e (0)=1+ (4.2)

Summarizing now, it is not recommendable to consider
the convergence of S„amplitudes as a function of n

Very high S„will a1ways become arbitrarily large.
Nevertheless„ the low S„amplitudes like S2 and Sq are
nearly uninfluenced by this divergence. Our numerical
study exhibits small fluctuations of Sq and S4 as a func-
tion of the truncation scheme. It would be interesting to

and

(4.3)

TABLE II. Ground-state energy as a function of the coupling strength and the maximum number of S„amplitudes taken into ac-
count (Hartree approximation).

&max

4
6
8

10
12
14
16
18
20
22
24
26
28
30

Exact

0.517 366
0.517 365
0.517 365
0.517365
0.517365
0.517365
0.517 365
0.517365
0.517 365
0.517365
0.517 365
0.517365
0.517 365
0.517 365

0.571 365

0.517004
O.S70947
0.570950
0.570951
0.570951
0.570951
0.570951
D.570951
0.570951
0.570951
O.S70951
0.570951
0.570951
0.570 9S1

O.S70951

A, =1.0
0.621096
0.620915
0.620920
0.620926
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927
0.620927

0.620927

A, =S.O

0.847482
0.846498
0.846477
0.846 525
0.846 551
0.846 559
0.846 560
0.846 558
0.846 554
0.846 551
0.846 547
0.846 543
0.846 541
0.846 541

0.846 554

A, =10.0

1.010661
1.009089
1.009032
1.009 112
1.009 161
1.009 182
1.009 186
1.009 182
1.009 174
1.009 163
1.009 145
1.009 128
1.009 120
1.009 123

1.009 170

A, = 100.0

2.006477
2.001 795
2.001 509
2.001 751
2.001 941
2.002040
2.002077
2.002077
2.002041
2.001 934
2.001 764
2.001 649
2.001 621
2.001 659

2.001 996

A, = 1000.0

4.241 207
4.230 380
4.229 652
4.230210
4.230672
4.230925
4.231 033
4.231 044
4.230957
4.230629
4.230 153
4.229 869
4.229 811
4.229 914

4.230 821
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and the summation g' is restricted due to the subsidiary
condition

e i4—'

2~ ~=1 @=1
(4.4)

This does not define a normalizable state because the
Ci, . . . i all tend towards infinity. Only for %=2 is

there a finite radius of convergence of the Taylor series.
In all other cases the radius of convergence is zero. It
may become even more apparent if one investigates the
Fock-space representation of e IO) in the most simple
case of S=S4 only. The coefficients C„=(n ~e ~0)
seem to tend towards zero numerically for small n but it
can be shown that
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Inn +n ln

e 6

(4.5)

and this becomes arbitrarily large. Therefore g„~ C„~
S4

is not finite and e ' IO) does not belong to the Hilbert
space of normalizable states. This may already show a
significant complication if the CCM is applied to bosons.
CCM states cannot be physical ones which are normaliz-
able.

In Table V we compare S„amplitudes for a fixed value
of the coupling strength and different S„-truncation
schemes. It is obvious that inclusion of only one addition-
al amplitude creates significant changes in the amplitude
calculated before, but it is also interesting to see that
nevertheless the energy is hardly influenced by this fluc-
tuating property of the higher amplitudes.

The very large values of higher S„demonstrate the
breakdown of the S„-truncation scheme. It is a bad ap-
proximation to assign zero values to S„+2and S„+4. Re-
cently, one of the authors' proposed a different trunca-
tion scheme with the assignments

' 1/2
4y n+1

(4.6a)n+2
1/2

16y' (n +1)(n +3)
e' (ii +2)(n +4)

(4.6b)

The proposal was based upon the observation that this
truncation allows a renormalization of the (P )i quantum
field theory compatible with the CCM. We checked this
alternative for the anharmonic oscillator.

In the case of the Hartree approximation the change in
energy is about 10 % whereas the amplitudes vary at
maximum 1%. These irrelevant effects of the different
values for S„+2 and S„+4 are easy to understand. The
enormous number of terms in the higher S„equations is
not affected by a minor change of a very few terms. Also,
in this truncation scheme the high S„are very large. It is
probable that this will be the case in a11 truncation
schemes. There may exist proper combinations C„ofam-
plitudes which decrease to zero fast enough so that the C„
truncations are physical. To find these combinations is
extremely desirable in applying CCM to field theory suc-
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cessfully. It should be noted that Eqs. (4.6) yield more
significant changes in the energies when used together
with the maximum overlap condition. This is again obvi-

ous because the vanishing of S2 reduces the number of
terms in the equation enormously and gives more impor-
tance to a change of a very few terms.

V. DISCUSSION AND OUTLOOK

Some important consequences have come out of our in-

vestigations. We have to draw the conclusion that the
method works very well for calculations of the ground-
state energy but the amplitudes themselves should be han-
dled with care.

Our numerical analysis could not reveal whether there
is real convergence or divergence of the energy. The most
important observation is certainly that already low-order
approximations like a $6-truncation scheme give excellent
results which cannot be improved by the inclusion of
higher amplitudes. The simplicity of the maximum over-
lap condition together with the S6 truncation makes this

the most promising candidate for use in quantum field
theory.

The fluctuations around the exact energy are small
enough to call the method numerically convergent. Ex-
tensions to quantum field theory will probably show a
comparable behavior; there are already a few hirits sup-
porting this statement.

In comparison with the fermion case, the fluctuations
seem to indicate some new phenomena if CCM is applied
to bosons. Most experience with CCM has been made
with Fermi systems where the method works extremely
well. It is most successful in quantum chemistry, al-
though, as noticed by Coester, '3 this has not been under-
stood at all. The very sparse experience with bosons again
shows up in the problem of how to formulate the correct
truncation scheme. This will certainly be one of the major
questions to be asked in the future. As long as there are
no real convincing physical arguments for approxima-
tions, some doubts remain inherent in the method when
applied to bosons.
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