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Does statistical mechaIIics equal one-loop quantum field theory?

B.Allen
Department ofPhysics, Tufts Uniuersity, Medford, Massachusetts 02155

(Received 27 January 1986)

The "thermodynamic" partition function Zr(p) =g„exp( pE—„)is compared to the Euclidean

"quantum" path integral Z (P)=fd[P)exp( —S) over (anti)periodic fields (()(r+P)=+/(r). We

assume «'1) free spin-0 or spin-T fields and (2) an ultrastatic spacetime. Our main result is that

Z (P) does not equal Z~(P). Nevertheless, they are simply related: we prove that

InZ~(P) =lnZ (P)+(A +B In)u )P. Thus, the logarithms of the two partition functions differ only

by a term proportional to P. The constant A arises from vacuum energy and the constant B from

the renormalization-scale (p) dependence of Z&. We derive a simple formula for A and B in terms

of the "energy" g function gs(z) =Q„Ek '. In particular we show that A and B are determined by

the behavior of the energy g function near z = —1: for small e, +g ( —I+a) =
~ Be '+ i A +O(e)

(where the upper sign applies to bosons and the lower sign applies to fermions). %e also give a
high-temperature expansion of Z(p) in terms of gs(z). Finally we argue that Zr and Z() are inter-

changeable in any situation where gravitational effects are unimportant. This is because adding a
term linear in P to lnZ is equivalent to shifting all energies by a constant; but if gravity is neglected,

then the physics only depends upon the difference between energies, which is unchanged.

I. INTRODUCTION Z~(P) =I d[iI)]exp[ —S(P)],
(1.3)

The most important quantity in statistical mechanics is
the thermodynamic partition function of the canonical en-
semble:

Zr(p) =pe

Z e -»f4) (1.2)

Here d[((i] is a measure of the space of fields i)}, and S[P]
is the action of the field configuration i)('i(x}. The ampli-
tude (1.2) depends upon the boundary conditions. For ex-
ample, in a scattering problem one sums (1.2) over all field
configurations consistent with a fixed initial state (I); at
time t;, and a fixed final state (()f at time tf

Because (1.1) and (1.2) appear similar, they are often
held to be "the same thing. " This suspicion is borne out
by the fact that many of the formal manipulations carried
out with (1.1) and (1.2) are the same. For example, the
"free energy" I'= —P 'lnZ is analogous to the "effec-
tive potential density" V= —(vol} 'lnZ . More precise-
ly, one defines the path integral (1.2) by its Euclidean con-
tinuation, and integrates over all Euclidean fields
(anti)periodic in Euclidean time ~ with period P (Ref. 3).
Thlls tile quailtuiil ailalog of (1.1) is

The index n denotes all distinct (many-particle) states of
the system and E„their energy. The temperature is I/kP
and the superscript T means "thermodynamic. "

The most important quantity in quantum field theory is
the amplitude, which may be expressed as a path integral:

P(r)+P(r+P) .
Here the superscript Q means "quantum, " the upper sign
is bosons, and the lower sign is fermions. We will see that
although Z (P) does not equal Z&(P), they are closely re-
lated. This paper extends the results of Gibbons, who
used a similar formalism, but only established the connec-
tion between Z& and Z in the P~ao limit. Related re-
sults have been obtained by Dowker, ' and others.

One reason that Zr and Z~ cannot be the same is that
(in general) ZII depends upon the choice of some regulari-
zation mass parameter p, . Another reason is that, as we
will see, the quantum partition function includes a
vacuum-energy contribution which is not present in the
thermodynamic partition function.

The paper is in five sections. In Sec. II we introduce
the energy g-function and show how it is related to Z by
a Mellin transform. In Sec. III we define ZII by using (-
function regularization, and obtain an expression for Z&
in terms of the four-dimensional g function. In Sec. IV
we establish the exact connection betwo:n Z& and Z . In
Sec. V we invert the Mellin transform representation of
Z and obtain a simple high-temperature approximation
for it. This is followed by a short conclusion.

Throughout this paper, we treat the bosonic and fer-
mionic cases simultaneously, and often label correspond-
ing quantities by 8 and I', respectively, and the corre-
sponding equations by a and b.

II. THE ENERGY g FUNCTION
AND THE THERMODYNAMIC PARTITION

FUNCTION
Consider the following two infinite products, for bosons

and fermions, respectively:
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Zii(P) =Q g exp( P—pEk )
k p=0

—PE( —2PE1=(1+e +e + . )

—pE2 —2pE2X(1+e +e + (2.1a)

particle states and not the energies of the distinct mul-

tiparticle states.
One may easily prove that the energy g function and

kernel are related by the Mellin transform

I'(z)g (z)= f t' 'Y(t)dt . (2.6)

One can also see that, by expanding ln( 1 —x)
2= —X— X 7

Z'(P) =ff g exp{—PpEk }
k p=0

pE pE—(1+e ')(1+e ') (2.1b)

inZar{P) = —g ln(1 —e ")= g —F(Pn ),
k &

n

tiE 0)
( 1)iI+1

1nZF(p)=gin(1+e )= g F(pn) .
k n

(2.7a)

(2.7b)

From the Mellin transform (2.6) one can see that

n *I (z)gx(z)= f P' 'F(nP)dP. (2.8)

Combining {2.7) and (2.8}and summing over n one finally
obtains the Mellin transform of Zr as

g (z}g(z+1)1(z)=f P' '1nZ~~(P)dP,

(1—2 ')g (z)g(z+1)1 (z) =f p' 'inZF(p)dp, (2.9b)

where((z)=g„, n'is the Riemann g function. These
formulas (2.9) will become very useful later.

(2.9a)

III. THE QUANTUM PARTITION FUNCTION

We assume that the spacetime has an "ultrastatic"
metric of the form

Here Ek are the energies of the single-particle states (or
modes). If we assume that the fields are free (or nonin-
teracting) then it is easy to see that these infinite products
(2.1) are exactly the partition functions (1.1). For exam-

ple, if one takes the first terin from each expression in
pE

parentheses, then their product is e t =1, where Ee —0—
is the ground-state energy. This carresponds to the
many-particle state with no quanta in any mode. Similar-

ly, the product of the second term fram each expression in
parentheses corresponds to a many-particle state contain-
ing one quanta i.n every mode.

It is important to note that the thermodynamic parti-
tion functions (2.1) correspond to the trace of exp( —PW:)
where:H: is the normal ordered H-amiltonian. If one did
not normal order H then Za(P) would be

g exp[ —P(p+ —,
'

)Ek] (2.2)
k p=0

Z (P)=P [I — p{ PE )]-
Z (P)= ff [I+exp( —PEk)] .

(2.3a)

(2.3b)

Another very useful expression for Z" can be obtained in
terms of the energy (or three-dimensional) g function.
This is defined by

g (z)=QEk
k

(2.4)

for Re(z) &3, and by analytic continuation elsewhere. It
is also convenient to define the energy kernel F(t}:

F(t)=+exp( tEk) . — (2.5)

Note that although (2.5) appears similar to (1.1} they are
not the same. Here Ek are the energies of the single-

which is identically zero far all P &0. Similarly, if H was
not normal ordered, the fermionic partition function
ZF(p) wauld be infinite for all p&0. Thus we see that in
the very definition of the thermodynamic partition func-
tion, it is necessary to "throw away" the vacuum energy
"by hand. " The consequences of this will become clear
later.

If we sum the geometric series in (2.1a) we then obtain
extremely simple and well-known expressions for Z r:

(3.2)

where the Hamiltonian H = —0+M +JR does not de-
pend on time. From the three-dimensional energy eigen-
functions and eigenvalues,

H'fk(x) =Ek'A(x» (3.3)

it is easy to construct the four-dimensional eigenfunctions
Pk(x)exp(imt) of S.

The simplest way to determine the quantum partition
function (1.3) is with g-function regularization. (This is
equivalent to other well-known methods, for example, di-
mensional regularization. ) Because we are considering
free fields, the one-loop approximation is exact, and Z can
be expressed as a functional determinant. This functional
determinant, which is formally infinite, can in turn be de-
fined by a g function, yielding '

lnZg (P)= —,ge(0, P)+ —,
'
g~(0, P)ln(p ), (3.4a)

1nZF(p) = ——,(F(0,p) ——,
'
gF(0,p)ln(p ) . (3.4b)

ds =—dt + g~bdx dx

with a time-independent three-metric g,b With t. his
metric we can obtain a real Euclidean section by the Wick
rotation t~i r The s. calar wave equation and the
(squared) Dirac equation take the form
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Here a prime denotes d/dz. The four-dimensional g
functions gs(z, P) and (F(z,P) are treated in some detail in
Refs. 5—9. They are the sum of eigenvalues g„A,„'cor-
responding to eigenfunctions of S which are, respectively,
periodic or antiperiodic with Euclidean period P (Ref. 4):

4(z,P)=g g Ek'+ ™
k

(3.5a)

g, (z,P)=g g Z„'+
k

(3.5b}

Q( t ) =g exp( tEk }-
k

(3,6)

These sums converge for Re(z) ~ 3, and the functions are
defined on the rest of the complex-z plane by analytic
continuation. The mass {(t is a regularization mass which
must be introduced to define the functional measure in
the path integral (1.3}(Ref. 7).

If we introduce the kernel Q(t) associated with the
squared energies [compare to (2.S)]

P(4m-t) '"]dt (3.10)

and from (3.8) and (3.9) they are more simply expressed in
terms of the original four-dimensional g functions as

gs{F)(z,P)1 (z) =ps(F)(z, P)I (z)

(47r)—'~
Pg (2z 1)1—(z ——,

'
) . (3.11)

gs(F)(z, P)I (z) = f t' 'Q(t)8s(F)(13 t)dt . (3.8)

The Mellin transform of the kernel Q(t) is the energy (-
function gs (2z):

g'(Z )r(z) = f"t' 'Q-(t)dt . (3.9)

In order to establish the relationship between Z and Z~
it will be necessary to exchange the order of two integrals.
To do this, we need to first define a "modified" four-
dimensional g function.

The modified g functions are defined by

g~, ,(z,P)1(z)=f t' 'Q(t)[8t)(~)(I3 t)

and the 8 functions'

8Jt(t) = g exp[ —(2n ) m2t],

8F(t)= g exp[ —(2n) (m+ —,
'

) t]

(3.7a)

The second term in (3.11) will eventually turn out to be
the vacuum-energy contribution to Z{2.

Consider the Mellin transforms of g with respect to P:

Is(F)(z,s ) = f P ga(F)(z, P)dP . (3.12)

Because of the remarkable unimodular transformation
property of the 8 function'o"

=8tt(tl4) —8s(t) . (3.7b) 8s(t) =(4irt) )~28s(( 16m t) ') (3.13)

Then, from (3.5),
we can transform the integrand of (3.10) and substituting
it into (3.12) obtain

Is(z,s)&z)= f P' ' f t' 'Q(t)P(4mt) '~2
8tt —1 dt dP,

0 0 16m t
(3.14a)

CO CO 2 2

I+(z,s)I(z)= f P' ' f t' 'Q(t)P(4irt) ' ' 28& 8& ——1 dt dP.
0 0 46t 16m't

(3.14b)

The integrands in (3.14) fall off as -e ~ ' as P~ ao, so
one can exchange the order of integration in (3.14) and ob-
tain

f"t' '8, ' -—
1 dt=2g(Z )r(z)

0 4
(3.16)

I,(z,s)1(z)=2'~-'"g(s+1)1 '+
2

]s+s/2 —1

0
(3.1Sa)

in obtaining (3.15). Now using (3.9) we obtain the follow-
ing useful closed forms from (3.15):

I (z,s)I (z)=m 'i 2'I I z+—
2 2

IF(z,s }I(z) =(1—2')m '~ g(s+1)1 s+1
2

x, ~'+'" '

%e have also used

(3.15b)

Xg(s+ 1)g (s+2z),

IF(z,s)I (z) =~ '~ (1—2')1 1 z+—
2 2

X g(s +1)g~(s+2z) .

%'e can use these expressions to relate Z~ and Z .

(3.17a)

(3.17b)
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IV. COMPARING THE THERMODYNAMIC
AND QUANTUM PARTITION FUNCTIONS

zation scale p, and the "residual vacuum energy" is scale
dependent. It is

g(O, P) =0 . (4.1)

The quantum partition function Z{l has been defined
(34) in terms of the four-dimensional g function. We
thus require g(O, P) and g'{O,P). We can obtain them
from (3.11) in terms of g(z, P) and g (z).

The integral that appears in (3.10) is finite for all values

of z. This is because the integrand vanishes sufficiently
fast as t~O+ and as t~+oo [as t' 'exp( P It)—and
t' 'exp( —ED t), respectively]. Since I (z)- I/z as z~O
this implies that

+ —,'(C+ —,'R ilnp } .

This vacuum energy can also be written from (4.2) as

+— +—1np zg (z —1)
2 dz 2

This formula applies in both case 1 and case 2.

V. HIGH- TEMPERATURE EXPANSION
OF THE THERMODYNAMIC PARTITION

FUNCTION

(4.8)

(4.9)

We also need to know something about the behavior of
the energy g function near z = —1. If the spatial sections
X are compact then (E(z) has only simple poles as its pos-
sible singularities. Therefore near z= —1 it is of the
orm

g (z)= +C+0(z+1}.z+1 (4.2)

If g (z) is regular at z= —1 then the residue R i van-
ishes, and C=g ( —1).

We can now obtain the desired expressions for g(O, P}
and g'(O, P). From (3.11), (4.1), and (4.2) we see that

gtt (p)(O, P) = ——,
' BR (4.3)

08(F)(0 P}=ca(F)(0 P}—PC

Now, from (3.12}and (3.17},

f P' 'hatt(O, P)dP=2g(s+1)1"(s)g (s},

(4.4)

(4.5a)

f P' )g~(O, P)dP=(2' ' 2)g(s+1)I {—s)g (s), (4.5b)

where we have used I {s/2)1(s/2+ —,
' )=n'~ 2' 'I (s).

The right-hand side of (4.5) is identical to the Mellin
transform of lnZ (P) in (2.9). If the Melhn transforms of
two functions are equal, then those functions are equal
(except possibly on a set of measure zero}.' Consequently
from (4.3) and (4.4) and the definition of Z{I in (3.1) we
obtain

In'(P)=in'(P) ——,'P(C+ —,'R ilnPz), (4.6a)

lnZt; (P) =lnZF(P)+ , P(C+ —,R ilnp—). (4.6b)

This completes the proof.
%e can now distinguish two possible cases.
Case l. g (z) is regular at z= —l. In this case

i
——0 and C=g ( —1). The quantum partition func-

tion is therefore independent of the renormalization scale
p. The only remaining difference between Z& and Zr is
the vacuum-energy term which, as pointed out in Sec. II,
was "dropped" in defining Z:

»Za~r) =lnZa(~)+ z &4 ( —1) (4.7)

Here and elsewhere the upper sign refers to bosons and
the lower sign to fermions.

Case 2. g (z) has a pole at z= —l. In this case the
quantum partition function depends upon the renormali-

We can obtain a useful high-temperature approximation
to InZ (P) by inverting its Mellin transform. This yields
an expression in terms of the energy g function. To ap-
proximate the inverse Mellin transform (a contour in-
tegral) one shifts its contour of integration to the left past
several poles of the integrand and uses Cauchy's theorem.
At high temperatures the dominant contributions come
from the residues of the poles, and the remaining part of
the integral can be neglected.

To invert the Mellin transform of lnZ (P), choose d a
real constant d ~ 3. Then inverting (2.9) one obtains

lnZ j(p) = f p 'g(s +1)I"(s}gx{s)ds, (5.1a)

lnZ (P)= f P '(I —2 ')g(s+1)I'(s)g (s)ds .

—g (0)lnP+g (0)+ 0(PinP), (5.2a)

inZF(p) = — R3p +( , )g(3)R2p—

+ — R iP '+ g (0)ln2+0(P lnP) .

Here Rk refers to the residues of g (z) at z =k, i.e.,

R2g'(z)= + +, +f(z),

(5.2b)

(5.3)

where f(z) is regular at z = 1, 2, and 3. We have also as-
sumed that g (z) is regular at z =0 (Ref. 9). It is possible
to express the residues as spacetime integrals of local
quantities involving the curvature and mass. For exam-
ple R 3 is proportional to the volume of the spatial section
X (Ref. 9). Thus the leading P term has the appearance
(vol) T associated with a gas of massless radiation.

(5.1b)

In general the integrand of (5.1) has poles at s =3,2, 1, . . . .
If we deform the contour of integration past these poles
and apply Cauchy's theorem, one obtains the following
high-temperature T~ 00 or P~O+ expansions:

4 2

lnZ~~(P) = RiP +g(3)RzP + R )P
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VL SUMMARY AND DISCUSSKON

%e have shown that

lnZ (P) —lnZ (P)= +—P + —,' luis' zg (z —1)
2 z

where Z{2 and Z are the quantum and thermodynamic
partition functions and gE(z) is the energy g function.
This means that if g (z) is regular at z = —1 then Z~l is
independent of the renormalization mass isi and is dimen-
sionless. In that case, + —,

' P( —1) can be interpreted as a
vacuum-energy contribution. If g (z) has a pole at
z = —1, then Z depends upon the renormalization scale

p and has an "anomalous dimension. "
One can ask if the difference between Z and Z~

means that one would obtain different physical predic-
tions froin them. This is not the case. The reason is that
the addition to lnZ(P) of a term proportional to P simply

shifts the definition of energy E= —BlnZ/BP and free
energy F=—P 'lnZ by a constant, and leaves the entro-

py unchanged. This does not affect thermodynamic pro-
cesses, because they only involve a change in the energy,
and not the overall value of the energy. However, it does
affect the value of the renormalized cosmological constant
in gravity. In that instance it seems more correct to use
zQ

Finally, we have obtained a high-temperature expansion
of 1nZr(p). That expansion shows that for n=1,2,3 the
term in lnZ (P) proportional to P " is also proportional
to the residue of g (z) at z =n.
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