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Symmetry breaking in six-dimensional Einstein-Maxwell-tT theory
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The mass spectrum of a six-dimensional gravity theory coupled with the U(1) Maxwell and non-

linear o fields is analyzed. It is shown that this electroweak-gravity model can have a perturbatively
stable ground state and low-mass gauge bosons of SU(2). Except for the graviton, photon, low-mass

scalar triplet, and three gauge bosons, all other states acquire masses of the Planck scale.

I. INTRODUCTION

The standard model of Salam and Weinberg using the
SU(2) X U(1) gauge group has succeeded in accounting for
a vast range of data related to electroweak interactions.
But the Higgs mechanism which is required to provide
masses for the gauge bosons is the least attractive aspect
of the standard model. ' There is a variety of theoretical
reasons to suppose that this mechanism is an incomplete
description of the nature of electroweak symmetry break-
ing. The Higgs potential of the Lagrangian depends on
arbitrary parametersan, d the Higgs-boson mass is not
fixed by currently measured quantities. Other theories,
for example, the technicolor models, are devised to
remedy some of the above defects by replacing the Higgs
sector with a new set of "techni-fermions" that generates
dynamical symmetry breaking. i But it is not clear if the
new "technicolor" strong gauge interaction really corre-
sponds to nature.

In this paper, we introduce another model for symme-
try breaking. %e try this by showing that a Higgs
phenomenon takes place, giving reasonable masses to the
gauge bosons through the compactification mechanism in
a Kaluza-Klein-type theory. For this purpose, we intro-
duce the nonlinear cr field and Maxwell field as the matter
fields which induce the corn pactification in six-
dimensional gravity theory.

This six-dimensional Einstein-Maxwell-o model has the
merit that it has a simple and close structure to the stan-
dard model. The 0 field and Maxwell field were used in-
dependently to induce the compactification. When the
Maxwell field alone is used to obtain a spontaneously
compactified solution, the generated spectrum contains
massless gauge vectors corresponding to the local symme-
try of SU(2) (Ref. 4). Contrary to this, dimensional reduc-
tion induced by the nonlinear o model was shown to give
Planck's mass to the gauge vectors. This scheme was
studied first by Omero and Percacci and revised by Gell-
Mann and Zwiebach. By introducing these two fields
simultaneously, we can obtain massive gauge bosons not
of the Planck-mass scale. The other low-lying states in
this model are the massless graviton and photon and a
low-mass scalar. All the other states have masses of the
Planck scale and thus beyond the range of current or fore-
seeable accelerators. The o. model acts mainly as the
trigger of the spontaneous symmetry breaking while the

Maxwell field is responsible for the dimensional reduction
from six to four dimensions.

The use of harmonic expansion on the two-sphere in
analyzing the spectrum shows that this modeI has no ta-
chyons, showing that the above compactification is stable
and has no negative-metric ghost states. This internal
manifold has also been advocated as the possible source of
chiral fermions. Even though our model to be discussed
is not intended to be a realistic physical theory, we hope
that all the above features will make our model a good
starting point in constructing a realistic electroweak-
gravity model.

II. BACKGROUND CLASSICAL SOLUTION

Now for the details. Our analysis is very similar to that
of Randjbar-Daemi, Salam, and Strathdee. The six-
dimensional Einstein-Maxwell-o field theory with a
cosmological constant is characterized by the action

S = —J d'Z &—g, R+ ,'FMNFMN+X—
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where 8 denotes the curvature scalar, and

(2)

The scalar fields Q(x), p = 1,2 are thought of as coordi-
nates of a two-sphere S with metric h„,. Our conven-
tions are as follows. We write the coordinates Z as
(x,y"). Thus upper case indices take the value
0, 1, . . . , 6 while lower case latin indices take the value
0, 1, 2, and 3. The lower case greek indices are used as
coordinates and frame labels of S . The signa-
ture is —+ -. + and RL~ ——R L~z, R

K

The classical equations of motion from the action are
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with the energy-momentum tensor

TIE = h—l,.(~~W4 0" i g~~g'@pWdg4" }

+FML.+W 4gMX+ . (4)

A„(y)dy"= (cos8+1)dltl,
2e

Here I l'~ is the Levi-Civita connection of the a-field
internal space and a semicolon denotes the standard co-
variant derivative. The classical solution with the com-
pactification structure M XS is obtained by4 5

gMlvdZ dZ =7/~zdx dx +0 (d8 +siil 8dp ),

F-2 n' 45'
2 4 2g2

The newly defined 5 has the value of almost one as will be
shown in Sec. III. The radius of internal space a to be of
order one in Planck's units takes the value

pe 2 g2 8e2 g2
4 2t n 2+2 2t

with 8e In K »K /2t. As is clear from the following
analysis, the term K /2t, even though small, is important
in obtaining the desired symmetry breaking.

III. FLUCTUATION ANALYSIS

h„.[4(y}]=g„.(y},
where a is the radius of the internal space to be deter-
mined. We use two coordinate patches to express the
monopole configuration of the Maxwell field. Note that
the physical coordinate and internal space of the o field
are both described by S, enabling the homotopic classifi-
cation of mi(S ) =Z. The solution in (5) has the nontrivi-
al Z =1 winding number, which with the nontrivial to-
pology of vector bundles of the classical Maxwell field
over compactified dimension, may be invoked to ensure
both the stability of the compactification as well as the
appearance of the massless chiral fermions in the four-
dimensional space-time.

By substituting these vacuum expectation values into
(3), one could find the following algebraic equations from
the first equation of (3) when M, N takes four-dimensional
or internal coordinates, respectively:

1 K F p K AKp
8 2t 2

0= —,F —X,

We shall now examine the fluctuation on this back-
ground to derive the spectrum of masses for the scalar,
vector, and tensor excitations. Consider the small fluctua-
tion expansion of the action around the classical solution

gMX RMN ++~MS

~M=~M+ ~M

yP+Zl4—

and expand the action up to terms quadratic in the fluc-
tuation fields hMlv, V~, and Z".

The contribution from the Einstein and Maxwell fields
is essentially the same as that of Ref. 4, while that of sca-
lars is given by Gell-Mann and Zweibach with some no-
tational and metric change. Add the following source
terms to the fluctuation action:

~SO-..= 'Z —g 2 T~B~" +J~ ~"——II.Z"

(10}

The equations of motion that follow from S+S„„„,are

2
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In the course of the above derivation, we use the harmonic Lorentz gauge condition. Now the sources TAB, JA, and I„
are not independent; Eqs. (11)are compatible only if they are suitably constrained by

TaB p T+B +~@,BJ ip J+ p

The next step 1s to solve the linear equations for h, V, and Z in te~s of T, J, and I. using Eqs. (11) It 1s convenient
to Fourier transfo~ the dependence on the four-dimensional space, which we take to be flat Fu~he~ore one expands
ail fields and sources in harmonics of the internal space S =SU(2)/U(1). The expansion method in coset space is dis-
cussed by Salam and Strathdee in Refs. 4 and 7. In the following, we use the same notation as in Ref. 4. Th«ield»«
decomposed into 1rreducible representations of the So(2) rotations, lab led by the "isohelicity" A- In pa~icular the
isohelicity of the scalar fields are + 1 (Refs. 5 and 8).

We can now extract the following equations for the harmonic components, where we suppress the isospi»abeis:
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The solutions of these equations are then substituted into the functional S +S„„„,. We now examine the action near the
poles which result after the substitution. Of course, it is important to make use of the conservation law (12}to extract
the physical part of the spectrum.

Let us now consider massive states. Choosing a coordinate frame, we take p, =(po, 0,0,0). The pole terms in

S+S„„„,arrange into towers of spin-two, spin-one, and spin-zero states:

g (I(+)+I(—)+I )+ g (I(+)+I(—) )+ y I
1 &O I &] l q2

The explicit forms are
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where the nonzero masses are given by
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2 =

a
%e can see that the low-mass gauge bosons acquire an
equal mass of M 1 (I = 1)=v'2 —25/ daue to the

remaining SU(2) global symmetry, while the local symme-
try is broken by the (r field. Using (7) and (8), it corre-
sponds to M 1 K!2t =8i-tG/t The smallest .mass of
the scalar particles is

[4+52—5(52+ 2t)1/2]1/2
M() (I =1)=

v'2a

Using

aEF$2

in (7) and (8), the ratio of the scalar mass versus the
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gauge-boson inass is found to be 2:v5. Of course, our
model is not realistic yet and the above values are perhaps
devoid of physical significance. It is clear from the above
expression that tachyon instabilities are never present, and
since all residues are positive definite there is no
negative-metric ghost.

To find the massless states, it is necessary to use a
frame such as p, =(po, 0,0,p2). When this is done, one
finds the terms

, (
I Ti2 I'+ 4 I

T» —T» I'+
I
Ji I'+ I~~ I')i=a

which indicates a massless graviton (A, =+2) and a "pho-
ton" (A. =+ I) as expected.

IV. DISCUSSION

Before discussing our results, the effects of fermion
fields on the model are shortly considered. At the classi-
cal level fermion fields do not affect the classical solution
of the ground state and the question of stability. As is
well known, it is possible to obtain chiral fermions under
the nontrivial background of the Maxwell field in six-
dimensional theory. Let fermions now couple to the sca-
lar fields with the term

This type of coupling can be obtained from the supersym-
metric extension of nonlinear cr field. This coupling does
not change the isohelicity of fermions and gives small
masses to the massless zero mode fermions. The typical
value of mass acquired by zero mode fermion is

a pl=Mi (I =1)
t 4e

The initial motivation of Kaluza was to unify the gravi-
tational and electromagnetic forces. Froin this point of
view, the scheme explained here is rather anti-Kaluza-
Klein. But it seems that a higher-dimensional theory of
pure gravity cannot be a satisfactory starting point for a

realistic four-dimensional field theory. At least fermion
fields have to be introduced. In addition we have intro-
duced the Maxwell and nonlinear cr field. One possible
interpretation of this additional field given by Gell-Mann
and Zwiebach is that the cr field is not thought to be fun-
damental but rather an effective field theory for compos-
ite scalars arising in a supertheory at some energy scales
below the Planck mass. Another possibility is that the
Maxwell field be obtained from more higher-dimensional
pure gravity theory.

To make our model more realistic, we need to split the
masses of three gauge bosons and couple them to real
photons. One possibility may be the introduction of coin-
plex e field which couples with the Maxwell field. Then
it has one more merit, that the complex o field can couple
with fermions supersymmetrically giving more informa-
tion on the mass spectrum of low-lying fermions.

In conclusion, one can make the three gauge bosons of
SU(2) massive by introducing the nonlinear a field on the
six-dimensional Einstein-Maxwell system. It is contrary
to the conventional wisdom which hopes that the states
massless at the tree level would acquire their small masses
via the quantum effect. This electroweak gravity model
has smaller parameters than those of the Higgs model and
they can be fixed by currently measured quantities. The
symmetry-breaking mechanism occurs directly in the
Kaluza-Klein scheme and the nonlinear o field accepts
the geometrical interpretation like the Einstein and
Maxwell fields. We hope that all these features will make
the nonlinear cr field as a possible substitute of the con-
ventional Higgs scalars in spite of its various defects like
the non-renormalizability or no realistic spectrum, etc.
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