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It is widely believed that all "consistent" theories of a spin-two field coupled to matter or non-

linearly self-coupled must be generally covariant. The extent to which this statement is true is inves-

tigated here. %'e consider at the classical level nonlinear equations of motion for a field y,b in a flat
background spacetime which are derived from a Lagrangian and which reduce, in linear order, to
the equations of a spin-two field. In a perturbation expansion about y,b ——0, we argue that in order
for all the linearized solutions to give rise to a one-parameter family of exact solutions, the exact
equations of motion must satisfy a certain type of divergence identity. {This is our "consistency"
condition. ) %hen the equations of motion arise from an action principle as we assume, this diver-

gence identity implies an infinitesimal gauge invariance of the action. However, our main result is

the demonstration that only a very restricted class of candidate infinitesimal gauge symmetries can
actually arise from an exact (i.e., finite) gauge symmetry, as is necessary to realize the theory.
Under some assumptions concerning the number of derivatives which occur in terms appearing in

the divergence identity, we prove that only two types of gauge invariance are possible: (i) normal

spin-two gauge invariance and (ii) general covariance. Explicit examples of nonlinear field theories

of type (i) are constructed. %hen coupling to matter is considered, the requirement that in linear or-

der y,b couple directly to the stress-energy tensor of matter may eliminate possibility {i),but I have

sho~n this only in special cases. A similar analysis of nonlinear generalizations of the equations for
a collection of spin-one fields is given, and it is shown that under analogous assumptions, the only
possible type of gauge invariance for the nonlinear theory is Yang-Mills gauge invariance with

respect to an arbitrary Lie algebra.

I. INTRODUCTION

It has been known for quite some time that severe con-
sistency constraints arise when one attempts to couple a
massless spin-two field y,b to matter or to couple it non-
linearly to itself. There is a widespread belief that these
constraints force one to a theory which is generally co-
variant. (As will be discussed further at the end of Sec.
III below, by "generally covariant" we mean that al-
though the theory is initially formulated as the theory of a
field y,b in a flat background spacetime (R', r/, b), a
change of dynamical field variable from y,b to
gab =geb [r/ca, yeI ]call bc Bl'adc so tllat thc theory Iio
longer depends on the flat background metric r/, b )The.
main argument advanced that string theory is a theory of
gravity is that, since it contains a massless, spin-two exci-
tation, it must be a generally covariant theory.

Although there exists a rather extensive literature on
spin-two fields and general covariance (see Refs. 1—4 and
other references cited therein), it is not easy to extract
from these references any mathematically precise claims
(no less proofs) concerning the general class of consistent
field theories. As will be discussed further in Sec. IV, the
original Feynrnan' argument depends heavily on the par-
ticular form of the coupling of y,b to the (particle) matter
which Feynroan assumed. Other arguments rely heavily
upon the assertion that for a consistent theory, the right
side of the spin-two field equation must equal "the full
stress-energy tensor of matter plus gravitation, " which is
then asserted to equal the functional derivative of the ac-

tion with respect to the flat, background metric. Finally,
other arguments concerning consistent nonlinear theories
of a spin-two field have been formulated within the con-
text of a (presumed to exist) quantum theory of gravity,
although a translation to classical language presumably
could be made. General relativity is then obtained as the
unique "low-energy limit" of such a theory, i.e., when
only terms in the action containing no more than two
derivatives of the field variable are considered. While the
results of this approach are clearly related to the results
we shall obtain below, a key difference is that we shall not
impose any restrictions on the number of derivatives of
the field variable appearing in the action, although as ex-
plained below we shall impose some restrictions on the
number of derivatives in terms appearing in the gauge
transformation symmetry of the theory.

The purpose of this paper is to give a systematic
analysis at the classical level of the possible types of con-
sistent, nonlinear generalizations of the theory of a spin-
two field in flat spacetime. We shall confirm the above
expectation that "consistency" of the theory (in the sense
defined in Sec. II) together with the requirement that the
equations of motion be derived from a Lagrangian does
indeed impose very severe restrictions on the theory.
However, we shall see that there do exist a class of
theories which are not generally covariant; an explicit ex-
ample is given by the Lagrangian of (3.18) below.
Theories of this class have the "normal" gauge invariance
of a spin-two field, y,b~y, b+B(,gb&. Nevertheless, the
main result of this paper is the demonstration thatunde, r
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some additional assumptions, consistent nonlinear gen-
eralizations of the theory of a spin-two field must either
be of the above class or must be generally covariant.
Thus, apart from the theories which have normal gauge
invariance, general covariance appears to be the only pos-
sibility.

The key ideas behind the proof of our results are as fol-
lows. The linearized Einstein operator for the spin-two
field satisfies a divergence identity: the linearized Bianchi
identity. Consequently, in a nonlinear generalization of
this theory, in a perturbation expansion, the divergence of
the second-order equations will yield an equation involv-
ing only first-order quantities. In order that this equation
not impose further restrictions on the linear solutions, the
divergence of the second-order equation must vanish as a
consequence of the first-order equation. More generally,
in order for the nth-order equations not to iinpose restric-
tions on the lower-order quantities, we argue that the ex-
act, nonlinear equations must satisfy a certain type of
divergence identity. The assumption that the equations
arise from an action principle is now imposed. The diver-
gence identity implies a constraint on the action S, name-
ly, that it be invariant under certain infinitesimal varia-
tions of the field y,b„ in other words, it requires an "infin-
itesimal gauge invariance" of S. Suppose we denote by
F i and &2 two vector fields on the infinite-dimensional
manifold of field configurations which represent these in-
finitesima gauge directions. If the action is invariant
under the motions generated by P"i and P i, then it must
also be invariant under infinitesimal motion along their
commutator [&i,F 2]. The requirement that these com-
mutators do not generate additional constraints on S—
which we refer to as our integrability condition places—
very severe restrictions on the possible types of infini-
tesimal gauge symmetries. It leads directly to our main
result that only the above two classes of theories are possi-
ble.

We begin our investigation in Sec. II with an analysis of
the simpler case of a massless spin-one field A, . We seek
"consistent" nonlinear generalizations of Maxwell's equa-
tions which arise from a Lagrangian. Our precise frame-
work and assumptions (which will be carried over directly
to the spin-two case) will be spelled out, and it then will
be shown that all such theories must have the normal
gauge invariance A, ~A, +B,X. The analysis will then
be generalized to a collection of spin-one fields, and it will
be shown that all such theories must have Yang-Mills-
type gauge invariance with respect to some Lie algebra. It
should be noted that the Lie-algebra conditions arise sole-
ly from our integrability condition on gauge symmetries;
no assumptions concerning group theory, connections on
bundles, etc., are introduced.

In Sec. III we consider nonlinear generalizations of the
spin-two equations in the simple case of no coupling to
matter. We parallel the analysis of Sec. II and obtain our
main result concerning the two classes of possible
theories. The section concludes with a definition of "gen-
eral covariance" and a demonstration that the second
class of theories is generally covariant. Finally, in Sec.
IV, we consider couphng of the spin-two field to matter.
%'hile noncovariant theories with coupling to matter cer-

tainly exist, some evidence (but not a general proofl is
presented that there may not exist any theory that, in
linear order, couples to the "usual stress-energy tensor of
matter. " The original Feynrnan result' is also briefly dis-
cussed from our viewpoint and some key assumptions im-
plicit in his analysis are spelled out. Finally, it is
remarked that to determine which of the two classes a
given theory belongs to, one needs only examine the gravi-
tational part of the Lagrangian to third order in y,b, or
the matter part of the Lagrangian to second order in y,b.

While we attempt in this paper to give a careful and
systematic analysis of the possible types of theories, it
should be noted that a number of loopholes exist in our
arguments. The most important of these is a strong as-
sumption (for which, however, some motivation is given)
concerning the number of derivatives that occur in terms
appearing in the divergence identity satisfied by the field
equations. (This restricts the possible forms of infini-
tesimal gauge transformations. ) Furthermore, while our
framework is quite general, it is not clear that it can en-

compass, for example, the equations arising from string
theory.

Conversely, there are a number of reasonable require-
ments which we have not imposed. In particular, we have
not required the equations to have a mell-posed initial-
value formulation, nor have we restricted the number of
derivatives of y,b which appear in the equations (other
than that this number be finite). Such additional require-
ments impose severe further limitations on the possible
theories. Indeed, it appears likely that if one imposes the
additional requirement that there appear no derivatives of
y~ higher than second order, one would uniquely obtain
Einstein's equation.

II. SPIN-ONE FIEI-DS

~~(1)a p (2.1)

where

~c
—(1)a g p ab

b

with

F.b —=B.ab —BbA. .

(2.2)

(2.3)

[Here we use the abstract index conventions of Ref. 5.
The superscript (1) on quantities such as W"" is used
here and throughout the paper to denote the number of

The purpose of this section is to set forth our frame-
work, assuinptions, and methods in the simpler context of
massless spin-one fields (with no current sources). At the
end of this section, we will see that for a collection of
spin-one fields, the Yang-Mills-type of gauge invariance
arises as a necessary requirement for a consistent non-
linear self-coupling. However, we shall begin in the sim-
plest context of a single spin-one field, where we will
show that the usual type of gauge invariance must hold
for consistent nonlinear generalizations of Maxwell's
equations.

The equations of motion for a spin-one field A, in
Minkowski spacetime —Maxwell's equations —are
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powers of the field variable (in this case A, ) occurring in
the expression. ] These equations arise from variations
with respect to A, of the action

g(2) I ~(2)de (2.4)

(2.5)

i.e., we have

~c-(1)a
(2)

5A,
(2.6)

where the right-hand side of Eq. (2.6) denotes the func-
tional derivative.

We seek, now, a nonlinear generalization of Maxwell's
equations to be obtained by adding terms to W( ' which
are cubic or higher order in A, . We denote the full La-
grangian density thus obtained by W and full action by S.
We impose no restriction on the orders of A, allowed (i.e.,
nonpolynomial Lagrangians are permissible) but we re-
quire that the total number of derivatives which occur in
each order is bounded by a (fixed) integer X.

The exact equations of motion are

~c
—a 0S

5A,
(2.7)

However, although any choice of W will, of course, yield
equations of motion, a serious consistency problem will in
general arise for these equations, as can be seen from the
following. Suppose we imagine solving Eq. (2.7) by a per-
turbation expansion about the zero solution, A, =0. The
linearized perturbation A, will, of course, satisfy
Maxwell's equation:

P ""[A„]=0.
The second-order equation will take the form

F(1)a[A ]+ cr(2)a[A

(2.8)

(2.9)

Hence, if we take the divergence of Eq. (2.9), the term in-

volving A, disappears and we obtain as an integrability
condition for solving (2.9) an equation involving only the
first-order perturbation:

(2.11)

Thus, linearized perturbations must satisfy Eq. (2.11) in
addition to Eq. (2.8); not all solutions of the original linear
equation give rise to one-parameter families of exact solu-
tions. Indeed, in general, Eq. (2.11) will be incompatible
with Eq. (2.8) and few, if any, solutions will exist. Similar
problems will also occur in higher orders in perturbation
theory. This is the "consistency problem. "

A sufficient condition to ensure that no such consisten-

~ ~

where Ab denotes the second-order perturbation and W' "
denotes the quadratic part of W'. The potential problem
is caused by the fact that W"", Eq. (2.2), satisfies the
identity

(2.10)

cy problem arises is that the quantity W' satisfy a diver-
gence identity of the general form

~c a
)( ~c a+p b'd ~c a+~ bc/ Q ~c a+ (2.12)

+~(1)bcg g ~c
—(1)a+. . . (2.13)

Thus, Eq. (2.8) now implies Eq. (2.11) and no consistency
problem of the above sort arises to second order. The sit-
uation is the same for the higher orders.

Conversely, it appears plausible that an identity of the
form (2.12) must be satisfied if the integrability conditions
for the perturbation equations are to yield no additional
equations on the lower-order quantities. Thus, I will
adopt the existence of an identity of the form (2.12) as the
fundamental requirement for a consistent nonlinear gen-
eralization of the theory of a spin-one field. It should be
noted, however, that I cannot rule out the possible ex-
istence of theories which could be judged as consistent by
some other reasonable criteria but which do not satisfy
Eq. (2.12).

A further restrictive assumption will now be made. We
wish Eq. (2.7) to be a local, partial differential equation,
involving a bounded number of derivatives of A, . This
would be difficult —although not impossible —to achieve
if the higher derivative terms beyond ){,a and p, are
present in the identity (2.12). Namely, in a perturbation
expansion, Eq. (2.12) then would relate a single derivative
of a '"" to second and higher derivatives of the lower or-
der ~'J". Thus, unless the second and higher derivative
terms acting on the highest derivative parts of the a(J'
vanish identically or cancellations occur in the various
terms, the successive a '"' will contain a larger and larger
total number of derivatives. Similar problems will occur
if A,, contains more than one derivative of A, or if p,
contains any derivatives of A, . Thus, I shall restrict at-
tention to theories for which an identity of the form

8 M'=A, M +P Bb&' (2.14)

holds, where p, is constructed locally out of A, and i)ab
(with no derivatives of A, appearing) and )) a is construct-
ed locally out of A„2),b, and B,Ab, and is, at most, linear
in B,A~. This restriction is probably the most significant
loophole in our analysis.

Equation (2.14) may be rewritten more conveniently in
the form

(p

becca)

p b~ ~ca (2.15)

where a, and Pa have the same properties as A,, and p,

where the tensors kapa", O.
a

' are locally constructed out
of q,b, A„and derivatives of A, and vanish when A, =0.
[The sum on the right-hand side of Eq. (2.12) is finite. ]
This identity will guarantee that the equation obtained
from taking the divergence of the nth-order perturbation
equation contains no new information beyond what is
available from the lower-order equations; the integrability
condition for the nth-order perturbation will be satisfied
by virtue of the previous equations. For example, if we
expand Eq. (2.12) to second order in A„we obtain

~c
—(2)a g(1)~c-())a+p(1)bg ~c-(1)a

a a Ia b
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except that now when A, =O we have p, =5, and

a, =0. Note that there is some arbitrariness in a, and

p, in that the transformation

0 ~ a

a, ~a, +f 'd,f,
(2.16a)

(2.16b)

leaves the identity (2.15) unchanged, where f is an arbi-
trary function constructed locally out of A, and g,b, with

f=1 when A, =O.
Until now, we have not used the fact that our equations

arise from an action via (2.7). ~e use this fact now to
reexpress our identity (2.15) as an infinitesimal gauge
symmetry of the action. Namely, for an arbitrary func-
tion X, Eq. (2.15) implies

0= f X[a,(P.'~ ) P.—'a,~ ]e4x

in W lies in W. In other words, for each pair of functions

P and f on spacetime, there must exist a function X such
that

[7 p, X p]=P r .

Thus, using our formula, Eq. (2.18), for these vector
fields, this integrability condition (2.19) becomes

(5P, )(d /+a P) (5P—, )(i3 /+a P)

+p, b(5pai, )g p, —(5~i, )p=p, (dbX+abX), (2.20)

where 5~ denotes the linear change in the quantity in-

duced by the variation

5A, =p, (Bbp+abp) .

Since p, is constructed locally out of only A, and 2),i„
we find

a bg+abX xS
5A,

(2.17)

which states that S is unchanged under the infinitesimal
variation

C

~pa= „p, (a,y+a, (()).
C

(2.21)

5A, =p, (dbX+abX) . (2.18)

This infinitesimal gauge invariance can be viewed in the
following manner. The collection of field configurations
A, on spacetime can be viewed as an infinite-dimensional
manifold M (which has a natural vector-space structure).
The action S is a scalar function on .A' and the infmi-
tesimal variation (2.18) defines a vector field &r on this
manifold. Thus, Eq. (2.17) states that the directional
derivative of S along P r vanishes for all X. In other
words at each point p 6M (i.e., for each field configura-
tion) there is an (infinite-dimensional) subspace W~ of the
tangent space V~ at p such that the derivative of S van-
ishes for directions in this subspace. The key issue is
whether these subspaces are integrable; that is, whether
one can find submanifolds P' filling M which are every-
where tangent to the collection of subspaces W
=I Wz ~pEMI. If so, then by choosing the function S
to be constant on the surfaces P', one can obtain a
theory which realizes the infinitesimal gauge symmetry
(2.18). In other words, the integrability of the subspaces
implies that the infinitesimal gauge symmetry (2.18) cor-
responds to some exact gauge symmetry and one then
need only choose a gauge-invariant action S to obtain a
theory which satisfies the divergence identity (2.15). Con-
versely, if the subspace are not integrable, then there is no
exact gauge symmetry corresponding to (2.18). It remains
possible that there could exist a larger gauge invariance-
i.e., that there still exist integrable subspaces which con-
tain W and arc not thc cntlrc tangent space—but th1s
would imply a larger gauge invariance for the exact
theory than occurs for the linear theory, and the behavior
of the exact theory for small A, presumably would not
reduce to that of the linear theory. In any case, we shall
not consider this possibility.

Thus, we adopt as our criterion for a consistent theory
that the subspace W generated by the vector fields &r,
Eq. (2.18), be integrable. By Frobenius's theorem this will
occur if and only if the commutator of two vector fields

A, ~A, (As, g,g)

we have

5S 5S

5A, 5Ab BA,

(2.23)

b Ab
(2.24)

BA,

Comparing this with Eq. (2.15), we see that no change is
induced in a, and the change induced in p, is such that
we can set P, =5, by a change of variables provided
that we can find an A, such that

(p '), =
5

(2.25)

The integrability condition for this equation is that the
second partial derivatives be symmetric:

g2A g(P
—i) b g(P

—l) e

0=2
aA, ,aA„aA, BA,

gp d

(p
—1) b(p —i) e

BA,

gp d

+(p ') '(p ') ' (2.26)

This is equivalent to the relation

(d

p d] ()
aA,

(2.27)

Hence, Eq. (2.20) becomes

2
A

p, (d~p+a~p)(Bbf+abp)
gp [b

C

+P, f(5yab)y (5~$)y)—=P, (ayX+ayX) . (2.22)

Now, under an algebraic change of dynamical variables
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Hence, the condition that P, can be set equal to 5," by a
change of variables is equivalent to the vanishing of the
first term in Eq. (2.22).

%'e shall now demonstrate that by a combination of the
transformation (2.16) together with the change of vari-
ables (2.23), all solutions of Eq. (2.22) are equivalent to
theories with Pa =5, and a, =0. In other words, with
the caveats discussed above, any consistent nonlinear gen-
eralization of Maxwell's equations must have (possibly
after redefinition of field variables) the normal gauge in-
variance under A, ~A, +a,X.

In investigating Eq. (2.22), it should be noted that P and

g are (arbitrary) given functions and we are attempting to
find a (p- and 1()-independent) p, , a„and (p-and iI)-

dependent) X such that Eq. (2.22) holds for all (t and it.
The complicated dependence of this equation on a, and

/3, is such that a direct attack upon (2.22) as it stands
does not appear promising. However, the situation im-
proves dramatically if one expands the unknown quanti-
ties in a power series in A, :

proven for n =1.) We wish to show that by further use of
the transformation (2.16) and change of variables (2.23)
we can obtain P,'"+" =0 and a,'"+"=0. Under the in-

ductive hypothesis, the nth-order part of Eq. (2.22) is

ala(n+1)b ann+))d
va ) a a ~a ~ (5(0) {n+1))g
aA, aA„

Thus, explicitly, we have

aa(n+1) aaln+1)

b c b
(2.38)

Now consider Eq. (2.36) in the case where /=1 but P is
an arbitrary function. Then 5(~)aa'"+"=0 and we find
simply

where 54(0) denote the "zeroth-order variation, " i.e., the
linear change in the quantity induced by the variation

(2.37)

(n)ag =. ag (2.28) 5(0)a(n+1) a ~{n)aa a (2.39)

n

x=gx("),

(2.29)

(2.30)

where, as before, the superscript (n) denotes the terms
containing precisely n powers of A, (so that if A, ~A,A,
with A. constant, we have a,'"'~A,"a„etc.). Let us simi-
larly expand Eq. (2.22) in powers of A, . Consider, first,
the zeroth-order terms in A, in Eq. (2.22). Since the 5~
and 5~ variations reduce the dependence on A', by one or-
der, there will be contributions from P,'" and a,"). We
must have

(1)aa ——cuba ~ (2.31)

where c is a constant, for the siinple reason that it is the
only one-index tensor that can be constructed locally from

riab and a single A, or a single a, Ab. On the other hand,
we must have

1)b p (2.32)

c(t/ia, (t) —pa, iij) =a,x' ' .

Taking the curl of this equation, we obtain

(2.33)

(2.34)

which can be satisfied for all ()I and g only if c =0. Thus,
we find

(2.35)

%e now assume, inductively, that, by use of the
transformation (2.16) as well as the change of variables
(2.23), if necessary, we have obtained P, =5, and a, =0
up to order n (This indu. ctive hypothesis has just been

for the simple reason that no two-index tensor can be con-
structed algebraicaBy from riab and a single A, . Since
P', ' =5,b and a', '=0, the zeroth-order terms in Eq.
(2.22) are simply

Bfba~ )
+ —0(g+1)

and, thus,

(n+1) a f(n+1)[A

(2.41)

(2.42)

where f'"+" is a scalar function constructed locally out
of A, and rjab (but no derivatives of A, are permissible).
But this is precisely the form which can be eliminated by
the transformation (2.16). Thus, using this freedom we
may set

(n+1) (2.43)
Returning, now, to Eq. (2.36) for general p and 1(), we

find
ap(n+1)b

BAd

ap(n+1)d
ah lady =a.x(")

BAb
(2.44)

and hence, taking the curl of this equation, we obtain

[where it should be remembered that X'"' depends on {)I)

and it), so X'"' is not necessarily "the same function" in
Eqs. (2.36) and (2.39)]. Thus, 5~('a,'"+" is a gradient.
Now, in the linear case, Eq. (2.31), 5I) 'a,"' is a gradient
even though a'," itself is not a gradient. However, this is
not possible in the nonlinear case. To see this, we take the
curl of Eq. (2.39) and obtain

5I) '[a(„,')+ "]=0 . (2.40)

But this equation states that B~ba,')+" is gauge invariant
under the infinitesimal variation (2.37), which implies (by
integrating these infinitesimal variations) that a(baa')+"
must be gauge invariant in the usual sense, i.e., under
Aa~Aa+aag. This means that, if nonvanishing,
a(baa') +" must be constructed entirely out of F,b

=2al, Abl and ri,b. However, this is out of the question
for alba.')+'I with n&1 since that quantity contains
( n +1) A, 's but at most two derivatives. Examination of
the limited possibilities available for n = 1 also shows that
alba,'l' cannot be nonvanishing and gauge invariant; only
the case a,"'=cA, works. Thus, for n ) 1, we have
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gp(n+1)b gp)n+ l)d
Qj

~
Q3

BA
'

BA

gp) n+1)b gp(n+1)d
a, ea,e+

gp) n + 1 )b

d.)dbfdd4'+
gp d

BAg
B,))3dP8b g =0 .

(2.45)

By choosing special cases for P and it) (e.g., P=x",
f=x" and P=x "x,P=x", where x" denotes a Cartesian
coordinate), it is not difficult to see that Eq. (2.45) can
hold for all )I} and f only if

gp) n + 1)b gpln + l)d

=O. (2.46)
d b

But, given that p,J'"=0 for 0~j&n, this is precisely the
(n+1)th-order part of the condition (2.27) that ensures
that we can eliminate p',"+" by a redefinition of field
variables. Thus, we may set p',"+"=0, which completes
our inductive proof.

Thus, we have proven that of all the possible infini-
tesimal gauge symmetries (2.18), the only one which cor-
responds to a finite gauge symmetry is equivalent (after a
possible change of field variables) to the usual infini-
tesimal gauge invariance under 5A, =B,X. Since this in-
finitesimal motion on M is constant, i.e., independent of
A„ the corresponding finite gauge symmetry is simply
A, ~A, +B,&. Thus, within the framework and assump-
tions discussed above, the only way to obtain a consistent
nonlinear generalization of Maxwell's equations from an
action principle is to add terms to Lagrangian which are

I

gauge invariant in the usual sense of Maxwell theory.
This can be achieved by adding arbitrary terms to W' '

such that A, appears only in the form F,b, although since
only the integral of W need be gauge invariant, it is not
necessary that W be locally constructed out of F,b. This
completes our discussion of a single spin-one field.

However, an interesting change in this situation occurs
if we start with a collection of k spin-one fields
A,', . . . , A, or—to phrase it somewhat better —a spin-one
field A,"which takes values in a k-dimensional "internal
vector space. " We shall use greek letters for the internal
abstract indices and will follow the convention of placing
the internal indices to the right of the spacetime indices.
The divergence identity required by our assumptions on

5S—/5A, "now takes the form

(2.47)

[as compared with Eq. (2.15)] which implies the infini-
tesimal gauge syminetry of S under

SA.~=p.b„~(a,X"+a,„"X') (2.48)

[as compared with Eq. (2.18)]. The fundamental integra-
bility condition analogous to (2.22) now takes the form

aA,
'

aA,
(ddt'+adpW)(dbP+a~spP)+ p. ' "(6yab„W &~b) W)—=p. ') "(c}b&"+abp') .

(2.49)

The possible forms for the linear parts of a,„"and p, „"
are now

I

volving the unknown quantities p,' ) &" and a,'&" drop out.
%e obtain

(1)v v A A,

Qgp =C pgAg

1)b v
~

——0.
(2.50)

(2.51)

2c „y("~)a,.A,P=c ~(c'„,~y"+S')a,.A, P .

(2.55)

c"„,a(by'"a. )y"=0 (2.52)

The curl of the zeroth-order part of Eq. (2.49) now yields The requirement that this equality holds for all A, and all
constant Q and Q implies that b"=0 and

In contrast with Eq. (2.34), Eq. (2.52) has nontrivial solu-
tions (for k & 1), namely, any c &i which is antisymmetric
in its lower indices:

0

1.e.,

O A, O2C ip ~A f

C v]p=C ApC pv ~ (2.56)

v vc pa= —c xI (2.53)

The zeroth-order part of (2.49) then also implies that

y)0)v ~pic+ g (2.54)

where b is a constant.
We now substitute our solutions for a,"„'"and X' '" into

the first-order part of Eq. (2.49), take the curl of this
equation, and also set both Q and Q equal to constants.
By taking the curl, we eliminate the unknown function
X'""and by making Q and Q constant, all the terms in-

C [pQ pjg=O . (2.57)

With . (2.57) satisfied (and 6"=0) all of the terms in-
volving a,'„'" and X' '" in the first-order part of Eq. (2.49)
cancel, so the second-order quantities a,'„'" and p,' ' „"
satisfy the same equation as though a,"„'"=0.A repetition
of the argument for the case of a single spin-one field then
shows that by means of the analog of the transformation
(2.16) and change of variables, we can set a,'&' ——0,
p' ' „"=0. Similarly, by induction it follows that
a,"„'"=0,P,"' „"=0for all n ~ 2. Thus, our general solu-
tion for a,&"and p, &" is
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p, „'=5,b5„",
V V

&ap =C pX~a

(2.58)

(2.59)

5A, I'=D,+&,

where

(2.60)

where c „~ is a tensor over the "internal vector space"
satisfying Eqs. (2.53) and (2.57).

Equations (2.53) and (2.57) are precisely the defining re-
lations for a Lie algebra. [Equation (2.57) is the Jacobi
identity. ] Thus, the allowed infinitesimal gauge invari-
ance of the general form (2.48), is precisely the Yang-
Mills infinitesimal gauge invariance

where 8 denotes the scalar curvature of the metric
rl,b+y, b, g denotes the determinant of this metric as
computed using the volume element e,b,d associated with
ilab„and the superscript (2) on the right-hand side of Eq.
(3.5) denotes the quadratic part (in y,b) of that expression.
Note that in this section as in the preceding section we use
the volume element associated with g,b in all integrals
such as (3.4). In addition, all indices in this section will be
lowered and raised using the flat metric rlab and its in-
verse q'b.

As in the Maxwell case we seek to add cubic and
higher-order terms to W' ' to obtain a nonlinear theory
with the field equation

D,X"= d, X"—+ f A„X]", (2.61) (3.6)

III. SPIN-TWO FIELDS

In this section we shall parallel the analysis of the
preceding section to obtain the requirements on consistent
nonlinear generalizations of the theory of a single, mass-
less spin-two field. Only the "vacuum" case is considered
in this section, i.e., we do not treat here the case of addi-
tional matter fields which couple to the spin-two field.
Some additional results for this latter case we will be dis-
cussed in the next section.

The field equation for a spin-two field, y,b ——y),b), in
Minkowski spacetimes (&,2),b ) is

g (1)ab 0

where 8"" denotes the linearized Einstein tensor:

~ 5 7' b + ) d{ib 7'o)

where

(3.1)

(3.2)

Xab Xab 2 Dab V (3.3)

with ) =rl'"y, b. These equations arise from the action

g(2) I ~12)de (3.4)

)2) (+ gg )(2) (3.5)

where [, ] denotes the Lie-algebra bracket defined by
c"„2. Thus, we have shown that within our framework
and assumptions, the only way of achieving a consistent
nonlinear generalization of the theory of a collection of
spin-one fields is to make the action gauge invariant in the
usual Yang-Mills sense with respect to some Lie algebra.
It should be emphasized that our analysis was in no way
prejudiced in the direction of group theory, fiber bundles,
etc. ; the Lie-algebra requirement arose entirely from our
fundamental integrability condition (2.49).

Again, however, a serious potential consistency problem
arises from the fact that 8"' satisfies the linearized Bi-
anchi identity:

g (1)ab () (3.7)

Hence, by exactly the same reasoning and assumptions
which led to Eq. (2.15), we require 8" to satisfy an iden-
tity of the form

(8ab @ed) 8ef Cb g d (3.8)

where 8',a
——8' 1,a) is constructed locally out of y,b and

2),b with 8',a ——5'1,5 a) when y,b
——0, and C,f is con-

structed locally from yab, g,b, and, at most linearly, from
B,y,b, with C,f ——0 when ),b

—0. In fact, since C,f has
an odd number of indices, it cannot be constructed from

y,b and 2),b alone, and thus it must contain B,y, b precise-
ly once. The redefintion freedom corresponding to (2.16)
1S

f'.8".a
C ea~f SC eb(f ')"d+(f ')'dB,f e,

(3.9a)

(3.9b)

5rea 8ea(dafb—+C ab4e) (3.10)

where g, is an arbitrary one-form field.
Again, the key issue is whether this infinitesimal gauge

invariance corresponds to an exact gauge invariance, i.e.,
whether the subspaces of the tangent space to the mani-
fold of field configurations which are spanned by the vec-
tor fields (3.10) are integrable. Thus, for a spin-two field,
the fundamental integrability condition becomes that for
any two one-form fields P, and t(„ there must exist a
one-form field 7 such that

where f'b is constructed locally from y, b and 2),b, with

f b =5 b when 7'ab =0.
The infinitesimal gauge invariance associated with (3.8)

1S

ed)(da 4+C ab0e) (5Q ed)(()a)t'b+C ab4'e)+8 ed[(5PC aha'e (5' ab)'(t'e] 8 ed(5aXb+C abXe) ~ (3.11)

where now 5~ denotes the first-order variation resulting
from (3.10).

Before proceeding to solve Eq. (3.11) in analogy with
our solution of Eqs. (2.20) and (2.45), we note that there is

I

one obvious solution to Eq. (3.11): namely,
ab a b& .d = (. d)

C',b
——0,

(3.12)

(3.13)
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5Y.b =a(.Pb) . (3.15)

Since this infinitesimal motion on the vector space of
spin-two field configurations is constant (i.e., independent
of Y,b) the corresponding finite gauge transformations are
simply

Yah~I ab+a(a{tb) ~ (3.16)

which is the normal spin-two gauge invariance.
Can consistent nonlinear theories of a spin-two field of

this type be derived from an action principle7 Our general
arguments say that it should be possible, and, indeed, it is
quite easy to construct examples: we can make a normal
gauge-invariant action by adding to W' ' any scalar such
that Y,b appears only in the form of the linearized
Riemann tensor:

Babe =a a[a Yb]c aca[a Yb]
(1)d d (3.17)

(3.14)

Such theories have the infinitesimal gauge invariance

Perhaps the simplest such term to add to the Lagrangian
which gives nonlinear equations is

~(2) (g(1))3 (aaabY aaa Y)3 (3.18)

Thus, the Lagrangian W=W( '+W' ' where W' 'is the
usual spin-two Lagrangian (3.5), yields a nonlinear gen-
eraHzation of the spin-two equations which is completely
consistent in the sense discussed in the preceding section.
This theory, as we11 as a11 others with the gauge invari-
ance (3.16}, is not generally covariant, so it is demon-

strably false that all consistent nonlinearly self-coupled
spin-two theories must be generally covariant.

Returning to Eq. (3.11), we note that, in analogy with

Eq. (2.21) we have

aBab

cd 5Yef
aYef

aa"
B ",f(a Pb+C" b{[}b), (3.19)

aYef'
so Eq. (3.11) takes the form

f B f (a, Pb +C,blab )(a Pb +C bP{ ) +B' d[(5{()C' b )0 (5$—C ob }'Ylab

Yef Yef

=B',d(a, Xb+C;bX, ) . (3 20)

Again, the condition that 8' cd can be reduced to 5'(c5 d)

by a change of variables Y,b ~y, b (Y,d, 51,f ) is the vanish-

ing of the first term

aB',d g8
aYef

(3.21)

We repeat, now, our previous procedure of expanding
the unknown quantities in terms of powers of Y,b.

(cd) u)a Ycd+u2a(cYd) +~3a{cY5d)(1)e

+u4ab Y{ 5d) +u5a Y ) d

+ababY 'g d .eb (3.27)

Now, the most general tensor of type (1,2), symmetric
in its lower indices, which can be constructed from g,b

and, linearly, from Y,b (with no more than one derivative)
ls

C;b=+C'""b

Bah g B(n)ab

(3.22)

(3.23)

(3.24}

The most general tensor of type (2,2), symmetric in its
lower indices, which can be constructed from ri,b and,
linearly, from Y,b (with no derivatives) is

cd ~1 I Xcd +~27 Icd+b33 9 Qcd

+b4Y5 (c5 d)+b55 (c3 d)+1365 (cY d) ~ (3.28)

The zeroth-order (in Y,b) part of Eq. (3.20) yie]ds

gg (1)gh" (a.q, )(a,(t„)
Elf

gg (1)ab
cd

al gh
L

+ (5P'C""{cd)P,—(5Ib 'C""{cd)}Pe=a(cXd)', (3.25)

where 5@' denotes the linear change of a quantity caused
by the variation

Yab a(a 4) (3.26)

We use the redefinition freedom (3.9) with

fb 5b g Y5b (5 5 )Yb

to set

(3.29)

(3.30)

(3.31)&5=&6

Taking the variation of the quantities (3.27) and (3.28),
we obtain

( d)=(c~1+ 2 ~2}a a(c0d)+ 2 2 c~d~

+({23+—,a4)5'(da, )a yb+ ,
'
a4aba y{,5'd)+(a5+—,' ab)a'a"/br, d+ ,

'
a6a—ba ct)'r/,d— (3.32)



33 SPIN-TWO FIELDS AND GENERAL COVARIANCE

ag( I )ab

(3.33)
Vgh

We substitute these expressions back into Eq. (3.25), thereby obtaining an equation for the unknown coefficients analo-

gous to (but noticeably more complicated than) Eq. (2.33) in the spin-one case:

(b, b,—)(a'y. a„y„a—y.a„y„+(~,+,' ~, )(y, a a„y„y,a a„q„)

(3.34)

+ a2(~ a ad4 4' a ad4 )+ u [ada a p pd—a, a Q +(a a p„)g,—(a,a'(t[„)()[(d)j

+~(u&+ u6)(W a a 4'b 4' a a fb )+ &b(f aba p Q—aba'it)'))'r), d =a„X"'„.

The nonappearance of b2, b&, and b& in this equation re-
fiects the fact that these terms satisfy the first-order part
of Eq. (3.21) and hence can be eliminated by a redefinition
of field variables y,b~y, b. We assume this choice has
been made so that

(i.e., p, is a dilation) and let p, be a gradient, Q, =a,p.
%e obtain

——,'(b, —b, )(~,[„a„afaa.p —~«,a„a,a a.p)=0

(3 40)

b2 ——b3 ——b5 ——0, (3.35) which implies

Similarly, the fact that bi and b4 appear only in the com-
bination (b, b~) im—plies that, in addition, we can set any
other combination of these coefficients, e.g., (b, +b4), to
zero by redefinition of field variables:

b)+b4 ——0. (3.36)

a4 ——a5 ——a6 ——0. (3.38)

To see this explicitly, first choose ()), such that (t(,g'=0
and a (t b

——0, but let a[,gb) and its derivatives be nonzero;
then the last two terms vanish, but the first term does not,
in general, unless a& ——0. Having established that a& ——0,
we let g, p'=0 but let a pb and its derivatives be nonzero;
then the last term vanishes but the remaining term does
not, in general, unless a5+ —,'a6 ——0. Finally, from the
vanishing of the first two terms it follows immediately
from Eq. (3.36) that a6 ——0.

Next, we choose

aa 4b lab (3.39)

The analog here of taking the curl of Eq. (2.33) to ob-
tain (2.34) is to perform the operation corresponding to
calculating the linearized Riemann tensor: thus, we
operate on Eq. (3.34) with afag and then antisymmetrize
over f and c and over g and d. The right-hand side then
vanishes and (since X( ' was arbitrary) the full content of
Eq. (3.34) is expressed by the vanishing of the left-hand
side of this twice differentiated and antisymmetrized ver-
sion of Eq. (3.34). Rather than write out all the terms
occurring in this equation in general we consider several
special cases.

First, if we take g, to be a constant one-form field (i.e.,
a Minkowski translation) and let P, be arbitrary, the only
surviving terms are

—,'a4(p[da laba a[fp, l+l[[,afiaba'a

+(u5+ ub)~ [f( ) )[d gl

+ —,'as'[, a[f(7),)[ a la a P')=0 . (3.37)

However, this equation can hold for all ()[(, only if

bi —b4 ——0 . (3.41)

which implies

1a, + —,a, =o. (3.43)

The only term still serving on the left-hand side of Eq.
(3.34) can manifestly be expressed as a symmetrized
derivative,

~ ~2(0.a.add' —4"a.ad4')

2~ ~2a(e(4'ad)4'e 4' ad)4e ) (3 44)

and hence cannot be eliminated. Thus, after using all our
freedom (3.9) as well as the freedom to change variables,

y,b~y, b, the general solution to Eq. (3.25) can be ex-
pressed as

C""(,d) ——a ) (a'ycd —2a«yd)'),
g(1)ab 0cd

(3.45)

(3.46)

Note that the expression for C""„d, is just minus the
standard formula for the linearized Christoffel tensor for
the metric:

gab Iab +2a
& 3 (3.47)

The antisymmetric part C '~,bj is unspecified, but since
C',b enters Eq. (3.20) only contracted with 8',d and
since 8' ",d ——8' "' ',d, the antisymmetric part of C',b
will be irrelevant if all 8'"',d =0 for n &0, as we shall
show.

Consider, first, the particular case a) ——0. We will now
show that this uniquely corresponds to a theory with nor-
mal spin-two gauge invariance. %e assume, as our induc-
tive hypothesis, that by use of (3.9) and redefinition of

Finally, we consider the case where g, is a general Kil-
ling field, a, it)b L,b

——L——[,bl with L,b constant, and now
let P, be arbitrary. We obtain

——,
' (a, + —,'a )(L,[fa ]a'a„(([(d)+L,„ad)a a[f$ ])=0

(3.42)
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field variables, we have C'J"(,b, 0——for all j &n and
8'E',d

——0 for 0~j(n .(Since a, =O, this hypothesis
holds for n =1.) The nth-order part of Eq. (3.20) then be-
comes

gg(n + t()ab gg(n+1)gh
(a.fb )(a(EA )

8f al'ab

+ (5(0)c(n + 1)e
)y (5(0)c(n + 1)e

=a(,Xd)
' . (3.48)

In analogy with the derivation of Eq. (2.40), we let $, be a
constant one-form field. Then a, gb

——0 and the5~ varia-
tion also vanishes. We then operate on Eq. (3.48) with

afas and antisymmetric over f and c and over g and d.
%e obtain

5,"'(afa,c'"+'"„„—a, a, c'"+'",f„
—afa, c'"+'"„„+a,a„c'"+'",f„)=0 .

But this equation states that the quantity in parentheses is
gauge invariant in the usual spin-two sense (3.15). In or-
der for this to be true, y,b can appear in this expression

only in the form of Ra(b' in Eq. (3.17). However, each
has two derivatives of y,b, whereas the term in

parentheses has (n+1) yab's and only three derivatives.
Thus, for n ~ 1 it cannot be gauge invariant in the sense
of Eq. (3.15) unless it vanishes. However, the vanishing
of the term in parentheses is equivalent to the statement
that C'"+'"(cd) is a symmetrized derivative:

C(n+ 1)e a e(n+1)e
(cd) (cd d j ~ (3.50)

But this is precisely the form of C'"+'"(,
d) which can be

eliminated by the redefinition freedom (3.9), with
f'b ——5'b f'"+'"b T—hus, w. e use this freedom to obtain

C(n+1)e 0(cd) (3.51)

With the result established, it follows in analogy with
(2.46) that

a8(n +1)ab a8(n + 1 )sb
cd cd =0

a
(3.52}

which implies that we can set

g(n +1)ab 0cd (3.53)

cd 5(c5d) ~ (3.54)

C'(.d)= -~ cd (3.55)

where I'« is the (full) Christoffel tensor constructed
from the metric g,b, Eq. (3.47), relative to ilab. [This can
be verified to be a solution of Eq. (3.20) by direct substitu-
tion. ] It yields the infinitesimal gauge invariance

by a redefinition of field variables. This completes our in-
ductive proof that C ( b)=0 aild 8 d =5 ( 5 d), so that
we are in the case (3.15) discussed previously.

Consider, now, the case a, &D. We know of one candi-
date for the complete solution 8',d and C'(,d), namely,

~lg'b rkd]=~[g.b n,'d] . (3.57)

If Eq. (3.57) holds, then the dynamics of g,b cannot de-
pend upon il,b. Furthermore if all other fields (including
those describing the measuring apparatus) couple to g,b in
such a way that Eq. (3.57} continues to hold for the full
action, then there will be no way to measure g,b, i.e., the
fiat background metric will be physically irrelevant.

To see the connection between our infinitesimal gauge
invariance (3.56) and general covariance, we replace y,b

by g,b, Eq. (3.47), as our dynamical variable. Let
P:R ~R be an arbitrary diffeomorphism and let (()*

denote the induced map on tensor fields. Since the action
is constructed entirely from g,b and rl, b, it cannot change
when we apply a diffeomorphisrn to both g~& and q,b..

~[0"g.b O*n,d]=~[g.b El.d]. (3.58)

In particular, this implies that for a one-parameter fainily
of diffeomorphisms, PE(, we have

S[A'g.b A*.n.d] .
d EII.

(3.59)

However, the right-hand side of Eq. (3.59) can be ex-
pressed in terms of functional derivatives as

M 5S
d~5['@gab~4'A, lcd]= ~)gab 5 +~/Ad 5%d

where V, is the derivative operator associated with g,b,
aod, as will be demonstrated explicitly below, it corre-

sponds to a generally covariant theory.
We show, now, that by use of the allowed freedom (3.9)

and redefinition of field variables, the solution (3.54) and

(3.SS) is, in fact, the only solution of Eq. (3.20} with the
first-order part given by (3.45) and (3.46). To do so, we

define M("",d and bC'"",d to be the difference between

the nth-order part of an arbitrary solution [with the first-
order part given by (3.45) and (3.46)] and the nth-order

part of our solution (3.54) and (3.55). Our inductive hy-

pothesis now is that, by use of the available freedom, we

can set M(E" « ——0 and b,c'J"(cd) —0 for j—(n Th. is hy-

pothesis holds for n =1. Assuming our hypothesis, we

take the difference between the nth-order parts of Eq.
(3.20) for our arbitrary solution and for our known solu-

tions (3.54) and (3.55). We find that 58("+"b,d and
QC(n+))e(,d) satisfy Eq. (3.48). Hence a repetition of tlm

argument given for the case a) ——0 establishes the desired
result that these quantities can be made to vanish. Thus,
the only types of infinitesimal gauge invariance that can
be achieved are the normal spin-two gauge invariance
(3.15) and the gauge invariance infinitesimally generated

by (3.56).
%e conclude this section with a demonstration that

theories with the infinitesimal gauge invariance (3.56) are
precisely the generally covariant theories. We define a
theory of a field y,b in Minkowski spacetime (R4, rl, b)
arising from an action S[yab, ried] to be generally coUalE'
a« if, by making a new choice of dynamical field variable

yab~gab, if necessary, the action is indePendent of the
choice of the flat background metric, i.e., for any fwo
(complete) fiat metrics rlab and rl,'b we have

5Yab ~(a0b) ~ (3.56} (3.60)
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~(gab

2~(ahab)

(3.61)

the first term on the right-hand side of Eq. (3.60) vanishes
for theories with the infinitesimal gauge invariance (3.56).
Thus, we obtain

g'/cd ~ lab~ A, Red
Qcd

(3.62)

which implies that for any one-parameter family of dif-
feomorphisms starting at the identity, we have

where P=P(A, ) is the vector field generating the one-

parameter family. (Note that since we have chosen to use
the volume element associated with g,b in our integrals,
the functional derivative of S with respect to g,b includes
contributions from the variation of this volume element. )

Since

5S/5g, i,
—— 5S/5y, i,

1

2Q (

the case where y, i, is coupled to another field (or fields)
which we shall denote as P (although it is not assuined
that P is a scalar field or a single field). We consider an
action of the form

Si.[7'.»n.~ 4]=SO[7'.»n.a] ~SM[7'.»n.~ 4] (4.1)

where A, is a parameter. In cases usually considered, A, is
the gravitational constant, and Eq. (4.1) gives the breakup
of the total action into a "gravitational part" and a
"rnatter part. "

In the preceding section, we argued that 8 =5S/5y, b

must satisfy the identity (3.8). The only modification
caused by the presence of an additional field P is that the
analog of the identity (3.8) for

Vah
(4.2)

(4.3)

may now contain additional terms proportional to the
matter equations of motion:

S[g'b 4i.n.~]=S[g.i n.~] . (3.63}

s[g., g,'„]=s[g., g„], (3.64)

i.e., we have proven general covariance. Conversely, by
reversing the steps of this argument, it is easily seen that
any generally covariant theory has the infinitesimal gauge
invariance (3.56).

Now, any two complete, fiat metrics t),i, and t),'i, on R
can be related by a diffeomorphism: rl,'& ——p't), i, . (Proof:
choose global inertial coordinates for rl,'i, and for rl, i, and
take P to be the map which associates points with the
same values of the coordinates in the two systems. } By
appending an orientation reversing isometry to the dif-
feomorphism, if necessary, we can ensure that P is orien-
tation preserving. But any orientation preserving dif-
feomorphism can be smoothly deformed to the identity.
[Proof: the one-parameter family Pi defined by
Px(x) =P(Ax)/A, deforms P to a linear map in the limit
A, ~O, and any orientation preserving linear map can be
deformed to the identity. However, it should be noted
that we have been sloppy in not worrying about boundary
conditions at infinity in our manifold of field configura-
tions and when such boundary conditions ar'e properly im-
posed and the allowed diffeomorphisms are correspond-
ingly restricted, there is reason to believe that not all
orientation preserving diffeomorphisms of R can be de-
formed to the identity. ] Thus, any complete flat metric
rl,'& can be written as rl,'i, ——Pig, i, where Pi is a one-
parameter family of diffeomorphisms starting at the iden-
tity. Thus, Eq. (3.63) becomes

gab
5SG

6 =
51'.b

(4.4)

5y,b
(4.5)

As before, the integrability condition resulting from this
identity establishes that the only possible types of theories
are those with normal spin-two gauge invariance and
those satisfying general covariance.

First, we remark that it certainly is possible to have
consistent theories (in our sense of the term) with y, i, cou-
pled to matter which are not generally covariant. Perhaps
the simplest type of example of such a theory is to take
S~ of the form

~M ~M + Vob~ (4.6)

where SM is the zeroth order in y,b matter action and
V' is any tensor field constructed from P and, & which
is identically conserved. In particular, such V' 's can be
obtained by letti. ng V be any tensor field loca11y con-
structed from il,i„p, and derivatives of p, satisfying
V ~~ yl b][ j y and setting

and its derivatives. However, if we impose the matter
equations of motion, e~ ——0 (but not the equations of
motion for y, i, ), we again conclude that 8'i~ must satisfy
(3.8). But, if (3.8) holds for all A, (i.e., the theory is "con-
sistent" for all values of the gravitational constant) then
(3.8) must hold separately (with the same values of 8',q
and C',z) for

IV. COUPLING TO MATTER y Qb g g yccbd (4.7)

In the preceding section we considered the simple case
where the spin-two field y,b was coupled only to itself,
i.e., the action depended only on y,b and q,b. In this sec-
tion, we shall make some additional remarks concerning

[A tensor field of the form (4.7) with a locally constructed
V' is referred to as a "Pauli term" by %'einberg. In
fact, any conserved V' can be written in the form (4.7)
(see problem S of Chap. 4 of Ref. 5) but, in general, V'
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need not be local. I do not know if all conserved V'
which are locally constructed out of q,b, ((}, and deriva-
tives of P must arise via (4.7) from a similarly locally con-
structed V' .] Then SM will satisfy the normal spin-two
gauge invariance rather than general covariance, and
when added to an SG of this gauge type (such as discussed
in the preceding section) will yield a consistent, nongen-
erally covariant theory. Perhaps the simplest explicit ex-

ample in the case of a single scalar field P is to choose
V' ~=2$vf ~'at~lb, in which case Eq. (4.6) becomes

S~ =S~OI f—y.b(a'abc n"—a'a, q} . (4.8)

Note that for a general "Pauli term, " Eq. (4.7), the cou-
pling (4.6) can be reexpressed by integration by parts as

R,'b~~ V' where 8,'b,'~, again, denotes the linearized
Riemann tensor}, thus making more manifest the normal
spin-two gauge invariance of Sbt. Numerous additional
examples can be generated by nonlinear couplings of R,'bi,'q

to the matter fields.
However, if additional assumptions are made concern-

ing S~, it may be possible to draw stronger conclusions.
As an example, consider the argument for general covari-
ance originally given by Feynman. ' Feynman restricted
consideration to particle matter, with zeroth-order action
of the form

Sbt =f Y/zbu u d'r (4.9)

where u' is the particle four-velocity and v is the proper
time (and we have made minor changes in notation and
conventions). Feynman took the first-order coupling to be
of the form

SM = f y,bu'u d~.(1) (4.10)

He then assumed (implicity) that the complete matter La-
grangian is the sum of (4.9) and (4.10):

S~=S~+S~ '(0) (1) „ (4.11)

i.e., no quadratic or higher-order couplings in y,b to the
matter are permitted. His analysis concluded that the
only possibility for SG which involves no derivatives of
y,b higher than second is the Einstein Lagrangian for the
metric g,b

——g,b+ y,b.
From our viewpoint, the Feynrnan result can be ob-

tained as follows. The action (4.11) is manifestly general-
ly covariant with respect to g,b ——g,b+y, b. Consequent-
ly, the gauge invarianee of Sbt is of this type, and hence,
as remarked above, S6 must also be generally covariant
with respect to g,b. Uniqueness of Einstein's equation
then follows from the fact' ' that, aside from g'b, the Ein-
stein tensor 6' is the only tensor constructable solely out
of g,b (i.e., which is "generally covariant") which involves
no derivatives higher than second and satisfies V~6'"=0
1dentlcally.

It should be noted, however, that the assumption that
(4.11) describes the full matter Lagrangian is rather
strong. Indeed, the possibility of obtaining a consistent
theory with matter coupled only linearly to y,b is very
special to the particle matter considered by Feynman. It
is the (assumed) general covariance of Sbt which leads
directly to the general eovariance of the theory. Indeed,

one obtains the much stronger result that the theory is
generally covariant with respect to g,b=il,b+y, b., the
possibility of even a theory equivalent to this under a
redefinition of field variables (e.g., a theory generally co-
variant with respect to g b ='gob+ y b+rl'"y yu) is ex-
cluded by Feynman's assumptions.

However, at least in many cases, a much weaker and
quite natural assumption concerning the coupling of y,b

to matter may suffice to eliminate the possibility of a
theory with normal spin-two gauge invariance, thus yield-
ing the conclusion that the theory, if consistent, must be
generally covariant: we consider the requirement that, in
lowest order, y,b couple to the stress energy tensor, i.e.,
that the linear order in y,b part of the matter action be

SM f yabT (4.12)

where T' is the "stress-energy tensor of P in Minkowski
spacetime. " We make no assumption about the higher-
order parts of Sbt. The reason that I put quotes around
"stress-energy tensor of P in Minkowski spacetime" is
that, in fact, this term is rather ambiguous. There are two
basic procedures for defining T'. The first —which de-
fines the "canonical stress-energy tensor" —uses Noether's
theorem to obtain a conserved tensor, 8, Te 0, for a——n
arbitrary Lagrangian field theory in Minkowski space-
time. However, Te depends on the choice of Lagrangian
W (i.e., it changes if one adds a total divergence to W,
even though this does not affect the action S). Further-
more, Te is not, in general, symmetric and, hence, is not
appropriate as a source term in the spin-two equations.
Thus, we shall not employ this definition. The second ap-
proach to defining T'" is applicable if the field theory is
defined in a general, curved spacetime, with metric g,b.
one defines T by functionally differentiating SM with
respect to g,b. However, for a theory defined in flat
spacetime, only the functional derivative of Sbt in direc-
tions of variation toward other flat metrics are well de-
fined, i.e., only

T g'ggb=2 T g b= —2 gT b

is unambiguous. Thus, we obtain a well-defined expres-
sion for d, T' (which will be proportional to the matter
equations of motion), but other aspects of T'" defined by
this procedure may depend upon how the theory is gen-
eralized to a curved spacetime.

Nevertheless, we shall now illustrate that, at least for
conventional choices of T', Eq. (4.12) already precludes
the possibility of normal spin-two gauge invariance. As a
specific example, we consider a massless Klein-Gordon
scalar field P with

Sbt' ——f B PB P (4.13)

and we take its stress energy tensor in fIat spacetirne to be

T.,=a.ya, ((}——,
' ~.,a'ya, y . (4.14}

Now, if we are to obtain a theory with normal spin-two
gauge invariance, S~ must have vanishing variation
under the infinitesimal change 5y,b

——B~,gb~, provided that
the matter equations of motion are satisfied. Thus, to ob-
tain a normal spin-two gauge invariant theory, we must
have
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(a b) b a
Yah Yah

=(terms which vanish when 5SM/@=0) .

(4.15}

We argue, now, that Eq. (4.21) cannot be satisfied for the
simple reason that the left-hand side is the divergence of a
quantity that is locally constructed out of the fields,
whereas the right-hand side cannot be expressed in that
form. To verify this latter claim, we note that we can
rewrite the first term as

Plausibly, the only way Eq. (4.15) can be satisfied is if

5Siir i, 5' i 5'
(4.22)

+ 0 ~ ~ (4.16)

is satisfied identically, where ub, U+, ui+~, . . . are con-
structed out of rl, &, P, y,&, and derivatives of P and y,s

Now, we assume that S~ is given by (4.12), with T,b

given by (4.14). The left-hand side of the zeroth order in
the y, b part of Eq. (4.16) is then

a
5S~'

(4.17)

while the zeroth-order parts of U, ui, . . . vanish. The
first-order part of Eq. (4.16) then becomes

+U
(1)beg 5Si 0)

(4.19)

Using the explicit form of T,b, Eq. (4.14), we find

(4.20)

and, hence, we obtain

(Note that T' appears in this equation only in the form
"d, T'~ which, as remarked above, is unambiguously de-
fined. ) Comparing the right-hand sides of Eqs. (4.16) and
(4.17), we find

(4.18)

The first term on the right-hand side of (4.22) is a diver-

gence, but the second term cannot be since no derivatives
of y, b appear, and the expansion of the divergence of any
quantity involving y,b must contain at least one term
with a derivative acting on y,b. Hence, the only possibili-
ty for making the right-hand side of Eq. (4.21) a diver-
gence is to cancel the "bad" term in (4.22} with the
remaining terms in (4.21). However, this is impossible,
since (after adding further divergences, if necessary, to re-
move all derivatives from y,b in these terms} these
remaining terms in (4.21) all contain the combination
O'B, P, which does not occur in the bad term in (4.22).
Thus, we conclude that Eq. (4.21},and, hence Eq. (4.16),
cannot be satisfied, so no theory with normal spin-two
gauge invariance can be constructed in which, in linear or-
der, y,b couples directly to the stress-energy tensor (4.14).
It seems clear that this conclusion is far more general
than the particular example considered here, but I do not
see how to give a general proof.

Finally, it is ~orth noting that in order to determine the
gauge type of a consistent theory within the framework
considered here, it suffices merely to know SG to third or-
der in y,b or (assuming S"&0) to know S~ to second or-
der in y,&. The reason why this is so is that we can there-
by calculate 8'G to second order or 8'~ to first order. In
either case, by substitution into Eq. (3.8), we can obtain8"",~ and C"",~. If these quantities vanish or can be
made to vanish by the allowed transformations discussed
in the preceding section, then the theory must have nor-
mal spin-two gauge invariance. If not [in which case we

can set 8"",g ——0 and have C"",d be given by Eq.
(3.45}],then the theory must be generally covariant.
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