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Classical fluctuations in dissipative quantum systems
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Dissipative quantum systems such as an unstable field, thermal field, and cosmological particle
production are investigated. Equations of motion for each appropriate mean field are revealed to be

Langevin type. The derived correlation of the random field turns out not to be Gaussian nor white

in general. A relation between a popular quantum average and the statistical correlation is also clar-
ified.

I. INTRODUCTION

Recent work on the early stage of the Universe has re-
vealed the possibility that the density fluctuations we ob-
serve now originate from the zero-point oscillation of ini-
tial quantum fields. ' Moreover, some people try to
describe the entire Universe by a single wave function
based on quantum mechanics. People say that a free
propagator of some quantum field in de Sitter space itself
describes long-wavelength classical fluctuations. But no
statistical property can be derived from quantum mechan-
ics without observation or a coordinate process. In the
same way, a wave function of the Universe that obeys the
Wheeler-De%'itt equation cannot undergo metamorphosis
into a classical distribution function without any process
of observation. If we adopt the quantum-mechanical
description of the early Universe, we have to clarify how
the statistical fluctuations as classical degrees of freedom
arise from quantum theory.

The above question reminds us of dissipative back reac-
tion upon classical degrees of freedom by quantum fields.
It seems natural to make a conjecture that systems which
show frictional motion' or relaxation may as well accom-
pany statistical fiuctuations since both dissipation and
fluctuation stem from information loss. In this paper, we
investigate how mamfestly classical fluctuations arise in
dissipative quantum systems, such as a model of unstable
particles, finite-temperature quantum field theory, ' and
anisotropy damping due to particle production in the ear-
ly Universe.

II. DERIVATION OF THE LANGEVIN
EQUATION

Let us begin our study by an unstable real scalar field
which spontaneously decays into massless fermions. We

cannot predict where and when the decay takes place and
the momentum of the produced fermions is uncertain.
This unpredictability is the very origin of the appearance
of the classical (real) fluctuations. We would like to con-
centrate on the dynamics of the instantaneous vacuum ex-
pectation value of the scalar field (mean field) while disre-
garding fermion dynamics which is thought to be very
complicated and unpredictable in a long time scale. The
generating functional for P is

exp i +i J

where

in the exponent means f d x times the time integra-
tion along a loop: from 0 to t and then back to 0 again.
The path integral is evaluated on this path. We have to
distinguish field variables whose arguments are on the
positive-direction and negative-direction time branches.
They are denoted by + and —,respectively. This choice
of an integration contour is essential to an instantaneous
vacuum expectation value of P (the ordinary one
(0 in

~ P ~

0 out) is completely nonlocal, so it is inade-
quate for the mean field)and , to a derivation of physical
retarded effect (the ordinary method using a single-
direction contour is based on a boundary condition which
does not distinguish past and future). The fermion in-
tegration in Eq. (1) becomes

F[P]= f &P f &/exp i f P( fP+ie1)P—
=Det[1 (i~) 'fP]—
=exp f' f d4x f d x'(P+, P )„

S„„(x—x')SP'(x' —x)
—S„„(x—x')S+"(x' —x)

—S~+„(x —x')S""(x'—x)

S.„(x—x')SP'(x' —x)
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where Det means a determinant over functions whose arguments are on the loop path. A term of lowest order in f is re-
tained in the last line. The S's are fermion propagators:

S&„(x—x') = —i ( Tgz(x)g„(x') },
S„+„(x—x') =+i(g„(x')g„(x)}=S„„(x—x')',
S„„(x—x') = i—( Tg„(x)f„(x')} .

(4)

The matrix structure of the propagator and the vertex reflects a loop path integral of Eq. (1). Equation (3) is rewritten as

F[P]=exp — f dt f d x f Ch' f d I'[Pa(x) XF(x x')—Pz(x') 4i8—(xo xo—)gz(x)XF(x —x')P, (x')]
0 0

=exp f f d x f d x (P+,P )» 2X xx' .

where

XF(x —x') = —iS„„(x—x')SP'(x' —x ),
X&(x —x') = iS&—„(x—x')SP'(x' —x),
X(x —x') = —iS„„(x—x')S+"(x' —x),
XF=ReXF, XF—ImXF

4'a=0+ 0 0—.= -2(4++0 )-
The next step is to construct the effective action I [y]. The procedure is almost identical to the ordinary single-time

path theory. For example,

y(x) = —. lnZ[J]
1

I"[V ]= ~[J[m]]- f,J[e]e
At tree order, exp(i I'[qr] ) becomes

m mexp(iI"'0'[qr])=exp i f d x —,'(B„y+) — y~' —
, q+ — 2(—d„y—)'

XF
+ f f d x f d x'(y—+,p }„2XX

We cannot directly write down the equation of motion for p like 51 [qr]/Sp(x) = —J(x)=0, because this equation be-
comes complex due to XF and X whose imaginary part (discontinuity) represents the instability of y(x). (Note that P has
been assumed to be real. } However, the difficulty is completely avoided if we regard that the complexity arises from a
random perturbation onto the y field. Equation (8) can be rewritten as

exp(il'"[mt) = f ~P'(k)exp«S, rf[q»kl» (9)

where

exp ——, f d x f d x'g(x)(f g ) 'g(x')
&(g) =

f &(exp ——,
' f d x f d x'g(x)(f XF) 'g(x')

2 2

S.rr[u»k]= f d'x -'(~,~+)' —
2

V+', ~+'—

(10)

+2f f d x f d x'8(xo xo)ya(x)XF(x —x')y—,(x')+ f d x g(x)ya(x) .
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We can interpret the field g(x) as a classical random field
which is Gaussian but not white because the weight p(g)
in the summation by g(x) has a pure Gaussian form. In
fact defining a statistical average by

( . *) = fey. (12)

the correlations of the random field are written as

(g(x i )g(xi ). . . g(x,„+)) ),=0,
(g(x()g(xi)), =f XF(x( —x2)

p ~(p ),f d i) —ip(x( —x2)

12~
(13}

(g(x) )g(xi)g(x3)g(x4)), =f [XF(x)—xi)XF(x, —x4)

+XF(x( x3)XF(xi —x4)

+XF(x( x4)XF(—xi —x3)],I I

They show that the random field g(x} is Gaussian but not
white.

Now let us derive the equation of motion for g&(x). For
two independent variables (pa(x) and (p, (x), we obtain the
following equations of motion:

5S,rr/5ya(x)+ J,(x)=0,
5S ff/5y, (x)+Jz(x) =0

where J& ——J+ —J and J, = —,
' (J+ +J ). To identify

physical degrees of freedom, we shall require the normali-
zation of the generating functional:

Z[J~ J.] I J,=o=1 . (15)

%e have put J+ ——J because the actual time axis is
unique. From Eq. (15}we have

1
ii'i).(x)

I J, 0 =5}n.Z[J)3. J ]/~c(x)
I J =o=0

1

Accordingly we get an equation of inotion for ((o, (x):

(CI+m )y, (x)+—(p, (x)
t—2fi f dr' f 13x'XF(x —x')((() (x')

—J,(x)—g(x) =0 .

This is exactly the Langevin equation. The third term de-
scribes the retarded effect while the last term describes the
instantaneous statistical perturbation from the random
field f(x) whose correlations are shown in Eq. (13). Be-
cause of the random field g(x), spatial and temporal inho-
mogeneity of the field (((),(x) develops even if y, (x) had
been prepared to be homogeneous. We may identify this
effect as a spontaneous translational invariance breaking.
Of course the inhomogeneity may vanish if one averages
over g(x), but the point here is that we can extract mani-
festly classical fluctuations from the original quantum
system. The variable g(x) is thought to represent degrees
of freedom of fermion which we have already integrated
out. Therefore we need not take account of the dynamics
of g(x).

III. LOOP CORRECTIONS —FRICTION

Higher-loop contributions to the effective action are evaluated similarly. For example, one-loop contribution becomes

GF
exp(iI'"[y])=exp ' ——,'Trln 1+

2

G
'

iP

where

GF — i ( Titp(x)p—(x') )i,

6+ —— i (()))(x'—)P(x) ) = —6'
GF = i ( T(t (x—)(t)(x') ) .

Up to two-loop order and in lowest order in )I,, the Langevin equation for (p, (x) becomes

(g+m2)~, (x)+—+,3(x)—2fi f di' f d'x'X', (x —x')y, (x') —g(x)

(19)

2 t
(((),(x) f dt' f d x'ImGF(x —x'}g, (x') —2g"'(x)y, (x)

dt' d I'ImGF x —x' y, x' —J, x =0. 20

(21)

where

Here, g"'(x) is a new type of random field which couples with q&, (x) linearly. The statistical average should be modified:

(.. . ) f glop(() f gg())p(()(g(()). . .
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2

P(g)=exp ——, f d x f d x'g(x) f XF+ ReG+ g(x') N,

A,
2

P'"(g"')=exp ——,
' f d x f d x'g'"(x) ReGF2

8

N and X'" are normalizations. Then we get

&Pxg'"(x ) &, =0,

g(11(x ~

)

&g(x)g(x') &, =f ImXF(x —x')+ ReGF3(x —x'), (23)

&g'"(x)g'"(x') &, = ReG (x —x') .

In Eq. (22), the weights are manifestly positive although they may not be normalizable. In that case, we have to investi-
gate higher-order terms in A, .

In Eq. (20), the terms proportional to ImG~ and ImGF give correct ' friction coefficients under the quasiadiabatic
approximation:

t

0(P,2(x) f dt' f dix'ImGF (x —x')(}o, (x')=constX(P, (x)+F2(x)j,(x)+

2 g

3 0f dr' f dix'ImGF'(x —x')q)(x')=constX(p, (x)+F3(x)j,(x)+

where friction coefficients are linearly expressed in terms of random-field correlations:

A,
2 3

F2(x)= q, (x) f 3 f d xylo& e ~ &((x)g(0)&, +O(A, ),
(2n )3

F(x)= „f ', f ', f ', (2~)35 yp,
(2ir) (22r) (2ir)

(24)

(25)

(26)

3'& +N& +N& —IN f+lPi'xX, , 4Xe ' X 0,+0 4

CO&, CO& 67& (CO& +CO& +CO& )
(27)

(p 2+m 2)1/2

However, we cannot directly count the term proportional
to ReXF for friction because this term always exists ir-
respective of dissipativity of the system. In fact, a
quasiadiabatic approximation on this term gives us the
mass and wave-function renormalization but not friction.
A similar term appears which cannot be counted for by
friction in the model of cosmological anisotropy relaxa-
tion. Up to now, we have been concerned about the self-
energy part. We can, as well, take account of the com-
plexity in the vertex part and higher-point functions.
Then the random field is in general not even Gaussian:

exp(iI [(p] ) = f N(P(g)exp i ReI [g]+i f g'(p

(2g)

P(g) =f&(Pexp —ImI [y] i f g(Io—

Unfortunately, we have not yet succeeded in proving the
positivity of this P(g).

IV. STATISTICAL FLUCTUATIONS
OF THE MEAN FIELD

A relation between a pure statistical correlation and an
ordinary vacuum average should be elucidated. The gen-
erating functional in Eq. (1) is now expressed as

Z[J]= f &gP(g)exp(iW[J])=exp(iW[J]), (30)

exp(iW[J]) = f &(I)exp iS,rr[(t(, g]

+i aJc+ cJs ~ 31

where ,S[frg,g] is defined by Eq. (11) and g is introduced
in Eq. (9). Thus, our pure statistical correlation is ex-
pressed as

& q, ( )q.(y) &, —& q, ( ) &, &(p, (y) &,

1 5 1 5
i W[J]

I J=oi 5Ja x) i 5Ja(y)
exp( —ImI [0]).

(29)

1 5 1 5 i W[J],i 5Ja(x) i 5Ja(y)
(32)
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while the ordinary vacuum average

P+(x)P+(y)[= ((P+(x)P+(y) »] becomes

(&y ( )y (y)»= —. —. w[J] ~, ,1 5 1 5
i 5J+x i 5J+y

of

(33)

tions calculated basically from Eq. (36) are too great'
since the genuine density fluctuations should be related to
(y, (x)g, (y) &, whose amplitude is proportional to the in-
stability of the system.

which is mainly different from the former by the second
term of Eq. (32).

Time development of the statistical correlation is de-
rived from the Dyson equation. Neglecting self-
interaction, we get

A, A„(y, (x)y, (y) &, —(g(x)((y) &, =0,
where

(34)

A„y, (x)= —(CI+m )q&, (x)

+2f f d x'8(xo —xii)XF(x —x')p, (x').
On the other hand, the ordinary vacuum average obeys

—(2„+m )((P +( x)P +(y)»+2f f d x XF(x —x')

X «P (x')P (y) »

+5' '(x —y)=D.
(36)

We observe that the source terms are completely different
from each other: Quantum fluctuations always exist [Eq.
(36)] while statistical fluctuations arise only when the sys-
tem shows dissipativity [Eqs. (23) and (34)]. We do not
have to be pessimistic that the primordial density fluctua-

V. APPLICATIONS TO THERMAL FIELD
THEORY AND COSMIC ANISOTROPY

RELAXATION

(1) Therma! field: Now let us turn our attention to the
real-time finite-temperature quantum field theory. We
start from a generating functional as in Ref. 6:

Z [J]=Tr e ~ T,exp i f JP (P ' = temperature),

where c means that the operations should be performed
along the time path:

l
t = —T~T~T —P~ ——T —P~ ——T iP—

2 2

A structure of the propagators be:omes similar to the pre-
vious one when T~oo. Then the procedure to derive a
Langevin equation for a thermal average of P and a spec-
trum of the random field, etc., are the same as before. We
get Eqs. (20)—(23) but f 's are set to be zero and
GF(x —x') is now a thermal propagator:

where

3 eiky—f 3 [e cosh 8(to iI—) e—cosh 8( co i—I')]—e ' for yo &0,
(2m)'

3 iky—f [e 0 sinh28(ai+il ) —e ' sinh 8( f0+iI—)]e ' for y0~0,
(2ir)3

(38)

A, (271) g f ~l

8&ngg ( i (21r) 2'('

sinh 8(to)=n„=(e~—1) ', t0;=(k; +m )'

(1+n, )n„,n„,5' '(k+k, —k2 —k3)5(co+co] I&2 N3),

The strongest random field is now g' "(x) and its spatially uniform component [g(t)] has the following correlation:

(39)

[2n(1+n)+(1+2n +2n )cos[2(t t')to] 2n—(1+n)—(1+2n)pl'sin[2(t t')co]] —.

(40)

Friction coefficients are also derived like Eqs. (24) and
(25), but they are not expressed linearly in the statistical
correlation. This model is a natural extension of Ref. 9
in the sense that now we treat quantum field theory, and
random fields as well as frictions are automatically de-
rived.

(2) Anisotropy relaxation: Next, we investigate classical
fluctuations accompanied with the cosmological anisotro-

py (g~) relaxation due to particle production. 4 In the
Friedmann universe, we consider massless conformal real
scalar field P. The initial cosmological anisotropy is sub-
sequently reduced due to P-particle pair production. In

(gq(rt)gkt(rt') &, =(1920tr) '(5J5kt+5;k5jt+5a5~k)
d4x, 5(q —q'),

d'g
(41)

Ref. 4, geometry PJ determined by equations of motion is
complex. According to the present procedure, we can
avoid this complex geometry and moreover we obtain a
Langevin equation in which a fluctuating back reaction
upon P'J by P-particle production is manifest. A random
field g;J. which appears in the Langevin equation turns out
to be Gaussian and white:
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where il and q' are conformal time variables. We em-

phasize that this back reaction is entirely new and dif-
ferent from ordinary dispersive or dissipative back reac-
tions. Unfortunately, a retarded response term [corre-
sponds to the term proportional to XF" in Eq. (20)] is com-
pletely nonlocal in conformal time and cannot be properly
interpreted as friction.

VI. DISCUSSION

In this article we have derived Langevin equations for
each appropriate mean field of the system. Classical fluc-
tuations of the mean field stem from quantum fluctua-
tions through radiative corrections and instability of the
system whose properties determine spectrum and time
evolution of the statistical correlations.

Several applications of the method are possible. (i) In a
very strong electromagnetic field F„„,electron-positron
pair production may spontaneously take place' and the
I'&„ is thought to be reduced without observation. It
seems natural that the relaxation of F„„accompany fluc-
tuations in F„„.This is also an example of the spontane-
ous translational invariance breaking. (ii) Nonconvex po-
tentials are widely applied to dynamics of phase transi-
tions. " In this case, an effective potential becomes com-
plex (e.g.,

ImV, rr[y] — A,m gr
64m

for the A,q model with negative mass squared m ). This
means that on the nonconvex region, there appears a ran-
dom field which triggers the phase transition pushing sto-
chastically the order parameter from zero. This mecha-
nism may shed light on the problem of the identification
of a zero mode and fluctuations of an expectation value of
a Higgs field in the inflationary universe model. '

In the argument of finite-temperature quantum field
theory, it was essential to use renormalized propagators to
derive dissipative and fluctuating properties. Spectrum of
the Hamiltonian which corresponds to a tree Lagrangian
is not bounded below and this is only an indication of the
instability. By radiative corrections and renormalizations,
the instability becomes manifest in the form of dissipation
and fluctuation. In this sense, the renormalization in-
duces a change of description of the system from a repre-
sentation based on stable asymptotic fields into that based
on unstable ones. A role of a renormalization as a map
which connects reversible and irreversible description of
dynamics is now under investigation.
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