
PHYSICAL REVIE% D VOLUME 33, NUMBER 12 15 JUNE 1986

Quasi-Riemannian gravity and spontaneous breaking of the Lorentz gauge symmetry
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It is shown that a pure gravity theory in d dimensions, with an action quadratic in torsion and

curvature, may lead to a spontaneous breaking of the SO(1,d —1) gauge symmetry. The physical
vacuum, corresponding to a minimum of the self-interaction torsion potential, is characterized by a

constant nonvanishing torsion background, and in the lowest-order expansion of the gravitational
field around this configuration, an effective quasi-Riemannian theory is obtained. In particular, all

nine parameters of the corresponding quasi-Riemannian action are determined, as a function of the
torsion self-interaction coupling strength, for the tangent space groups SO(1,d —4) XSO(3) and

SO(l, d —2). Finally, the possibility that a breaking of the local Lorentz symmetry may be associat-
ed to a change of sign of the effective four-dimensional gravitational coupling constant is discussed.

I. INTRODUCTION

In the context of higher-dimensional unified theories,
%einberg has recently suggested the possibility that grav-
itation may be described in d &4 dimensions by general-
ized theories, called quasi-Riemannian, which are covari-
ant under general-coordinate transformations, but have a
local symmetry group GT other than the d-dimensional
Lorentz group SO(l, d —1). The new tangent space group
is required to be of the form GT ——SO(l, n —1)XGT,
where 4 (n (d and GT (SO(d n), and som—e features of
such theories with this generalized gauge symmetry have
been investigated in Refs. 2 and 3.

The main advantage offered by quasi-Riemannian
theories of gravity is that one can obtain four-dimensional
chiral fermions from a higher-dimensional action, '3
without adding extra gauge fields to the starting d-
dimensional theory, and also without considering a non-
compact internal space with finite volume.

However, the choice of GT with the structure of a
direct product of two groups seems to be ad hoc, even if
it could be motivated by analogy with supersymmetric
theories based on graded Lie algebras, which naturally
have tangent groups of this form. Moreover the unique-
ness features of the usual Riemannian theory are lost, be-
cause the construction of a GT-invariant action involves
in general many arbitrary constants, so that some funda-
mental principle is needed to reduce the number of the in-

dependent parameters, as explicitly stressed in Ref. 3.
A possible answer to these problems is to introduce

some mechanism which spontaneously breaks the Lorentz
gauge symmetry. To this aim, the most direct method
to achieve a vacuum background with a local
SO(l, n —1)X SO(d n) invariance i—s to couple minimally
gravity to a self-interacting antisymmetric tensor of rank
d —n which develops a nonzero vacuum expectation value

[a generalization of the mechanism first suggested by Mal-
let and based on the presence of a Lorentz vector to break
spontaneously the SO(1,3) gauge symmetry in four dimen-

sions]. But this requires the addition of extra nongravita-
tional fields to the starting d-dimensional action, and, like
adding gauge fields to obtain chiral fermions, would be a
procedure in contrast with the spirit of the original
Kaluza-Klein theory, as a truly unified theory should
start initially only with pure gravity in d dimensions.

A third-rank antisymmetric tensor, however, may have
a natural geometric interpretation, in a non-Riemannian
geometrical context, as the totally antisymmetric part of
the torsion tensor; moreover, a gravitational Lagrangian
quadratic in the curvature tensor automatically provides
the self-interaction potential which leads, via the Higgs
mechanism, to a nonvanishing constant value of the tor-
sion tensor in the vacuum background. Therefore an en-

tirely geometrical mechanism, which spontaneously
breaks the gauge SO(l, d —1) symmetry starting from a
d-dimensional theory of pure gravity, may be obtained
provided that we relax two assumptions used in Ref. 3

[i.e., torsion-free SO(l, d —1) connection and action linear
in the curvature tensor], and we consider a gravitational
Lagrangian quadratic in torsion and curvature.

To provide motivations for this approach, it should be
mentioned that a quadratic Lagrangian finds a natural
justification in the context of the classical Poincare gauge
theory of gravity, or may even be interpreted as
representing the effective contribution to the gravitational
action arising from quantum fluctuations, at some dis-
tance scale close to the Planck length. Recently, it has
been shown that curvature-squared terms appear in the
field-theory limit of string theories, ' '" and it is their
presence that allows nontrivial compactification on a
four-dimensional Minkowski space moreover it has
been conjectured' that, in the low-energy limit of the
closed Bose string, the coinplete set of four-derivative
terms may be expressed by an action quadratic in curva-
ture, provided that a suitable affine connection with tor-
sion is introduced. Finally, higher (than linear) curvature
terms appear in a generalization of the Einstein theory in
more than four dimensions, based on a gravitational La-
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grangian which consists of a sum of dimensionally contin-
ued Euler forms. "' ' In this case, it is important to
stress that such a particular combination of curvature
terms contributes to the field equations at most second-
order terms, in the derivatives of the metric, ' ' so that
the introduction of a quadratic Lagrangian, in dimensions
higher than four, does not necessarily imply the presence
of higher-derivative equations in the corresponding gen-
eralized theory.

Without considering a particular model, the aim of this
paper is to discuss the possibility that, starting from a
pure gravity theory with propagating torsion and qua-
dratic Lagrangian in d dimensions, a breaking of the
Lorentz gauge group $0(l,d —1}can occur, spontaneous-

ly induced by a constant nonvanishing torsion back-
ground. In this case the lowest-order gravitational excita-
tions of the vacuum configurations are governed by an ef-
fective quasi-Riemannian theory, and all nine parameters
of the corresponding quasi-Riemannian action construct-
ed in Ref. 3 can be determined as a function of the total
number of dimensions and of only one, model-dependent,
coupling constant.

The plan of the paper is as follows. In Six:. II the gen-
eral action for the theory is presentai and the vacuum
field equations are solved in the case of a constant non-
vanishing totally antisymmetric torsion. We consider in
particular solutions with the product structure
3fgf 3 )(,Af 3 where M„ is an n-dimensional maximally
symmetric space, but it is shown that, because of the
curvature-squared terms in the action, we can obtain also
a solution with the structure M4XM~ qXM& (in d &7)
corresponding to a four-dimensional Minkowski vacuum

M4, even if the internal space is not Ricci fiat and
without fine-tuning of adjustable parameters.

In Sec. III, expanding the gravitational field around the
vacuum configuration Md 3XMi (keeping the torsion
background fixed) we obtain a quasi-Riemannian theory
with SO(l, d —4)XSO(3) as the tangent space group, in
which the d-dimensional cosmological constant is vanish-

ing. All the parameters of the theory are determined as a
function of the coupling strength of the torsion self-
interaction term in the Lagrangian, and we discuss the
possibility that a breaking of the Lorentz gauge symmetry
may lead to a change of the effective four-dimensional
gravitational constant.

In Sec. IV we consider a vacuum configuration charac-
terized by a constant nonvanishing vector part of the tor-
sion, and in this case we obtain a quasi-Riemannian
theory with local SO(l, d —2) invariance. Finally, in Sec.
V the results obtained are briefiy summarized.

For easy reference we use in this paper the same for-
malism and follow the same notations and conventions as
in Ref. 3, with the only difference that the vielbein field is
denoted here by V~", and the anholonomic basis is then
VA V Ad M

II. VACUUM SOLUTIONS OF THE FIELD
EQUATIONS FOR A THEORY OF GRAVITY

WITH TORSION AND QUADRATIC LAGRANGIAN

%e start considering a theory of pure gravity in d di-
mensions, covariant under general-coordinate transforma-

tions and locally Lorentz invariant. The field variables
are the anholonomic basis V"=V~ dz and the connec-
tion one-form Q" =Q~ "~dz~ for the gauge group
SO(l, d —1) (conventions: capital latin indices run from 1

to d, and A, B,C,D, . . . denote tangent space indices,
while M, X,P, Q, . . . denote holonomic world indices).
The linear connection Q is not required to be torsion-free,
so that, unlike in Ref. 3, we have in general

dv" +Q", n, v'=z "~0. (2.1)

+2XmR" (Q) h "Rqs(Q)], (2.2)

where R" (Q) is the Lorentz curvature two-form:

Z"'(Q}=dQ4'+Q"c r Q"

,
' R~~ "~(Q—)dzMA dz ~ . (2.3)

K" is the contortion one-form, related to the torsion
two-form R" by

gA p VB gA (2.4)

X is the d-dimensional analogue of Newton's constant, g
is a dimensionless coupling constant, m has dimensions
(mass), V" = V" h V, and finally the Hodge duality
operation is defined as (see Ref. 3)

VAa=
d 2 i e~ac, C~, V

c) cg

~ABC
& C& (2.5)

1 1 EF Ci Cd~ca
d 2 i 2&EFc ''c ~ ca V

It should be noted that, while in this section we consider a
spontaneous breaking of the Lorentz gauge symmetry in-
duced by the totaHy antisymmetric part of the torsion ten-
sor, the torsion-squared term we have introduced in the
action (2.2} contains, more generally, also the trace of the
torsion tensor, so that the same action can be used to dis-
cuss also the case of a constant vector torsion background,
as we will see in Sec. IV. Note also that the curvature-
squared term we consider is not of the ghost-free form,
and the action (2.2) is to be regarded here not as a realistic
theory, but only as the simplest quadratic model to dis-
cuss the general features of this geometric mechanism (a
more realistic model could start, for example, from a La-
grangian involving the Gauss-Bonnet term of Ref. 11).

In order to separate explicitly the torsion contributions
from the Riemannian terms in the action (2.2), we decom-
pose as usual the connection as

g AB ~ORB ~AB
7 (2.7)

where Q is the torsion-free part of Q, which satisfies,
from (2.1) and (2.4),

Allowing also the presence of curvature-squared terms
(for the motivations see Sec. I) we consider then a model
of gravity described by the following simple quadratic ac-
tion:

S= 8" 0 A*VgB+gK C AK h, *VERB
l
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D'V"= D—(n') V"=dV" +0'", h V'=0 (2.8) where

and D denotes the exterior covariant derivative for the
Riemannian part of the anholonomic connection. The
curvature (2.3) becomes then

R0AB R AB(IIO) dIIOAB+IIOAi A IIocg (2.10)

R AB(II ) R 08iB DQK PiB+K Ai (2.9)
I

is the usual Riemannian curvature, and the action (2.2)
can be rewritten

S= [R " O'Vga+2Xm(R " A'Rg +D K" A'D Kga 2R —h'D K 2K—" AK A*D K )
1

2X

+2X W(K)], (2.11)

where W(K) is the self-interaction potential d-form for
the contortion:

W(K) = g V"'+2mR'"'1+
21

look only for solutions of the field equations describing a
vacuum background which is the product of maximally
syinmetric spaces, (R ) =const, and in which the contor-
tion tensor satisfies

(D'K"'&=0, &D'K„„&=0. (2.13)

+mK"c AK h'(K„AKDa) . (2.12)

The field equations are obtained by varying the action
with respect to the independent variables V and K" . In
this way one obtains in general a rather complicated ex-
pression in terms of the components of the curvature and
of the torsion tensor. However, in this paper we shall

In this case the equation for the contortion reduces to
(5W/5K ) =0 (see Appendix A), and the generalized Ein-
stein equations are simply second order, because the
Riemannian covariant derivatives of the components of
the curvature tensor are vanishing. For this background,
writing explicitly in components the equation following
from the variation of V", we obtain (see Appendix A)

(2«8 P)
(

«8 «0 P 8~84 8«mAB»B)N «P)D ~ +«g» )NIP» )~g~«P)N «PID» AB» 8)

(2.14)

where R~ ——R~~ is the usual Ricci tensor, and the
equation is enclosed in brackets as a reminder that the ad-
ditional condition (2.13) is to be satisfied, and the curva-
ture tensor (R~b „a) must be covariantly constant.

It is also convenient to introduce a scalar potential
U(K) to express in components the quartic torsion self-
interaction. Setting

f Iv(K)= 2f vd—'z v(K) (2.15)

where V =det( Vbr"), we find, from Eq. (2.12),

U(K) =m(R~fy +EM cKA )K gDK

+g g May Ã1
[M X]D (2.16)

(see also Appendix A).
First of all we consider the case of a vacuum configura-

tion characterized by a constant, nonvanishing value of
the totally antisymmetrie part of the torsion tensor'
(K&zc)=(K(&ac)) (for example, in string theory the
field strength 8 for the two-form potential can be geome-
trically interpreted as the totally antisymmetric torsion
part of the connection, ' ' ' and vacuum configurations
characterized by 0&0 have been recently con-
sidered'2'7' ' ). The background determined by a
nonzero vector part of the torsion will be discussed in Sec.
IV.

( R„'„ I') =~, ,(5„5~ 5„5I'), —

& R'„"&=~,(5'.5'„—5„'5' ),
and then

(R„")=Ad 3(d —4)5„", (R ")=2A35"

and the field equations (2.14) reduce to

(2.19)

(2.20)

1
+mAd 3 Ad 3

——0,2J (2.21)

Looking then for solutions describing the product of
two maximally symmetric spaces, Md 3 X&3, respective-
ly, (d —3) and 3 dimensional, we set

&R"~)=x, ,v ~, &R~b)=x, v",
(2.17)

( R ) =0
where greek and small latin letters denote tangent space
indices running, respectively, from 1 to d —3, and from
d —3 to d, and A,d 3, A, 3 are the cosmological constants of
the two spaces. In this ease the field equations can be sa-
tisfied by

&K be& ~oe bc &E BC) (2.18)

where oo is a constant which minimizes the potential
(2.16). In this background the conditions (2.13) are satis-
fied (see Appendix 8); moreover, from Eq. (2.17) one has
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1 1+8 2

2X 2X
+mk, 3 A, 3

—— 2m'. 3+ 0'o —m G'o (2.22)

The torsion potential (2.16) becomes, setting K„BC
=O&~ &a&C&.b. *

V(o)=3m rr (r- 1+g
+2A3

2+m
(2.23}

and the torsion field equation for o =const is simply
(BU/iso ) =0; if the coefficient of o in Eq. (2.23) is nega-
tive, the constant nonvanishing solution (cr) =oo, where

2 1+g0'o = +4
4+m

(2.24)

1
3
——0, —

2+m
(2.27)

The vacuum configuration described by Eqs. (2.17) and
(2.18) solves then the fleld equations of the quadratic
theory of gravity considered in this paper, provided that
A d 3 A 3 and o0 are related to the parameters X,m, g of
the action (2.2) according to Eqs. (2.25)—(2.27). This vac-
uum solution with broken Lorentz symmetry may be clas-
sically stable only if the nonvanishing value of oo mini-
mizes the potential U(o },and we can see from (2.23) and
(2.24) that this occurs, supposing m &0, only for pro ~0,
that is, using (2.26), for

g&07 g +07 g )1 (2.28)

or

corresponds to a minimum of U(cr) and breaks spontane-
ously the local SO(l, d —1}invariance.

Combining Eqs. (2.22) and (2.24) we then have

(1+g)1 1
(2.25)

2+m 4g

0'0
1 1

(g -1) . (2.26)
21m 4g

Finally, Eq. (2.21) gives two possible values for the
cosmological constant of the (d —3)-dimensional space:
namely,

1

2X
+mA, ) A, )

——0, (2.33)

1

2X
+mk, i A,i ——0, (2.34)

while the equations for A, 3 and cro are not modified. We
can obtain then a Minkowski four-dimensional back-
ground, corresponding to the solution

1
7 k3

21m
' (1+g)', (2.35)

27m 4g

even if the internal space is not Ricci flat (A,2+0, A,3~0),
and without fine-tuning of adjustable parameters.

Ai ——0, Ai ———

III. THE LOWEST-ORDER EFFECTIVE
ACTION WITH SO(l, d —4)x SO(3)

LOCAL INVARIANCE

Choosing as the physical vacuum the solution of the
field equations which minimizes the Higgs potential (see
Sec. II), and expanding the gravitational field around this
configuration, keeping fixed the torsion background
(2.18), we are led to shift the definition of curvature

gOAB (goAB)+g AB (3.1)

so that the physical vacuum corresponds to (8 " ) =0.
In Sec. II it has been shown that, because of the

curvature-squared term in the action, one has two possible
solutions for (R " ) [see Eq. (2.27)]. We must consider
separately then the two cases

(a) A,g 3 ——0, A,3
———(1+g) /8+mg, (3.2)

In fact, following Ref. 3, and decomposing the index
set IaI as IaI U IaI, where a=1,2, . . . , 4 and
a=5,6, . . . , d —3, we can look for solutions with the
product structure M4 QM~ 7+M3 setting

B)=x,v B (z l')=x, v &

(2.32)
(z ")=x v"

Following the same procedure as before we obtain, instead
of Eq. (2.21), two equations for A,

~
and A.i,

+~0, gg0, g ~1,
if the gravitational constant is positive, while for

X(0, g)0, g

or

7&0, g&0, g &1,

(2.29)

(2.30)

(2.31)

and

(3.3)
1

(b) AB 3 — A3 ——(1+g) /8+mg .
2+m

In both cases we obtain, to lowest order as an effective ac-
tion, the action constructed in Ref. 3 for a quasi-
Riemannian theory of gravity with SO(l, d —4) XSO(3) as
the tangent space group.

if the gravitational constant is negative.
To conclude this section, it should be noted that the

field equations (2.14} also admit a Ricci-flat solution for
the four-dimensional physical space-time even if the inter-
nal space is not Ricci fiat, unlike the theory considered in
Ref. 3. This is due to the curvature-squared term in the
action, which leads to a quadratic equation for the cosmo-
logical constant in the (d —3)-dimensional space, and
then to a double solution of the field uations (this point
has been recently stressed also by Dese ).

g OAB g gAgB yah+ g AB (3.4)

Expanding the action (2.11} on the fixed torsion back-
ground K" = (K" ) we find that, to lowest order, the
terms linear in D K do not contribute (see Appendix B),
so that the action (2.11) becomes

Case (a}

Consider first the case in which the (d —3)-dimensional
space is Ricci flat, corresponding to Eq. (3.2). In this
background (R~B)=0, and Eq. (3.1) becomes
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r

S=f +mk3 V' A*Vb+ V A*vqs.a *
2X d d —1)

+
2

R "A*V + ™R'"O'V.+2 R "O' K 'hE

+m R h, *RAB+m D K h*D LAB (3.5)

where Uo ——( U) = U(pro) = —3moo" is the constant value of the torsion potential in vacuum [see Eqs. (2.23) and (2.24)].
It is interesting to note that the first integral in (3.5), representing the contribution to the action of the total effective

cosmological constant, is vanishing. In fact, using the definition of duality operation (2.5), one has

yabp +y yABp +V
d(d —1) AB

and Eq. (2.22) can be rewritten

(3.6)

1 1

2X
+mA, 3 A, 3 ————Uo3 (3.7)

so that the two terms in the integral cancel exactly against each other, and we have a theory with zero cosmological term.
Moreover, using (2.18) and (2.24),

(KA AKCB)=2mB A V (K[E
~

A KF)CB) 2mcro R ' A'Vb ———2m A3+ R ' O'V~s
4+m

Therefore the action (3.5) becomes simply

S =m fR"'A'R„, + f (R ~h "V., gR'A'V. —,+2R"A'V..)+~ fD'(K"') A'D'(K„, ) .

(3.8)

(3.9)

The lowest-order action describes an effective theory of
gravity with local Gr ——SO(l, d —4) X SO(3) gauge invari-
ance, expressed however in terms of the connection Qo

and curvature of the original SO(l, d —1) group. Follow-
ing Ref. 3, the Lorentz connection Q can be decomposed
as

R ~(co) =dap~+co Acor~r

is the SO(l, d —4) curvature two-form;

R 'b=dn"'+n"„A n'"b

=R (67)+cg &
A co r

(3.14)

(3.15)

gOAB AB —AB (3.10) where

where co is the GT connection, and co is a one-form,
transforming covariantly under Gr, which can be inter-
preted as the contortion for the GT connection: in fact
Eq. (2.8) becomes

R ab(~ ) drab+a A ~cb

is the SO(3) curvature two-form; and finally

R '=dQ '+Q An

(3.16)

d V"+~AB ~ VB= —a AB W VB . (3.11) =dco +co phoo +67 b A co =D(co)co—(3.17)

In the case we are considering, V and V' transform,
respectively, as SO(l,d —4) and SO(3) vectors, and we
have the decomposition

~aP gOaP ab g Oab aa

where D(co) is the GT-covariant exterior derivative.
Moreover, in the configuration (2.8), in which

(K,g) =os,~ V' (3.18)

~ aP O
—ab 0 —aa gOaa

(3.12) and all the other components of K are vanishing, we have

Starting then from the definition (2.10) of the SO(l,d —1)
curvature, one can find easily the decomposition of the
terms appearing in the action (3.9):

R.I'=dn"~+n"„A no~= 'R(~) a+, h~",

D (K ~)=0,
D (K' ) =D (co)K' = —ooe, ' co' A V

D (K )=8 AK"=cr e" 6 A V

(3.19)

(3.20)

(3.21)

(3.13) Therefore the lowest-order contribution to the action from
the contortion kinetic term can be expressed as a sum of
bilinears in co, that is,
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mDo(K~P) A+Do(K ) =m(Do(Kab) AiDo(K, b)+2Do(K~) A'Do(K~, ))

=2moo [co'~h V h'(co, ph Vp)+co, h Vb h'(co~'h V —co~ h V')] . (3.22)

The lowest-order effective action (3.9), considering the small curvature limit
~

XmR
~

&& 1 in which the contributions of
the curvature-squared terms can be nellected, then becomes

S= R co A V~p —gE ct) A Vgb+M b Aa) A Vgb —gN @AN~ A Vgb+2D N N A V~/
2X

+ (g —I)[co' h V h'(co, ph Vp)+co, h Vbh'(co 'h V —co h V'}] (3.23)

[note that also the D(co)c0 term in the action is bilinear in co, as can be easily seen integrating by parts and using Eq.
(3.11}].

In order to compare this effective theory with the quasi-Riemannian theory of Ref. 3, it is convenient to express the
action (3.23) explicitly in components. A straightforward computation leads to

R P(co ) A
'

V~p ———V d "z R p P,

R'"(co) A
'

V,b ———Vd z R,b'",

where R~p and R,b' are, respectively, the SO(l, d —4) and SO(3) scalar curvatures:

co b Aco A V+p — Vd z2B[+ copj b

y Am A V~b = Vd z 2a)[g cob) p ~

D( co) c0™A V~ = Vd z 2(co(~ cop} b +cia(z cob} p),
co' A V A'(co, ph Vp)+2co A Vb A'(c0 ('A V })=—Vd z(3cop, co' cop ci) +—+2cob, co" '+co, ' cob ) .

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Following the notation of Ref. 3, we define the symmetric trace-free part of co as

1 r —c
(zp)p CO(ap)a Pap y a ~ ~(ob}p ~ (ub)p 7+ab~c pd —3

(3.30)

(curly brackets denote symmetrization) such that yl~pco(~p), ——0=5'bco(,b)p. The action (3.23) can be rewritten then fmal-
ly as

1 —1 —1

2X
Vd~z R ~p gR ~b+ 1+2g — -(Py]o+ g

1
— —(Py}~

ap ab co[py]a Co

g
N

I p& I + co

+
d 3+ d 3

~coy + 2+g+ oi(s }aoi
—[bc)a

d —3 g d —3 g

T

g —1
2 2

+ —2—g ~(b }.~( } + —,(g+2}+-—be a 5 g —1 (3.31)

Comparing this expression with the general form of the
quasi-Riemannian action constructed in Ref. 3, which de-
pends on nine arbitrary parameters c~, . . . , c9, we can
conclude that the mechanism of spontaneous breaking of
the Lorentz symmetry we have considered, based on a
gravitational self-interaction quadratic in torsion and cur-
vature, leads in this case to a quasi-Riemannian theory
with local SO(l, d —4}XSO(3}gauge invariance. In the
low-energy limit, we obtain in particular the action of
Ref. 3, in which all nine parameters can be expressed in
terms of only one independent coupling constant, and in

g2
C4=

g

d —4 g —1

d —3 g(d —3)

g —1 g —1
2 2

c6 ——2+g + C7= —2 —g
g g

2 5 g —1cs= (g +2)+—
~ c9 =0 .

3 3 2g

this ease we find, in units such that I/2X = 1,

g —1
2

Ci =1, Cp= —g, C3=1+2

(3.32)
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Case (b)

The second possible solution of the vacuum field equa-
tions (2.14), with a constant totally antisymmetric torsion
background, corresponds to a nonvanishing curvature also
in the (d —3)-dimensional space, Xq z

———1/27m, see

Eq. (3.3). In this case we must set

RoAB g gAgByo;P+g gAgByab+R AB

and expanding the action (2.11) as before, we find again
that the terms linear in D E do not contribute, and, using
the field equations (2.21) and (2.22) and the identity (3.6),
that the total effective cosmological constant is vanishing.

Using also Eq. (3.8) we obtain then, to lowest order, the
action

S=~ R»~*R»+Do j;» P, 'D' SC»

J( /~i P, ~V
p gg ~~/, "V~+2+~~P, ~V, ).

(3.33)

It is interesting to note, comparing this equation with the
corresponding action (3.9) obtained in the previous case,
the sign difference of the term containing the SO(l, d —4)
scalar curvature, R P h '

V~p.
Since it is from this term that one obtains, after dimen-

sional reduction, the usual four-dimensional Einstein La-
grangian of general relativity [i.e., the SO(3, 1) scalar cur-
vature], it follows that in this case a negative value of X is
required to avoid that, in four dimensions, the effective
low-energy gravitational interaction is repulsive.

This implies however that the original action (2.2),
describing gravity before the process of spontaneous sym-
metry breaking, contains a gravitational coupling constant
with the "wrong" sign, X & 0, or, in other words, describes
"antigravity, " and it is the transition associated with the
breaking of the d-dimensional Lorentz symmetry that
leads to the change of sign of the effective four-
dimensional coupling constant (as regards this point, it

I

should be mentioned that the possibility of antigravity in
the early Universe, in relation with the spontaneous break-
ing of a local gauge symmetry, was first considered by
Linde; moreover, a reversal of sign of the effective grav-
itational coupling, induced by a breaking of the Lorentz
symmetry, is not in disagreement with the possibility of
obtaining, in the early Universe, an inflationary phase of
accelerated expansion in the context of a theory of gravity
which is not locally Lorentz invariant ").

In any case, what is to be stressed is that, according to
the mechanism of spontaneous breaking discussed in this
paper, it is the value of the parameter g, governing the
strength of the torsion-squared term in the gravitational
Lagrangian, which determines if there is a reversal of sign
in the effective gravitational coupling constant as a conse-
quence of the SO(l, d —1) breaking.

In fact, if —1 & g & 0, or g & 1, then the torsion poten-
tial has a minimum for g &0 [see (2.28) and (2.29)], and
then we must choose the vacuum configuration corre-
sponding to case (a) (i.e., Aq i ——0) to avoid a repulsive
four-dimensional interaction in the low-energy limit. On
the contrary, if g & —1, or 0 & g & 1, the minimum is ob-
tained for X &0 [see (2.30) and (2.31)],and then the physi-
cally acceptable solution corresponds to case (b)

(Ag 3 ——1/21m), so that one has antigravity before the
Lorentz invariance is broken. And since a negative value
of X may introduce ghosts into the theory, this seems to
suggest that a realistic model should be characterized by a
torsion self-interaction appearing in the action with an ef-
fective strength g varying in the range —1 & g &0, g& l.

To conclude this section we can determine the values of
the parameters of the low-energy quasi-Riemannian effec-
tive theory corresponding to this last case. Starting from
the lowest-order action (3.33), and following exactly the
same procedure as before [i.e., decomposing the Lorentz
connection and curvature according to the new
SO(l, d —4)&&SO(3) tangent space group, keeping fixed
the torsion background (2.18), and defining an effective
coupling constant X'= —X & 0], we obtain

1
(&)A V ii+gR (ciP) A V y+cg g P g P, V p+gg P, ~ Q V~ —2D(~)g P, "V

[ ' '( )+ '( ' "— ' ')]
2g

(3.34)

%ritten explicitly in components we have

1 Vl 2' R&p +gR+y — 3+2 co[p j N

+ 3 — N
~ p& ) + co

—fPv)~ 3(d —4) g —1

d —3 g(d —3)

2 —1
2

g +2+ G~~~~B + g +2— QP~~~~B
1 — —)be )a

g
T

2
T(g +2)+ coi, ~ci7~

5 g —1 (3.35)
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The nine parameters of Ref. 3 are then determined as (in
units 1/2X'=1)

g —1
2

c) =1, c2=g, c3= —3 —2
g

g —1 d —4C4=3-
g d —3

g —1
2

g(d —3) '

g —1
2

C7 =2+g—g —1
2

c6 ———2 —g—

cs ————(2+g) ——,c9 ——0 .
2 5 g —1

3 3 2g'

IV. BROKEN I.ORENTZ SYMMETRY %PITH
A CONSTANT VECTOR TORSION BACKGROUND

Starting again from the d-dimensional Lorentz-
invariant action (2.2), in this section we consider a vacu-
um configuration characterized by a constant, nonvanish-
ing value of the vector part (((" of the torsion tensor, and
we show that in this case one can obtain, in the low-

I

energy limit, an effective action for a quasi-Riemannian
theory of gravity with local SO(l, d —1) invariance.

Supposing that only the vector P" contributes to the
torsion background, to discuss the solution of the vacuum
field equations we can set

that is,

(4.1)

so that the torsion potential (2.16) becomes simply

(4.2)

U(P) = — , P'(d——1)(d —2)

+m(2RA $"QB Rp )—+ —,m()t (d —1)(d —2)

(4.3)

(p =((("pA ) and the generalized Einstein equations (2.14)
reduce to

(2R~ ) = mRsr~ABR
" + 2(d 2)(p 5—M QMQ —)+4m(p R~ RM "p—pA+R~~ABp~pA)

+2m(d 1NQ'p~p —6~pp4()—
(4.4)

The vacuum field equations for the metric and the torsion
can be satisfied by choosing a background configuration
corresponding to a maximally symmetry space with d —1

dimensions, that is, by setting

(R~B)=tv B, (R~) =o,
(4.5) 1 1+g 2 4

2X 2X
+Pl A, A, = +2m(|. cro mcro— (4.11)

I

(because, for a Lorentz connection, n B=—n B~).
Therefore also (D KABc) =0.

For the configuration (4.5), the field equation (4.4)
reduces to

where greek indices run from 1 to d —1, the underlined
index d means the fixed value corresponding to the total
number of dimensions we are considering (for example, in
d=7 we have R =R, P =P ), and cro is a constant
which minimizes the potential (4.3).

With the choice (4.5), the conditions (2.13) are satisfied:
in fact from (4.1) and (4.5) we have

(K.B)=O, (K'-")=o,V,
and since

and the potential (4.3), setting ()I(A =5)a, is

U(o ) =—(d —1)(d —2) o —o +2k,
2 2+Pl

The constant nonvanishing solution (o ) =oo,

o'o = +k2 1+g
47m

(4.12)

(4.13)

DoKAB dK AB+noA /( KcB+noB p
KA

it follows that

(D'K B)=(n"& r K"'+n'~~/i K "),--
(D'K') =(dic '-+n / K -)

=oo(dV +n Bh VB)

= —o,&n &~v"-)

(4.7)

(4.9)

[we have used Eq. (2.8)]. But the maximal symmetry of
the background implies (n (I)=0; therefore Eqs. (4.8)
and (4.9) are both vanishing. Moreover, the only nonvan-

ishing comPonents of (KABc ) are (Kr ) =cro5r and

&D'Ic -)= (n'5 +n p )—=o (41o)

R'"'=16'6'V +Z"a P (4.14)

and starting from the action (2.11) we find, to lowest or-
der,

of the torsion field equation (BU/Bo ) =0 breaks spon-
taneously the SO(l, d —1) symmetry, and in this case,
combining Eqs. (4.11) and (4.13), we can express A, and cro

as a function of g,X,m, according to Eqs. (2.25) and
(2.26), just like in the case of a totally antisymmetric tor-
sion background previously considered. This vacuum
solution corresponds to a minimum of the potential (4.12)
only if the coefficient of a. is negative, that is only if the
conditions (2.28)—(2.31) are satisfied.

Expanding the gravitational field around this fixed tor-
sion configuration, we set
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1 +ml A, V ~h*V~is+2 V" h'V„ii
Uo

2X d(d —1)

h, Vqg+2mAR 8h, 'V 8+2mB h* Eg AKgg
1 —~a

+m f(JT"'r 'R +D'(K"') W*D'(K ))—2m fD'(K"') W "(R' +(K 'WE )) (4.15)

where Uo ——(U) =U(oo) is the constant vacuum value of
the potential (4.12), i.e.,

S= —gR.PA*V.8+ZR -'h'V
d2+

Uo = — (d —1)(d —2)0'0
2

(4.16) +m g p, *g~&+m D E A D

1 4 2UO
+alii~ ~=iiioo =—

(1—1)(d —2)
(4.18}

so that the two contributions to the cosmological constant
cancel against each other.

Moreover, the last integral in Eq. (4.15) is vanishing to
lowest order: in fact, for the constant torsion background
(4.6)

The first integral in (4.15), representing the cosmological
term, is vanishing: in fact we have the identity

@&pe ~y 1 AB

(4 —1)(d —2) ~ 1(y
(4.17}

and the field equation (4.11), using (4.13) and (4.16), can
be rewritten

(4.22)

As in the case considered previously, the constant coeffi-
cient of the SO(l, d —2) scalar curvature must be positive,
in order to avoid obtaining, in four dimensions, an effec-
tive gravitational coupling constant with the wrong sign,
which would lead in the low-energy limit to a repulsive in-
teraction instead of an attractive one. Therefore this
model of gravity with broken Lorentz symmetry may be
physically acceptable (attractive low-energy gravity and
stable vacuum configuration) only if X & 0 and —1 & g &0
or, alternatively, X &0 and 0 & g & 1 (in this second case
the breaking of the Lorentz gauge symmetry is associated
with a reversal of sign in the effective coupling constant).

The action (4.22) has a local GT ——SO(l, d —2) invari-
ance. Decomposing the Lorentz connection 0 into the
GT connection co and the one-form co (transforming co-
variantly under GT) according to Eqs. (3.10) and (3.11), in

this case we have

(K~ hKgp) = oo V~@, (K—~s&K~~) =0 (4.19) =0 N =0 N =0 N (4.23)

and the terms linear in D E become, neglecting trilinears
in the connection,

D (K" ) h "(Rqg+ (Kq RED ) )

=(A, —cr )D (K ~) h "V~p (4.20)

and the curvature terms may be decomposed as

R ~=R ~(co)+co'g hG-

R ~=D(co)G

[see also (3.13) and (3.17)], where

R &(co) d~ P+~ P ~ra
y

(4.24)

(4.25)

(4.26)

so that, integrating by parts and using (2.8), its contribu-
tion to the action integral (4.15) is vanishing.

Finally we note that, from Eqs. (4.19) and (4.13), we ob-
tain

2mR" h'(Kq hKcs) =—

D(co)co =1co +cil pA ci) (4.27)

The lowest-order contribution of the contortion kinetic
term, appearing in the action (4.22), can be expressed as a
sum of bilinears in co. In fact, from Eqs. (4.6), (4.8), and
(4.9}we have

is the SO(1,d —2) curvature two-form, and D(co) denotes
in this case the SO(l, d —2)-covariant derivative:

X~ 8h, '~8.
The lowest-order action reduces then to

(4.21) D (K ~)= —oo(G ghV~ a)~ghV ), —

D (K )=—crt@ gh V--.

Therefore

(4.28)

(4.29)

l

mD (K" ) 6 "D (K„g)=m(D (K ~) O'D (Kap)+2D (E ) h*D (K g))
=2moo [a) ( g h V@A '(G~ h Vp —co~ h V )+co g h V h '(co g h V-) j . (4.30)
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The action (4.22), in the hmit
~
XIR

~
&& 1 in which the curvature-squared terms may be neglected, then becomes

—gR p(co)h'V p
—geo phd h V p+2D(co)co h'V ~

(g —1)[co gh Vp h (co~A Vp —c!PEA V )+co gh V h'(co gh V )]
2g

(4.31)

R P(a)) h'V p ———Vd zRap P,

co d A co A Vap= —Vd z 2'(a cop) ii,
D(~)co h'V~= Vd z 2'(a cop) g,
coagh V h'(co~A V )+2'( i(h Vp)h'(co~A Vp)= —Vd z[(d 2)co—~co -+(d —2kog~~ +GppzG ],d pad ~ctd

(4.32)

(4.33)

(4.34)

(4.35)

In order to compute in this case the coefficients of the corresponding quasi-Riemannian action of Ref. 3, we can rewrite

Eq. (4.31) in components. A simple computation leads to

and defining, as in Ref. 3,

1

IaP)d ~'a»& d —1
) P

we obtain finally

(4.36)

1 g —1 — —[apjd g —1 — I apI d

2X
Vd z —gRa + g +2+ (d —2) co(apgco + (d —2)—g —2 co(aplgcoP 2g [ 2g

g —1 2d —3 d 2 —a —Pd+ 1
(

t 1)(d —2) it —ga

2g d —1 d —1 2g
(4.37)

2 g —1 d —2C =1+——

d —2 g —1 2d —3

g(d —1) Zg (d —1)g
'

(4.38)

g —1 d —2Cs=- C9 ——0.
2g g

&. CONCI. USION

The model of higher-dimensional gravitational theory
considered in this paper, based on the action (2.2), admits
solutions of the field equations corresponding to a maxi-
mally symmetric ground state M~ 3&M3 or M~ &, ac-
cording to whether the vacuum is characterized by a

Comparing this expression with the action of Ref. 3, we

note that for a quasi-Riemannian theory in d dimensions,
with tangent space group SO(l,d —2), the terms in the ac-
tion corresponding to the coefficients cz,c6,cz are»»sh-
ing, because obviously Rg g

=~[g g]a =Ig cf ja 0. Indd

troducing an effective coupling constant X' such that
—1/2X'=g/2X, we find that, according to this model of
spontaneously broken Lorentz symmetry, the parameters
of Ref. 3 are determined as (in units in which 1/2X'= 1)

2 g —1 d —2
C( ——1, C3 ———I ———

g

nonzero value of the totally antisyrnmetric part or of the
vector part of the torsion tensor.

In both cases, the lowest-order gravitational excitations
of these configurations are described by a quasi-
Riemannian theory with gauge group SO(l,d —4) X SO(3)
or SO(l, d —2), respectively, and all the arbitrary parame-
ters of the corresponding action constructed in Ref. 3 can
be determined as a function of d and g [see Eqs. (3.32),
(3.36), and (4.38)].

In the case of a totally antisymmetric torsion one ob-
tains two possible vacuum configurations which, minimiz-
ing the torsion potential, breaks spontaneously the
SO(l, d —1) gauge invariance. If M& 3 is not Ricci fiat
[see Eq. (3.3)], then the breaking of the Lorentz symmetry
produces a reversal of sign in the effective four-
dimensional gravitational coupling constant. In this case,
however, the theory is physically acceptable (that is, one
obtains an attractive four-dimensional low-energy gravita-
tional interaction) and the ground-state configuration may
be stable (that is, corresponds to a minimum of the torsion
potential) only if 0 & g & 1, or g & —1. If this condition is
not satisfied, then the physical vacuum corresponds to a
Ricci fiat M~ & [see Eq. (3.2)], and there is no change in
the sign of the effective gravitational coupling associated
with the transition from SO(1,d —1) to
SO( l,d —4) X SO(3).

In the case of a constant vector torsion background, the
physical solution (attractive low-energy gravity and stable
vacuum configuration) is obtained for X & 0 and—1~g g0, or 7~0 and O~g~ l. It is only in this
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second case that the effective gravitational coupling
changes sign when the SO(l, d —1) Lorentz group breaks
down spontaneously, leading to a quasi-Riemannian
theory with SO(l,d —2) local invariance.

Finally, it should be remarked that, in a realistic model,
the requirement of the absence of ghosts and tachyons
may put further restrictions on the possible form of the

gravitational action and on the value of the arbitrary cou-
pling constants.

APPENDIX A: VACUUM FIELD EQUATIONS

Using the definition of duality operation [see Eqs. (2.5)
and (2.6)], the action (2.11) can be rewritten explicitly as

OAB

+ R—R " +m(D K 2R — 2K—p RK )D
(d —2)! 2X 2

+(2mRDEF+mKE RKDF)K[A KB]D + '+gKA RKDB by'1 'd 2E- (Al)

Looking for a solution of the field equations which satisfies (D R„Bcp ) =0 and (D KABc ) =0, by varying the action
with respect to V" we can neglect terms containing the covariant derivatives of the curvature and contortion tensor, and
we simply obtain

c
R0AB+ R0EFR0AB + g E A p EDB+m(2R0EF+KE p KcF)K[A EB]D p y ~

' ' '
d —3E (]

2X 2 EF 2~ D Pl ED F ~ABC
i Cd

(A2)

or, in components,

RMN +
4 +MN + EF+ &w" &xiD +~IRfrw +&pe &N]D Ã EI + t +ABC j=o,

2X

where the symbol VABc is defined by

MNPP ) Pg Cl C2 Cd MNP
EABcc~ c~ &

Vp~ Vp& Vpd
&

(d 3 )' VVABc (A4)

Therefore

RO AByMNP (RO MNg P+RO NPg M+RO PMg N RO MPg N RO NMg P RO PNg M) 2ROy P 4ROP

where Rc ——RcN, and so on for the other terms, so that Eq. (A3) becomes

(A5)

C C
4

C

MCNAB

' —'(2ROV P 4RQP)+ —(2V PRQ RDMNAB+4RONPABRO )+ '+g {2V PK MDK N+4K [N I DK IP])CRAB 2~ C [M X]D [C N]D

+m (2Vc RMN K EpK F+4RcN K EpE F)+m (2yc K[M KN]D E EcE F

+4K[c KN]D K ELK F)ED F [& PlL (A6)

At this point it is convenient to write in components the contribution to the action of the torsion self-interaction (2.12).
We have

f IV(K)= fd z m(RMN +E[M KN]p )K EDK F
(d —2)!

1+@ AD B MXPl - Pd 2 Cl Cd
[M WlD ABC'

. Cd ~ Pl Pd

= —2 Vd zUE, (A7)

where

m(RMN +KM KND )K EcK F+ K[M KN]p
2X

and then Eq. (A6) can be rewritten as

(AS)
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(
1 1 (2RQV P 4RoP) m

(2V PRQMNABRo +4R0NPABRG )+ +g 4K fN IDK I Pl+4mRo1+
~NAB CRAB

~4m»[c~ »~[D»[ E~» [ ~+ 2V~ Ut»[) =0 . (A9[

Tracing gives

(
go+ ~ gO gOMPAB+U O (A

MCNAB

so that, from Eq. (A9), we obtain the field equation (2.14)t

~ ~
~I

j

~~~B
1

~ ~ ~?~

I

~ C~ ~~ F ~ ~ ~~~ ~~ F
~~ Ip»DP~ »DNPAB»ll ~ +[[4» [N[D» i lP~ 4»D FE»[lv»P[D p4~» ED» t»[N «P[l

)
(A 1 1)

As regards the torsion field equation, by varying the ac-
tion (2.11) with respect to K we have

5S =2m f (D 'D KAB D'R—AB+fAB ) A 5K"

(A12)

where the three-form fAB is defined so that

5 DK" A—'(K„AKCB) =f A5K"
2M,

(A13)

If we are interested in a vacuum configuration described

by a maximally symmetric space, (RAB)=&VAB, then

(D 'RAB) =0 [remember Eq. (2.8}];moreover, if we im-

pose on the solution the conditions (2.13), then the torsion
field equation reduces simply to (f„B) =0, where

(fAB ) =5W/5K " .

&D'K") = ~B—"&n A V&) (87)

But the maximal symmetry of the background [see (2.17)]
implies (n B)=0; therefore, Eqs. (84) and (87) are
both vanishing, and (D K" ) =0. Moreover (D K,t )
= D (ro)rroe, b,

——0, so that conditions (2.13) are satisfied.
Expanding the gravitational field on the constant tor-

sion background (81), and using Eq. (3.4), we have, to
lowest order,

—2m 8" A D KgB ———2m 3 D K' A*V,b

I

where ro' =n and D( oc) are, respectively, the SO(3)
connection and covariant derivative.

Using Eq. (2.8), which implies

D V'=dV'+n ' AV =D(ro)v'+n A Vr=o (86)

and remembering that e,b, is an SO(3)-invariant tensor,
we obtain then

APPENDIX 8: VACUUM CONFIGURATION
%ITH A CONSTANT NONZERO TOTALLY

ANTISYMMETRIC TORSION

Since K" =Kc" V, in the configuration (2.18) we
have

modulo terms trilinear in the connection. Moreover the
only nonvanishing components of KA AKcB on this
background are

(K'B) =0= (K™),(K")=~,B,"V'

DoKAB dKAB+noA AKcB+noB AKAc

it follows that

(81)

(82)

K~'AK, b
——oo ed~ e„bV = —go V~b .c de 2

Therefore

2m fD—'(K"') A'(KA'AKCB)

(89)

&D'K»=O,
(D'K ) =(n~, AK"),
(D'Ic")=(dK"+n~ Arc"+n", AIc-)

=(D(ro)K' ),

(83)

(84)

(85)

=2m o' fD (K' ) A
' V (810}

Integrating by parts, and using (2.8), both the integral (88)
and (810) are vanishing, so that the terms linear in DoK,
in the action (2.11), do not contribute to the lowest-order
expansion.
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