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Cosmic strings as random walks
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We present a random-walk model for the formation of cosmic strings in the early Universe. Ana-

lytic results are given for the scaling of string length with straight-line end-to-end separation, the

length distribution of closed loops, and the fraction of total string length in infinite strings. We ex-

plain why the string network has the statistical properties of a set of Brownian, rather than self-

avoiding, random walks, even in models in which string intersections in the initial configuration are
impossible. It is found that the number of closed loops per unit volume with length between I and
I +di is dn =Cg ~~i '~'di, while the scaling of the straight-line distance 8 between two points on

a string separated by a length i is R -(lg'}'~~. The fraction of string length in infinite strings is

& —,—4. These results are in reasonable agreement with previous Monte Carlo simulations and are

confirmed by our own computer simulations in which string intersections in the initial configuration
do not occur. The prevalence of infinite strings is a natural feature in the random-walk model.

I. INTRODUCTION (2)

Strings are topological defects which can form when a
local or global symmetry is spontaneously broken in a
phase transition. ' When a symmetry group G is broken to
a subgroup I, strings form if the fundamental group
tri(G/H) (loosely, the group of mappings of the manifold
of degenerate vacua onto the circle 5 ) is nontrivial, i.e., if
the coset space G/H is multiply conno:ted. They are of
cosmological interest because the strings formed in the
breakdown of a class of grand unified theories may act as
seeds for galaxy formation. In the simplest toy gauge
theory with strings, the Abelian Higgs model, a string is
present if 8(x), the phase of the Higgs-field expectation
value, changes by 2sr as one traces out a closed contour in
space. This can happen because, when the phase transi-
tion occurs in the early Universe, 8 is uncorrelated over
scales larger than some characteristic length g, where g is
less than or on the order of the horizon size ct at the time
of the phase transition.

Vachaspati and Vilenkin and Albrecht and Turok have
developed computer simulations of the formation of
cosmic strings. They divide the Universe into cubic cells
of size g and assign a random value to 8 from the set
0,2sr/3, 4n /3 at each vertex. A string is assumed to pass
through the face of a cell when the values of 8 on the ver-

tices surrounding that face run sequentially around the
face. Using a Monte Carlo simulation with this model,
the length distribution of closed loops is found to be

dn =Cl-"-"-'dl,

where dn is the number of closed loops per unit volume
with length between l and l+dl, and C is a constant.
(This length distribution can be derived by assuming that
the initial string configuration is scale invariant. ' ) For
any two points along a string, the distance between the
points measured along the string, l, scales with the
straight-line separation between the points, 8, as

Vachaspati and Vilenkin also find that only -20% of the
total length of the strings is in closed loops, and they sug-
gest that this result is unexpected for scale-invariant
strings.

%e show that these results can be derived in a straight-
forward way using a random-walk model for string for-
mation. This model is particularly fruitful because ran-
dom walks have been investigated in detail. In Sec. II
we discuss the statistical properties of the initial string
configuration produced by the phase transition, including
the scaling of string length with straight-line end-to-end
distance and the length distribution of closed loops. We
show that, in a physically reasonable model, the strings
form a set of self-avoiding random walks, but the string
network has the statistical properties of a set of Brownian
walks. In Sec. III we estimate the fraction of string
length in infinite strings, and our conclusions are summa-
rized briefiy in Sec. IV.

II. STATISTICAL PROPERTIES
OF THE INITIAL STRING CONFIGURATION

Assume that an initial string configuration has been set
down on an arbitrary lattice as described in Ref. 3, and
consider an observer located at an arbitrary point on the
string, which we will define as the origin of the lattice.
We assume that the Higgs field is assigned to the cells of
the lattice, and strings form along the lattice edges; this is
opposite to the convention of Ref. 3. As the observer
traces the string from the origin along the lattice, the
string will perform a random walk along the edges of the
cells, with the restriction that the string is not allowed to
recross a previously traced edge of the lattice. (Although
the simulations of Ref. 3 allow for self-intersections in the
initial string configuration, this problem does not occur
on a more physically reasonable lattice; see the next para-
graph. ) Placing the Higgs field at random on the cells of

33 3556 1986 The American Physical Society



COSMIC SYIIINGS AS RANDOM WALKS

a lattice will lead to correlations in the direction of the
string over scales on the order of the cell size. Over large
scales, however, these short-range correlations are unim-
portant, and we expect the string to perform a random
walk in space. For random-walk lengths much greater
than the step size, the statistical properties of the random
walk are independent of the shape of the lattice on which
the random walk is conducted. (In this model, the step
size corresponds to the Higgs-field correlation length g.)

The string we are tracing can rejoin its other end only at
the origin, so any strings which do not return to the origin
are infinite; if a string does return to the origin, then we
assume that it forms a closed loop. It is important to note
that this is a purely heuristic argument; the underlying
physical reality is that strings form at boundaries of the
Higgs-field domains. However, by recognizing that each
string traces a random walk in space, one can derive
analytically various properties of the initial string config-
uration.

In a realistic simulation for the formation of cosmic
strings, one expects the strings to correspond to a network
of self-avoiding random walks. (A self-avoiding random
walk is a random walk which is never allowed to intersect
itself except to close at the origin. ) A "random" division
of space into cells yields a lattice in which every edge is
bounded by three cells, every vertex is bounded by four
cells, and four edges meet at each vertex (see, for example,
Ref. 8). Suppose that we divide space up into cells satis-
fying the above conditions, and assign to the Higgs field
in each cell a random value 8 betwixt:n 0 and 22r. Then an
edge contains a string segment if the value of the Higgs
field changes by 2m as we pass sequentially through the
three cells bounding the edge. In passing from one cell to
the next, the Higgs field can rotate in two different direc-
tions in the field space; we assume that it changes in the
direction which minimizes

~
68~. The direction of a

string segment along an edge is determined by the direc-
tion in which the Higgs field rotates in field space. Then
it is easy to show that at any vertex, the four edges meet-

ing at the vertex must either contain exactly one ingoing
and one outgoing string, or else be completely unoccupied.
Thus, in the initial configuration produced by this model,
the strings do not intersect themselves or each other, so
each string corresponds to a self-avoiding random walk.

Self-avoiding random walks have been extensively stud-
ied in connection with polymer physics. It is thought
that the probability u/ for such a random walk to return
to the origin (and therefore terminate) on the jth step
scales as

- —23/12
QJ J (3)

for large j in three dimensions. To derive a value for dn,
note that the probability of choosing a particular segment
on a particular string is proportional to the length of the
string, and the length of the string l will be proportional
to the number of steps taken ( l =jg). Thus, dn
—[(uj/1)/g ]dl, or

gg
—13/12l —35/12dl (4)

~here C is a dimensionless constant. The number density
dn must also include a factor giving the probability that a

R =A( (1/g)", (6)

with A =2.10+0.05, n =0.992+0.006, over lengths from
10 to 200 steps, while the root-incan-square end-to-end
distance for a Brownian random walk in three dimensions
scales as

Thus, we have an apparent paradox: although the string
configuration is not self-intersecting, it has the statistical
properties of a set of Brownian, rather than self-avoiding,
random walks. To see why this is so, consider a single
self-avoiding random walk. Since the walk is not allowed
to intersect itself, the walker experiences a repulsion away
from the volume of space occupied by the walk. This
gives a larger value of R for a given l (R -l / ) than is
the case for an ordinary random walk (R -l' ). Howev-
er, in the case of the initial string configuration, a single
string, as we trace along its path, experiences a repulsion
not only from the rest of the string, but from all of the
segments belonging to other strings. By construction, the
set of all string segments is distributed uniformly in space,

given lattice edge will contain a string; this factor has
been absorbed into the constant in Eq. (4), since it does
not affect the scaling of dn with string length. A self-
avoiding random walk also has a characteristic scaling of
straight-line end-to-end distance with length. If R is the
root-mean-square end-to-end distance of a self-avoidirig
random walk, and I is the length measured along the
walk, then in three dimensions

R l3/5'/5

Although the computer simulations of Ref. 3 give results
in disagreement with the self-avoiding random-walk
model [Eqs. (4) and (5)], these simulations allow string in-
tersections in the initial configuration, and it is possible
that the Brownian spectrum obtained in these simulations
is a result of the fact that such intersections are allowed.
In order to test whether the absence of such intersections
would lead to a configuration with the statistical proper-
ties of a set of self-avoiding random walks, we have per-
formed a computer simulation in which such string inter-
sections do not occur. We use a tetrakaidekahedral lat-
tice, in which every edge is bounded by three 14-sided
cells, every vertex is bounded by four cells, and four edges
meet at each vertex; our lattice size is 84X84X84, in
units in which the length of a lattice edge is 2' . The
Higgs field is assigned a random value between 0 and 2m",

this is taken to be a "continuous" random variable rather
than a discrete variable as in Ref. 3. The determination of
whether a string passes through a given edge is as
described above, and there are no string intersections in
the initial configuration.

Our numerical results, however, indicate that the net-
work of strings in this case has the statistical properties of
a set of Brownian random walks rather than self-avoiding
walks. (A Brownian random walk is an "ordinary" ran-
dom walk which is allowed to intersect itself. ) In our
simulation, the rms distance R for two points separated
by a length l on an infinite string scales as



ROBERT J. SCHERRER AND JOSHUA A. FRIEMAN

dn -l +-dl (9)

over lengths from 10 to 50 steps. For a Brownian random
walk, the probability uj that the string returns to the ori-
gin on the jth step is, for large j (Ref. 11),

~ —3/2
QJ J (10)

for a lattice in thrm dimensions. Then our previous argu-
ment gives

dn =Cg-'"l -'"dl

in agreement with the computer simulations. [Equation
(11)can also be derived by assuming that the initial string
configuration is scale invariant. ' ] However, Eq. (10) ap-
plies to the set of all random walks of length j, including
those which intersect themselves and have multiple re-
turns to the origin. We assume that Eq. (10) can also be
used for our set of nonintersecting random walks which
terminate the first time they return to the origin; the basis
for this assumption is the argument given above that the
self-avoiding strings should display the statistical behavior
of Brownian walks.

so a given step of the random walk a sufficiently large
distance from the origin will have no net bias in the step
direction relative to the origin, as is the case for a Brown-
ian walk. This effect has been known in polymer physics
for some time. ' A polymer in a dilute solution (i.e., one
which interacts only with itself) will adopt a configuration
corresponding to a self-avoiding random walk, while in a
dense system of polymers, each one has the structure of a
Brownian random walk. Thus, one would expix:t the scal-
ing of the string size R with length I in the initial config-
uration of cosmic strings to correspond to a self-avoiding
random walk on scales smaller than the mean separation
between different strings, and to a Brownian walk on
scales larger than this; in the cosmic string models dis-
cussed here, the mean separation between different strings
is of the order of the step size g, so the statistical proper-
ties of the strings are Brownian on all scales.

The scaling given by Eq. (6) does not correspond exact-
ly to a Brownian walk, because we would expect A =1 in-
stead of A =2.1. This discrepancy is due to the local in-
teraction of the random walk with itself: immediate re-
versals of the random walk are prohibited. If P is the an-

gle between successive steps in a random walk, and we al-
low an arbitrary distribution for P, subject only to the
constraint that the distribution for each step be azi-
muthally symmetric with respect to the previous step,
then it is easy to show that A is a function only of cos((t,
the value of cosP averaged over the distribution for P:

3 =( I+cosP)/(1 —cosP) .

For our lattice, cosP= —,', so A =2, while a completely
Brownian walk has cosg=0, A =1. In general, A is a
lattice-dependent parameter, but we do not expect it to
have any physical significance, as the value of A can al-
ways be absorbed into the definition of (.

Using a set of 20 runs of our numerical simulation, we
find that the number density of closed loops of a given
length I scales as

III. INFINITE STRINGS

The question of the fraction of string length contained
in infinite strings arises naturally in random-walk models.
It was first noted by Polya' that a random walk in one or
two dimensions will always return to the origin after an
arbitrarily large number of steps, while a three-
dimensional random walk has a nonzero probability of
never returning to the origin. Let H be the probability
that a random walk on a given three-dimensional lattice
ever returns to the origin. A method for calculating II for
ordinary random walks (i.e., random walks which are al-
lowed to intersect themselves) is given in detail in Ref. 5;
we will simply quote the results. For simple cubic (sc),
body-centered-cubic (bcc), and face-centered-cubic (fcc)
lattices, we have

II=0.34 (sc),

11=0.2S (b c),
11=0.26 (fcc) .

(12a)

(12b)

(12c)

IV. CONCLUDING REMARKS

Our heuristic treatment of the formation of cosmic
strings as a random-walk problem gives results in good
agreement with previous computer simulations and pro-
vides a natural explanation for the prevalence of infinite
strings noted in such simulations. The initial string con-
figuration has the statistical properties of a set of Brown-

Forbidding string intersections, particularly immediate re-
versals of the string, will reduce the return probability, so
in our model in which string intersections do not occur in
the initial configuration, II will be smaller than the values
quoted in Eq. (12). The probability Q that a given string
segment will belong to a closed loop is

(13)

and it is clear that Q gives the total length of string con-
tained in closed loops. The physical significance of Eq.
(13) is unclear, as II is a function of the particular lattice
under consideration. However, it does indicate that a
large fraction ( & —', ——,') of the total length of strings
should be in infinite strings rather than closed loops,
which explains the results of Ref. 3; our own simulations
on the tetrakaidekahedral lattice yield -26% of string
length in closed loops. It is clear from Eq. (11) that the
probability for a random walk to return to the origin is
dominated by the large number of returns after a fairly
small number of steps. Almost all of the string length in
closed loops is in very small loops of length l-g, so the
fraction of the total length of all strings in closed loops of
length I ~~) is effectively zero. This result is independent
of both the type of random walk and the particular lattice
under consideration. From this, one might naively expect
the fraction of length in infinite strings to be negligible in-
stead of ——,

' ——,'. This paradox is resolved by realizing
that infinite strings are not obtained as the limit of very
large loops; on the contrary, as one goes to longer and
longer walks, one is much more likely to be on an infinite
walk than on a large loop.



33 3559

ian random walks even in initial configurations in which
the strings are not allowed to intersect themselves or each
other. This is due to the fact that in a uniformly distri-
buted network of self-avoiding random walks, the repul-
sive "force" which a self-avoiding random walk exerts on
itself is exactly canceled by the repulsive "forces" due to
all of the other random walks. A similar effect arises in a
dense solution of polymers, in which each polymer has the
structure of a Brownian random walk.

John Preskill' has independently arrived at some of the

results presented here.
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