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All static and cylindrically symmetric vacuum solutions of Einstein s field equation with cosmo-

logical constant A are found. %'e use these solutions to represent the exterior metric of a cosmic

string. If A is negative, the exterior approaches the anti —de Sitter metric away from the string, If
A is positive, the exterior metric is either an R 'g 8 ' universe with a curvature singularity, an

I p S universe with a conical singularity, or an I p S universe with no singularity.

I. INTRODUCTION

In recent years, there has been much interest in cosmic
strings. According to gauge theories with spontaneous
symmetry breaking, the Universe may have undergone a
number of phase transitions since the big bang. Cosmic
strings, one of the topological structures produced in these
phase transitions, possibly survive to the present day. '

Strings could pravide the fluctuations of the density of
the Universe necessary to form galaxies, 2 and also could
act as gravitational lenses. ' The gravitational effects
have been investigated by a number of authors, 5 and they
have shown that the geometry outside a string with um-
form energy density is conical with a deficit angle (com-
pared with the fiat space) of Smp, where p is the linear
mass density of the string. Garfinkle has treated the
string more generally as a self-interacting scalar field
minimally coupled to a U(1) gauge field, and has shown
that there exists a class of static, cylindrically symmetric
solutions to the equations of those fields asymptotically
approaching Minkowski space with the same deficit angle
as above. In light of recent developments regarding the
properties of the very early Universe, it is now believed
that the cosmological constant A may have been in the
past as large as 10' times that of the present epoch.
Therefore, it is natural to ask whether ar not the above
"deficit angle" feature of the space-time metric of a cos-
mic string still exists. The aim of this work is to answer
this question. We shall show that, with nonzero A, the
stress-energy components T~ and T cannot both van-

ish, as they can in the case A =0. Consequently, the exte-
rior metric for a string may or may not, in a certain sense,
be conical. If A is negative, the exterior, having the topol-

ogy I X S ', will approach the anti —de Sitter metric as
one goes away fram the string. If A is positive, the exteri-
or must be either with the topology I )& 5 ' and a curva-
ture singularity, or with the topology I Q $ and either
with or without a conical singularity.

In Sec. II we obtain a one-parameter family of solutions
to the vacuum Einstein's field equation with cosmological
constant. %e shall, in Sec. III, show that, under some
reasonable assumptions about the cosmic strings, the
geometry of the string has a boost symmetry along its axis
and that, in the presence of a cosmological constant, the

components T~ and T of the stress-energy tensor can-
not both vanish. In the same section we discuss, by means
of the 0 Brien-Synge-Lichnerowicz jump candition, the
geometrical properties of the spacetime of the string. In
Sec. IV we illustrate these remarks with an example.

II. STATIC, CYLINDRICALLY SYMMETRIC
SPACETIMES WITH A

A spacetime is said to be static and cylindrically sym-
metric if it possesses three conimuting Killing vector
fields of which one, (t)/Bt), is timelike, while the ather
two, (t)/Bz)' and (t)/t)P)', are spacelike such that any two
are orthogonal to each other and each is hypersurface
orthogonal. We can write such a spacetime metric, in
terms of the t, z, and P above, as

Adt + Bd 2+ cdpi+d 2

where r is the spatial distance in the direction orthogonal
to the three Killing fields, and A, 8, and C are arbitrary
functions of r.

Since the Einstein tensor G,b is diagonal in these coor-
dinates, the stress-energy tensor T,b must, from Einstein's
equation, also be diagonal. That is, we have

Tab cite tb e2ze zb 0$e pb 5re—rb'

where ei, ez, cr, and 5 are functions of r only, t', z', and
4' are unit vector fields lying in the respective directions
of the Killing fields (t)/t)t)', (t)/Bz)', and (t)/BP)', and r'
is a unit vector field orthogonal to all three of these Kil-
ling fields.

Einstein's field equation (with 6 =c =1) with cosmo-
logical constant A now reduces to the following system of
ordinary differential equations:

—,
' (8"+C")+—,

' (8'+C'+8'C') = (Sn e, +4—p'/3),

(3a)

—,
' (3"+C")+—,

' (A'+ C'+ A'C') = (S~e,+4p'/3)—,

(3b)

—,
' (3"+8")+—,

' (A'+8'+ A'8') = —(S~o +4P'/3)

(3c)
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—,
'

(A '8'+ 8'C'+ O'A ') = —(Sir5+ 4P2/3),

where a prime means d /dr, and we have set P=v'3A/2.
We first claim that a one-parameter family of static and

cylindrically symmetric spacetime metrics in a vacuum
rvith cosmological constant is given by

ds = —[tanP(r+r)]"'[sin2P(r+r)] /dt +[tanP(r+r)]"'[sin2P(r+r)] /dz +[tanP(r+r)]"'[sin2P(r+r)] dP

+dr (4)

where r is an arbitrary real number, and y i, y2, and y3 are

real numbers in the interval [——', , —', ], satisfying the alge-

braic equations
4

3 1+72+3 3 O& 3 13 2+ V273+7371 3 (5)

To show this, first set the stress-energy components to
zero in (3a)—(3d). Next, add (3a), (3b), and (3c), use (3d),
and set X=A+8+C to obtain X"+—,'X' = —SP2. A
two-parameter family of general solutions of this equation
is X=XD+ 2 ln sin2P( r +r ), where XQ and r are arbitrary
constants. Next, subtract (3a) from the sum of (3b) and

(3c) and use (3d) to get 3"+—,
' 3'X'= ——',P . Solve this

equation for A. Do the same for 8 and for C. These
solutions result, on rescaling the coordinates, in the metric

(4). The algebraic equations (5) are the result of substitut-

ing the expressions for A, 8, and C into (3d). In Sec. III
we shall use the metric (4) to find the exterior metric for a
cosmic string.

We further claim that, for A negative, there is one addi-
tional solution —not within the general class (4)—with the
property A "=8"=C"=0. This solution yields the
anti —de Sitter metric' (i.e., a spacetime with constant
curvature and negative scalar curvature):

ds =e+- "( dt +dz +dP—)+dr

where we have set x=(
~

A
~

/3)'/. We observe that the
metric (4} with negative A—and so with P purely imagi-
nary and the functions in (4) hyperbolic —approaches the
metric (6) as r~ ao or r~ 00. We note in passing that, if
A is positive, the metric (4) never approaches a spacetime
time with constant curvature.

Finally, we remark that the metric (4} is a gener-
alization of the Levi-Civita vacuum spacetime. One
sees this as follows. First replace dt, dz, and

(4p2) 'r3+ ' dp, respectively. Then replace r in favor
of p=r & where Q =m —m +1, m E[0,2]. Finally, set
constants

III. THE GEOMETRY OF COSMIC STRINGS

2 U4/3( dt2+d 2)+ V2U —2/3dy +d 2 (7)

In this section we shall explore the geometrical proper-
ties of the solution for a cosmic string. Let us first
describe our coordinates for a string. The cosmic string is
to be a static, cylindrically syinmetric configuration with
stress-energy tensor independent of time, positions on its
axis, and orientations around its axis. It follows from
these features that the spacetime for a string also has the
symmetries above and can be described by our
coordinate the string s symmetry axis lying in the direc-
tion of the Killing field (8/Bz)', the Killing field (8/BP)'
having closed orbits around the axis, and the parameter r
starting from the axis. We also identify / =0 and /=2m,
so the range of P is from 0 through 2m. The stress-energy
tensor is still in the form of (2). We further assume ei ——e2
in (2) and denote the common value by e. (Indeed, this as-
sumption can be derived from a new Lagrangian by add-

ing a term of A into the Lagrangian in Ref. 6.)
We now show, using the same argument as that6 for

A=o, that the assumptions above still permit one, even
with A&0, to choose A =8 in the metric (1}. This choice
reflects that the geometry of the string must possess a fur-
ther symmetry —a boost symmetry —along the axis. To
show that this can be done, flrst subtract (3a) from (3b),
and integrate the difference over r E [0, 00 ) once to obtain
8' —A'=ke '"+ + ', where k is a constant. Next
note that e / -+ oo as r ~0, since the orbits of (8/BP)'
are closed. This implies that the norm of the Killing field
(a/ay)' vanishes on the axis. But now, by the smoothness
of the metric, it follows that the constant k must be zero
and, therefore, that 8 —A must be constant. Since the
two Killing fields (8/Bt)' and (8/Bg)' can still be re-
scaled, one is permitted to choose A =B. We will use this
choice afterward.

Set U=e and V=e +", so U is strictly posi-
tive and V non-negative. The metric (1) then becomes

and

2PPl 2 2t7l —2P?2 2
71 ~ V2

Q 3' Q V"+8V=0,
U"+I U=O,

(&a)

(8b)

where U and V satisfy the new version of the Eqs.
(3a)—(3d):

2 —2P2l 2
y3=

3

and

O'V'+EUV=O,
and let p~0. The result of these steps is the Levi-Civita
metric in the form given in Ref. 12. where we have set 0=8ne 2mcr+P, I =6—mcr+P, and
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6=6m5+P. Since these are three equations on two

metric functions V and U, there must exist a relation be-

tween the stress-energy components e, o, and 5. Unfor-
tunately, this relation is apparently too complicated to be
useful. A more useful relation is the conservation of
stress-energy, which here takes the form

(9)

A cosmic string is frequently described by a stress-

energy tensor in the form (2) under the assumption that
components T~~ and T vanish. But now, in the pres-
ence of the cosmological constant, this assumption is no
longer tenable. Indeed, were o and 5 both to vanish, then
Eq. (9) would require that eU'=0, i.e., that @=0 (iinply-
ing no string at all) or U'=0 [implying, from applying
(Sb) in a vacuum, that A =0].

We then make some further assumptions to rule out un-
physical stress energies. We first demand that the weak
energy condition' hold, i.e., that, in the case at hand, e be
positive and greater than both cr and 5. We next demand
that there be no conical singularity on the axis. We shall
regard the string as a concentrated configuration of
matter, i.e., as having the stress-energy components take
some appropriate value within the string and vanish out-
side. Therefore, another condition is needed to join these
two parts properly. We assume that the O' Brien-Synge-
Lichnerowicz jump condition holds to guarantee that
there be no surface layer of stress-energy on the boundary.

Regard the metric (7) as the interior metric for a string.
We first write out the boundary condition on the axis.
Since the range of P is 0 to 2m, our boundary condition of
no conical singularity on the axis can be written as
lim„o(VU ' /r}=1. But this condition is equivalent
to the following two conditions:

~o=o and Vo=vo (10}

)&[cosP(r +r)] ~ dP +dr (12)

where a, d, and r are constants to be determined later.
This metric is applicable to the exterior of a string.

There is still one other possible exterior, provided A is
negative. This exterior is the limit of the metric (4) as

~

Pr"
~

&&1. We shall discuss this case at the end of this
section.

where the subscript 0 denotes evaluation on the axis.
Joining Eqs. (10) and (7b} with (7c) and its derivative, we
obtain the two requirements

Uo ——0 and era ——50.

Consider next the exterior metric for a string. One
class of exteriors can be obtained by either solving
(Sa)—(Sc) in a vacuum or by imposing the boost symme-
try, i.e., y, =y2 ——+ —, , and yi ——+ —,, on the metric (4}.
The result is

ds = [a cosP(r +r }] ( dt +dz )—
d'a -'"

+ 2 [sinP(r +r )]

Now we consider the jump condition on the surface,
r =r, . The O' Brien-Synge-Lichnerowicz jump con-
dition —the application of Einstein s field equation to the
surface —requires that both the metric and the extrinsic
curvature of the surface be continuous across the surface.
This condition, in the case at hand, means that both the
metric and the derivatives of the metric functions are con-
tinuous. On using the metric (12) for the exterior, this
condition turns out to be

a =U, +(Ug/P)

U,'V,'+P'U, V, =0,
t3 tanP(r, +r ) = —U,'/U, ,

(13)

(14)

d'= V,
' +(PV, }', (16)

where the subscript s denotes evaluation on the surface
bounding the string. These jump conditions indicate how
those constants in the metric (12) are related to the interi-
or metric (7). Additionally, the interior metric is dom-
inated by a given stress-energy tensor through Einstein's
field equations (Sa)—(8c). Therefore the conditions
(13)—{16) are essentially the relations between the con-
stants in the exterior metric (12} and the stress-energy
components. So far, we have obtained all the equations
(Sa)—(Sc) and boundary conditions (10), (11), and
(13)—(16) needed to determine the spacetime metric for a
given string. In the next few paragraphs we shall discuss
the meaning of the jump conditions in some detail. But
before we do that, first let us get some idea about the inte-
rior.

Recall that there is a relation between the three com-
ponents of a given stress-energy tensor e, er, and 5. There-
fore, given only two of them, say e and o, one can solve
(Sa) and (Sb) for V and U. These two solutions are in-
volved with four integral constants: two of them are mul-
tiplicative, say, Vi and U„ the other two may be called
Vz and U2 for Vand U, respectively. Substitute the solu-
tions into Eq. (Sc) to obtain the component 5. Using the
boundary condition (10) and (11) on the axis, one can
determine the integral constants Vz, Ui and the ratio of
Ui to V, . Then, only one arbitrary constant, say Vi, still
remains. However, it can be shown that this arbitrariness
will have no effect on the spacetime solution —or more
specifically, not on the norm of the Killing field (5/BP)'
(since only the range of P has been restricted). Indeed, let
V be replaced by Yi V in the norm of {B/Bp)', i.e., in
g~&' ——VU '~. The nonconical singularity condition
{10)on the axis requires that U in g~&' be replaced by

The norm of (8/BP)', therefore, must be in-
dependent of Vi. There is, therefore, a unique spacetime
solution for a given stress-energy tensor. This argument,
of course, works for both interior and exterior metrics.
For convenience, however, me shall deal with the quantity
hP in the exterior, where b,/=2'(1 —da '~ ), and call it
the deficit angle, rather than with the norm of the Killing
fields (8/e) tI) )'.

Let us next investigate the jump conditions in detail.
The simplest one is Eq. (13), which specifies how the scale
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of the coordinates t and z of the exterior is related to that
of the interior. One can choose any convenient value of,
say, V„to fix the coordinate's scale of t and z of the exte-
rior.

The condition (14) is just an application of Eq. (8c) on
the surface. This condition implies that the component 5
of the stress-energy tensor must be continuous on the sur-
face, i.e., 5~0 as y~r, . For given values of stress-
energy components e and e, the condition (14) can be used
for finding the diameter value r, of the string.

We next consider the most crucial condition, (15). This
condition suggests that the parameter r in the metric (12)
depends only on the stress-energy tensor, but not [like the
other two constants a and 1 in (12)] on the free choice of
multiplicative constant Vi, namely, that r be fully deter-
mined by a given stress-energy tensor. The importance of
this condition involves the singular behavior of the space-
time metric. The vacuum metric (12) with positive
cosmological constant has a real singularity; i.e., there ex-
ists an incomplete timelike geodesic along which the cur-
vature scale R,s,~R' "will become infinite, unless r takes
the value of r„wh reer, =n/2P We no. te in passing that
there is no such geodesic for A&0. If the parameter r
does take the value of r„ the singularity will disappear
from the exterior and the metric (12) will describe a part
of a "closed" spacetime with the range of variable r from
r, to r, . Let us name this spacetime M,~. For the interi-
or part of the whole Universe, the presence of the string
along the z axis will "smear out" what would otherwise
have been a singularity on the axis. The topology for this
sort of closed spacetime is I )& S

Finally, consider the condition (16). This condition,
along with the condition (13), fixes the quantity da
relating to the norm of (8/Bg)', or equivalently, the defi-
cit angle b,P defined above in the exterior. We call hP a
deficit angle just because it can be thought of as a general-
ization of the case A=0. In general, however, the word
"deficit" has no meining unless there is a natural definite
vacuum space to compare with, like the Minkowski space
in the case A=0. Here we say the metric (12) with a defi-
cit angle 6(() only in the sense of comparing this metric
with the vacuum metric (12) with 6/=0 and in the ab-
sence of string in the spacetime. It is easy to see that, in
the absence of string along the z axis, the vacuum metric
(12) has no conical singularity anywhere, provided b,/=0
and r =0. Let us name this vacuum spacetime Mo. The
presence of string may have both r and b,P nonvanishing,
as we have argued that both r and b,P are fully deter-
mined by a given stress-energy tensor. Let us first consid-
er the case r =0 5/&0 means . that, on the appearance of
a string along the z axis, there is an angle hP which has
been "cut out from" (if bg~0) or "plugged into" (if
dLP &0) the spacetime Mo. Otherwise, 5/=0 means that
the appearance of string along the z axis does not make
this kind of angle change in the exterior. Calling b,P a
"deficit" angle makes sense only in this case. The more
interesting case, however, is that r=r„ i.e., the closed
spacetime defined above. Here, the deficit angle hg&0
means that there is a conical singularity at r=r„and
bP =0 simply means without a conically singular point in
the exterior of M,~. %e claim that it is possible to have

hp either positive, negative, or zero by adjusting the value
of the stress-energy components.

To understand our claim, one needs the useful relation

~

1 —4p+ J [2n((r+5) 2P—/3]VU '~ dr
~=1-

2m [cosP(r, +r)] ~i

(17)

where p =2nf .eVU '~ dr represents the mass per unit
length, or linear mass density, of the string. To prove this
relation, first multiply Eq. (8a) by U ', then (8c) by
U ~, and, taking the difference and integrating it from
r =0 to r=r„we obtain

—1/3(V'U 'i
) io' ———4@+ J [2m.(0+5)

—2P /3]VU 'i dr . (18)

Evaluate the left-hand side of (18) by using the boundary
conditions (10) on the axis as well as (13)—(16) on the sur-
face to obtain (17) through the definition of b,P.

By virtue of the relation (17), one can see that, in gen-
eral, hP has a wide range of values. The value and sign of
b,P are mainly determined by the choice of both parame-
ter r and the difference (2e—o —5), for P (compared to e,
cr, and 5) is usually quite small. (Note in passing that by
means of the weak energy condition, this difference
should always be positive. ) We shall give an example in
Sec. IV to illustrate that by adjusting the parameter in the
components of a stress-energy tensor we can obtain a
closed ( Ri)& S ) universe M,~, defined above, without
any singularity.

We next discuss two limiting cases of the relation (17).
Set the cosmological constant to be zero and let the corn-
ponents cr and 5 vanish. Then (17) reduces to b, (() =8m@.
This limit is the result proven by Vilenkin, Gott, and
Hiscock: the exterior metric is the Minkowski space
with a deficit angle 8mp. The second limit is what has
been called the classical limit, i.e., the diameter r, ~0.
The relation (17) in this limit reduces to

hP/2n = 1 —
~

1 —4p
~

(cosPr")

In the case of r =0, A being either positive or negative,
the exterior (12) is always conical in the sense that the
metric is approaching a conical singularity as r, ~0. In
the case of r=r, and A being positive (i.e., the closed
Universe M,i), the exterior is the limit of (12) as p~ —,,
and the norm of (8/BP)' has no definite value. Hence
there is no way to say whether the exterior is conical or
not in this limit.

So far, the discussions about the properties of the exte-
rior of the string have been based on considering only the
metric (12) as the exterior metric. However, there is one
other possible exterior metric, provided A &0, namely, the
anti —de Sitter metric (6)

y& 2
&

+Mr[& 4/3( y& 2+ yz 2
) +y 2/3gy2] +g& 2

which is the limit of the metric (4) as
~
P~

~

gets larger
and larger. Match the interior (7) with the anti —de Sitter
metric (6) on the surface by means of the O' Brien-Synge-
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Lichnerowicz jump condition to obtain the following

boundary conditions:
+3xr /2

V ( d )1/3e —~~s/

(19)

(20)

(21)

(22)

=1—e ' 1 —4@+ 2m 0+

+3.2/2]VU-»3dr,

(23)

where a=(
~

A
~

/3)'/2. According to this relation (and

where ai and d& are constants in the anti —de Sitter
metric written as above. These conditions (19)—(22} can
also be obtained from the boundary condition (13)—(16)
by setting

~

Pr"
~

to be much larger than 1.
There is, in this case, a formula for the deficit angle

analogous to (17). It can be obtained by substituting the
boundary condition (19)—(22) into (18). The result is

Qch
(1 d i/3)

2~

using the same argument as before}, one can see that 5p is
still fully determined by a given stress-energy tensor, and
that it could take a value either positive, negative, or zero.

IV. EXAMPLE

and

e=ei ——e2 ——[(a —1)P +2no]/8~ (24)

~2 1
n (1 p)cos2—pr" cosnpr

2p + (p —1)cos2Pr"cosn Pr
6m, (25)

wlmre a =(I r/r, +—r /A, ) with r, =n/2p; r, A, , and n are
fry pm~etc~, and p is some const nt ultimately to b
expressed in terms of r, A„and n

One can now proceed in the usual way. Solve (Sa) and
(8b) with (24) and (25) for V and U. Substitute these solu-
tions into Eq. (Sc) to obtain the component 5 of the
stress-energy tensor. Then impose the boundary condi-
tions (10) and (11) to fix the integral constants in V, U,
and 5. Only one constant, say Vi, is left and we set it to
be 1. The resulting interior metric is

In this section we shall give an example of a solution
for a cosmic string to illustrate the geometrical properties
described in Sec. III.

Let A be positive. Choose the components, e and o, of
stress-energy tensor T,b in the form of (2) to be

2

ds =[2p+(p —l}cos2Pr cosnPr] /
( dt +dz2)—+Uo /3 [2p+(p —1)cos2Pr cosnPr] / dP +dra (26)

where Uo ——2p + (p —1)cos2Pr. For example, Uo ——p + 1 if r =r„or Uo ——3p —1 if r =0. The component 5 is

P an (1 p)cos2Pr" sinn—Pr cotaPr1+
2p + (p —1)cos2Pr cosnPr

(27)

Here, the parameter r in (25)—(27) has been treated as the same parameter r in the exterior metric (12). Of course, the
way in which r appears in the stress-energy components is not unique. The only criterion for setting the parameter r is
to keep the jump condition (13)—(16) satisfied. Given a value of r, the stress-energy tensor (and therefore, the interior
metric} has two free parameters: A, and n. And furthermore, for the given values of both A, and n, one can obtain a
unique interior metric through (26). Match this interior with the metric (12}to obtain a unique exterior metric.

Let us now consider the most interesting case, i.e., the closed spacetime M, ~
where r takes the value r, The inter. ior

metric, with a =ir/2', , now becomes
2

ds =[2p —(p —1)cosnPr] /
( dt +dz )+(1+p—)

/ [2p —(p —1)cosnPr) / dP +dra (28)

d 2u —2/3
ds =(a sinPr) /

( dt +dz )+—(cosPr) (sinPr) / dP +dr

Now the exterior (12), describing a part of a closed universe with topology I X S, becomes

(29)

where the constants a and d in (29) and p in (28) are
given, through the jump condition (13)—(16), by the ex-
pressions

a = [2p + (p —1)cosn Pr, ] +n ( 1 —p ) ( sinn Pr, )

~rs n

2A, 2', '

cosnPr, +n sinnPr, tanPr,

c snPor, +n sinnPr, tanPr, —2
'

(31}

(32)

(30) and
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dg —i /3 2', sin(n r, /2A, )

1/3

(cosPr, )
/7r

2 I,
—1 n sinnPr,

(33)

Letting r =r, and p be given by (32), one can examine
(24), (25), and (27) to see that the weak energy condition is
satisfied, i.e., e&0 and (2e—5—o)&0. For simplicity,
one may assume nPr, « 1 to approximate the right-hand
side of the relation (33). The deficit angle b,(() is given in
the expression

(34)

Note that by adjusting the parameter n one can make b(()
either positive, negative, or zero. We therefore have illus-
trated that, for a cosmic string with a particular set of the
stress-energy components, its spacetime geometry, if A is
positive, could be a closed universe (I X S ) without
any singularity.

Finally, following the argument of Vilenkin, ' let us in-
dicate the numerical values of the above parameters. The
diameter of the string is of the order m ' where m is the
characteristic mass of the field. For the grand-unification
string, say, m —10' GeV-10 in Planck units. Thus r,
is of the order 10 in Planck units. For these values of m
and r, of the string —actually for any kind satisfying
Pr, «1—the parameter A, , according to (31), is very
slightly smaller than r, . On the other hand, Guth' has
pointed out that during the phase transitions the cosmo-
logical constant assumed is of the order of constant ener-

gy density of the Universe, i.e., p= v'3A/2-10 'c at that

time. Substitute the values of r„P, and A, into (34) and let
bed=0. The required value of n is about 4X1()
corresponding value of eo is of the order 2.3X10, of
oo——Q the order —5 3 X 10 ', and of p the order 5.4, all
in Planck units. The component 5 will go to zero as
r~r„as required in general, while 0 remains negative.
The situation seems to be the following. The pressures in
both the P and r directions are positive in order to balance
the negative pressure caused by the positive cosmological
constant background.

In summary, the components T~ and T of the
stress-energy tensor for a cosmic string, in the presence of
the cosmological constant, cannot both be assumed to
vanish. In light of the 0 Brien-Synge-Lichnerowicz jump
condition, the norm of the Killing field (t)/8(())' or,
equivalently, the deficit angle b, ((t, is fixed by a given
stress-energy tensor. If A is negative, the exterior is either
the metric (12) or the anti —de Sitter metric (6) depending
on the value of a certain parameter involved in the stress-
energy tensor If A .is positive, the situation for the exteri-
or depends also on a certain parameter's value related to
the stress-energy tensor. The exterior, therefore, could be
a part of either a universe ( 8 X S ') approaching a cur-
vature singularity, or a universe ( I X S ) with or
without a conical singularity.
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