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Bianchi type-I models with a powers-of-t metric are investigated as solutions of the Einstein field

equations for a viscous fluid with or without a magnetic field. Solutions are found which satisfy
linear thermodynamic relations as well as all energy conditions. In general, these solutions contain a
tilting velocity and depend on two parameters which satisfy certain restrictions. In the magnetohy-

drodynamic case solutions are shown to exist when the magnetic field and the spatial component of
the velocity vector are parallel and also when they are perpendicular.

I. INTRODUCTION

Much of the considerable literature on relativistic
cosmological models is confined to investigations of
models which satisfy the Einstein field equations for a
perfect fluid. In particular, attention is focused on the
standard Friedmann-Robertson-Walker (FRW) models,
which are the simplest possible perfect-fluid models and
the basic models used to relate observations to theory in
cosmology, and on the anisotropic spatially homogeneous
models; excellent in-depth discussions of the latter models
have been given by MacCallum. '

Misner suggested the existence of strong dissipative
mechanisms, such as neutrino-induced viscosity, during
the early history of the Universe. Other authors ' have
discussed the consequences of neutrino viscosity or other
types of viscous dissipative processes; in some of these ar-
ticles exact solutions have been found of the Einstein field
equations with terms representing viscosity. These solu-
tions are, in general, spatially homogeneous models and,
in many cases, are of type I (Refs. 1 and 2). The field
equations used in the cited articles are those for a fluid
with bulk and/or shear viscosity; no attempt is made to
include heat-conduction terms or to impose a set of ther-
modynamic relations to be satisfied by the matter content
of the Universe. On the other hand, the various develop-
mental articles in relativistic thermodynamics and kinetic
theory, some of which refer to cosmological applica-
tions, are not concerned with exact solutions of the field
equations obtained.

The adiabatic theory of galaxy formation predicts
that clusters of galaxies should form a cell type of struc-
ture and this prediction has been supported by observa-
tions. The adiabatic theory is based on metric perturba-
tions of standard perfect-fluid FR%' models whereas it
would seem more appropriate to consider perturbations in
a model with viscosity, particularly in view of the fact
that the observed cell structure requires dissipative forces,
such as viscosity, in the early Universe. Furthermore, if
dissipative forces are to be considered, it is natural to con-
sider also the thermal behavior of the cosmological fluid

where p, p, u", 8, o& q&, ri( )0), and g( )0) are, respec-
tively, the density, thermodynamic pressure, fiuid velocity
vector, expansion, shear tensor, heat-conduction vector,
and shear and bulk-viscosity components, and h„and
E„v are, respectively, the projection tensor and the elec-
tromagnetic stress-energy tensor given by

hpv=gpv+upuv

—F F+ —g

(1.2)

where F&„ is the Maxwell tensor. Note that the quantities
o&„and q& are orthogonal to the four-velocity u", i.e.,

(1.4)

and the expression —2rio„„ in Eq. (1.1) for the trace-free
shear stress tensor is a result of the linearized phenomeno-

by including heat-conduction terms in the stress-energy
tensor of the matter and by imposing an appropriate set of
thermodynamic conditions to be satisfied by the fiuid
variables.

Our purpose, then, is to find exact cosmological solu-
tions in which the matter content is an imperfect fluid
with viscosity and heat conduction. %'e shall be particu-
larly interested in models in which the matter content
tends to a perfect fluid at the later epochs, but in which
the viscosity is significant at earlier epochs. However, be-
fore proceedings, we shall make a further physically plau-
sible generalization. It is possible that there may exist at
present a very small cosmic magnetic field, ' which
may be the remains of a strong magnetic field which ex-
isted during the plasma era. Thus, we shall include an
electromagnetic component in the stress-energy tensor to
be used and, as with viscosity, we shall have particular in-
terest in models with a decaying magnetic field which is
of significant magnitude at early epochs.

The field equations to be satisfied are

G„„=E„„+pu„u„+(p (8)h„„2rio—„„+q„u—„+q„u„,
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Td(S ln ) =d( pin )+pd(1/n ), (1.6)

where T is the temperature and S is the entropy density.
(iii) Positive entropy production:

S".„)0,
where S"=Sui'+ T 'q" is the entropy flux.

(iv} Temperature gradient law:

q"= —xhi'"(T „+Ta„),

(1.7)

(1.8)

where h" =g"'+u"u" is the projection tensor, a„ is the
acceleration vector, and ~ is the thermal conductivity.
The condition a & 0 is sufficient to ensure that the condi-
tion (1.7) is satisfied.

Solutions of Eqs. (1.1)—(1.8), with or without an elec-
tromagnetic field, have been found by Coley and
Tupper. 2 These solutions have as their spacetime
metric that of the FRW models, i.e.,

logical laws based on the assumption of small deviations
from equilibrium.

The thermodynamic conditions that the models will be
required to satisfy are those originally proposed by
Eckart (see also Refs. 20—24) as follows.

(i) Baryon conservation:

( nu").„=0,
~here n is the particle density.

(ii) Gibb's relation:

31—36 to spatially homogeneous anisotropic models for
two reasons. First, it would be interesting to investigate
the effect of discarding the assumption of isotropy.
Second, the solutions of Refs. 33—38 are the only known
solutions of Eqs. (1.1}—(1.8) and all are perfect-fiuid
spacetimes in which the stress-energy tensor has been
reinterpreted as that of an imperfect fiuid. In some sense,
it would be more satisfactory to have solutions of these
equations in which the stress-energy tensor does not have
the degenerate form (1.10), so that the spacetime does not
admit alternative physical interpretations. For this pur-
pose we shall consider only the simplest of the spatially
homogeneous models, namely, the type-I models, the gen-
eral metric of which can be written in the form

ds = dt +—A'(t)dx'+B (t)dy +C (t)dz'. (1.11)

However, we shall not use this general metric, partly be-
cause the generality of the three unknown functions A(t),
B(t), C(t) makes it difficult to obtain specific solutions,
but mainly because we want to find solutions which will
give us some basis for comparison between the imperfect-
fluid FRW models and the type-I models. The investiga-
tions of imperfect-fiuid FRW models in Refs. 33—38 were
largely confined to those zero-curvature FRW models
which, in the perfect-fluid form, satisfy an equation of
state of the form pip =y, constant. The metrics of these
models are of the form

ds = dt +@2(t—)[dr2/(1 kr )+r d8 —+r sin Hdp ], ds = —dt'+t (dx +dy +dz ), (1.12)

where k=0, +1, and the solutions exist because of the
fact that a general stress-energy tensor, such as the right-
hand side of Eq. (1.1), may be degenerate in the sense that
its local tetrad components are of the form

T"= diag( p,p,p,P), (1.10)

where the latin suffixes denote tetrad components. In
such a case the stress-energy tensor may be interpreted as
that of a perfect fluid. Various reinterpretations of
stress-energy tensors have been discussed by Tupper,
Raychaudhuri and Saha, ' and Carot and Ibanez, and

a detailed discussion of the geometric and algebraic condi-

tions for such reinterpretations to be possible has been

given by Hall and Negm. In the case of the FRW
models, which are usually regarded as solutions of the
field equations for a perfect fiuid, the reinterpretation as
an imperfect fiuid requires that the four-velocity ui' must
be tilting (i.e., noncomoving) with respect to the
hypersurface-orthogonal preferred observer. If the veloci-

ty is comoving then the solution becomes the usual
perfect-fluid solution with, at most, the addition of a
bulk-viscosity term. This reinterpretation of the physical
content of the FRW models has been extended to two-
fiuid models in which one fluid is a comoving radiation
fluid, representing the cosmic microwave background, and
the other fluid is a tilting viscous fiuid representing the
cosmic fluid.

We would like to extend the investigations of Refs.

d s 2 = dt 2+—t 2'dx 2+ t 2bdy 2+ t2cdz 2 (1.13}

As in the case of the metric (1.12), we shall assume that
the fluid has a tilting velocity with spatial component in
the direction of the x-coordinate axis. (For a discussion
of spatial homogeneous models with tilting velocity see
King and Ellis. ) The metric (1.13) is well known as that
of the Kasner vacuum solution for which the following
conditions hold:

a+b+c=1,
2+b2+ 2 1

(1.14)

If only the condition (1.14) holds, the metric (1.13)
represents a perfect-fiuid solution with

p=p =(1—a' —b' —c')t (1.16)

This solution is sometimes known as the Kasner perfect-
fiuid solution, but is more correctly attributed to Jacobs.
From our earlier comments we would expect this perfect-
fluid solution to appear in reinterpreted form as one of the
imperfect-fluid solutions that we find.

In seeking solutions of Eqs. (1.1)—(1.8} we shall require
the models to satisfy the dominant energy condition. '

For the spacetime with metric (1.13) this condition im-
plies that the following inequalities hold:

where —,
'

& a & —', for 1 & y & 0, and so we shall restrict this
investigation to the simple type-I generalization of the
metric (1.12), viz. ,
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ah+bc+ca &0,

(b+c)(a ~b+c —1)&0,

(c+a)(a+b+c —1)&0,
(a+b)(a+b+c —1}&0,
(a+1)(b+c)&b +ci,
(b+1)(c+a)&c +a

(c+1)(a+b)&a +b',
and these imply

a+b+c —1&0,

(1.17)

(1.18)

From Eqs. (2.7) and (2.8) we obtain either

b=c, (2.10)

p= [2b(a b+—1)a' —b(2 —3b ) ]t

p = —, [2b(a b+—1)a +2a+2b 2ai—4ab—3bi—]t

(2.11)

(2.12)

or 2rja=(1 —a b——c}t ' which, from Eq. (1.18), im-
plies that rt (0, which we reject [note that g=O implies
that q„=0 and leads to the Kasner perfect-fluid solution
given by Eqs. {1.14} and (1.16)]. Hence Eq. (2.10) must
hold and this together with Eqs. (2.4}—(2.9) yields

an inequality which will be useful in our later discussions.
In Sec. II we seek exact solutions, with metric of the

form (1.13), of the viscous fiuid field equations, i.e., Eq.
(1.2) with E„„=O. In Secs. III and IV we consider the
cases in which a magnetic field is present and acts parallel
to and perpendicular to, respectively, the spatial velocity
component. All the solutions that we present here are
physically acceptable in the sense that all energy condi-
tions, thermodynamic conditions, and positivity condi-
tions are satisfied. For simplicity, we assume throughout
that the bulk-viscosity coefficient g is zero.

tt"=(a,Pt ', 0,0),
where a( & 1) and p are functions of t only satisfying

a —P =1.2 2

(2.1)

Equations (1.4) and (2.1) suggest the following form for

qq
——Q(P, —at', 0,0), (2.3)

where Q~=q„q". With these assumptions, and using Eq.
(A.5), the nontrivial components of the field equations
(1.1},with E&„——0, for the metric (1.13) are

(ah+bc+ca)t =pa2+ppi '
, rtXpi 2Qap, ———

0= —( p+p)ap+ , rIXap+Q{at+ p—i),

(2.4)

(2.5)

(b+c b bc c)t —=p—p +pa ,
' r—IXa 2Qap, ———

(2.6)

II. VISCOUS FLUID SOLUTIONS

We shall assume that, in the coordinates used for the
metric (1.13), the four-velocity has a spatial component in
the x direction: i.e.,

Q =2b(1+a b)ap—t

i}X= [a +b a+—ab 2b(a—b+ 1)—a~]t

X=2a+ 2(a b)at-

and the dominant energy condition implies that

b &0, a —b+1&0, a+2b —1&0,
a+b &0, a+b a+ah —&0 .

(2.13)

(2.14)

(2.15)

(2.16)

To complete the solution we need to specify the velocity
component a which must be chosen such that rj, as given
by Eqs. (2.14) and (2.15), is non-negative and Eqs.
(1.5}—(1.8} must be satisfied with x non-negative. There
are many possible choices, but we note that one set of ine-
qualities that ensures g &0 is

a&0,
b —a&0,
a & cosh/,

w~ere

(2.17)

(2.18)

(2.19)

a~ oo as t~0,
a~ cosh/ ast~ao .

(2.21)

(2.22)

From Eqs. (2.12) and (2.13), the condition (2.21) implies
that the ratio p/p~ —, as t —+0 while the condition (2.22)
implies that p/p~y as t~ oo where

y =(a+b —a —ab b)(a b a—+ah+—3b —)
(2.23)

cosh P = , b '(a b+ 1—) '(a +—b a+ ab ), (2.20)—

which, from Eqs. (2.16) and (2.18), satisfies cosh P & 1, as
required. We shall adopt the inequalities (2.17)—(2.19) to-
gether with the conditionsi

(c+a —c —ca —a )t =p+ ,' gX g(b c)a—t——

(a+b a ab b)t =p+ ,
'

gX—+—g—(b c)at——(2.7)

It is reasonable to expect the ratio p/p to decrease as
t~~ but always to remain non-negative, so we must
have 0&y & —,'. The conditions p &0 and p &p/3p be-
come, respectively,

(2.8) a+b —a —ab —b &0,2 2

a+2b —a —2ab —3b &0,

(2.24)

(2.25)

X=2a+(2a b —c)at— (2.9) and a linear combination of these two inequalities yields
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a —b —a +ab+3b &0, (2.26} (a —,'—)t '+[b(a b—+1)p 't +p ]aa&0, (2.31)

n=n a 't "+2b~n =noa t (2.27)

where no is a constant, and Eq. (1.6) implies that
T=T(t). Equation (1.8) becomes

2b(a b+1—)at =x'T(TT '+pp '+at '),
and the condition ~ & 0 is satisfied if

TT '+-pp '+-at '&-0,

(2.28)

(2.29)

which, since pp & 0 and T &0, shows that we must have

(2.30}

The values of a and b which give rise to physically ac-
ceptable models are those satisfying the inequalities
(2.16)—(2.19), (2.24)—(2.26), and (2.30). These values are
represented by the points in the region ABCD in Fig. 1.
The boundary AB is excluded since this corresponds to
a=0 and thus, from Eq. (2.29), T=P=O which is con-
trary to the assumption (2.17). The boundary BC corre-
sponds to y = —,, i.e., radiation, at all times irresptative of
the value of a. However, in this case the temperature is
given by the Stefan-Boltzmann law pT = const, so that
the condition (2.29) becomes

which, from Eqs. (2.11), (2.20), and (2.22), implies that
p&0 always. Hence, by adopting the conditions (2.17) to
(2.16), we have a model which expands out of an initial
radiation state toward a final state with plp=y where
0&y & —,.

Equation (1.5) leads to

T= Tot P (2.33)

where To and m are positive constants and k is an arbi-

trary constant. The requirement that T is a decreasing
function of t implies that

m+kr )0. (2.34)

Since the matter distribution approaches a radiation state
as t~O, we shall assume that the Stefan-Boltzmann law
holds as t~O, i.e., T p '~c nost as t~O Fro.m Eqs.
(2.11) and (2.33) this implies that

2m+r(2k —1)—1=0 . (2.35}

By picking out powers of h t " we find that the condi-
tion (2.29) is satisfied if

a —m &0, a —m —r(k+1) &0. (2.36)

Note that the second of these inequalities together with
Eq. (2.35) yield

which shows that we must have a & —,'. This is beyond
the allowable range of values on BC, so the boundary BC
must be excluded. The boundary CD corresponds to the
k=0 FRW models which have been discussed in Refs.
33—38. The boundary DA corresponds to solutions with

p =0.
As an example of a possible functional form for a satis-

fying the conditions (2.17), (2.21), and (2.22} we consider

a = cosh P+h t ", P = sinh P+h t ', (2.32)

where b and r are positive constant parameters. In order
to satisfy condition (2.29) we choose T to be of the form

r & —,
' (2a —1), (2.37)

which, since r &0, implies that a & —, . Thus models with

velocity components given by Eq. (2.32) form a subset of
the possible models and are represented in Fig. 1 by the
region CDE excluding the line CE.

As an example of a specific model let us choose a set of
values for a, b, m, k, and r satisfying all of the above
conditions. One such set is

7
Q 12 ~

2 1b= — m=—
3

1 1k=—2~ 18 (2.38)

which yields

cosll f= )~, Slllh f= )g (2.39)

and the complete solution is

FIG. 1. The interior of the region ABCD together with the
open line DA represents the possible values of a and b corre-
sponding to models with viscous fluid only. The interior of the
subregion ECD together with ED represents the values of a and
b corresponding to the particular choice (2.32}for a aud P. The
interior of the semi-infinite region PAFGQ together with FG
represents models with constant tilt. Models with a magnetic
field in the direction of tilt are represented by the horizontal line
FC (b= 2 ) and by the interior of the region JHCD together
with the line DJ.

p=,'~(17+16h t '~ )t

=p,",, (3 +16h't ' ')t '

(2.40)

(2.41)

T= 'T t ''(1+16h't '—')' '-, (2.43)

1=i88h't "~'(1 7+1 h6't '~')'~'( 15+08h't-'~')-', -
(2.42)
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= —"T,t -'"(17+16h't -'")'"(1+16h't-'")'"
(2.44)

n =4n, t "-"'(17+16h't '"-) (2.45)

and the entropy S can be calculated by integrating Eq.
(1.6). Note that all quantities approach infinity as t~O
and approach zero as t~ao, and the ratio p/p~ —,', as
t~ P ~

If we replace the condition (2.17}by a=0 we can find
solutions in which a and p are constants. In this case the
condition (2.19) must be replaced by a & cosh/ in order to
avoid the case i) =0. Thus a and p are of the form

ai= ,' b '—(a b+—1) '(a+b a+—ab)+ho
(2.46}p'= ,'b '-(a b+—1) '(b a)(a—+2b 1)+—ho',

where ho is an arbitrary positive constant. The solution
in this case is

fluid form, have negative pressure. However, in their
viscous fiuid interpretation the pressure is not negative
provided that ho is chosen appropriately. For example,
if we take a =b = 1, Eq. (2.48) leads to p =( —1

+2/3ho )t so that we must have hoi & —', for non-

negative pressure. All other physical quantities are posi-
tive.

Finally, we note that points close to, and on the left of,
the line a =b represent models which may be regarded as
metric perturbations of the FRW models. For example, if
e&0 is small, then the point a= —,—e, b= —', can be
thought of as a small axial perturbation of the
Einstein —de Sitter model a =b = —,'. Such a model can be
considered either with a variable velocity of some form,
such as that given by Eq. (2.32), or with a constant veloci-
ty. Consider the latter ease and suppose that ho ——e then,
to the first order in e, we find

p=( —', +e}t ', p= ", et —',
p=[a b —a—+ab+3b +2b(a b+1)h—o ]t, (2A7)

p=[a+b a ab—b—+ ,'—b(a b—+l)—hot]t i, (2.48)

rt = —', (1 3e)t-
T=Tot (0&m & —', —e), (2.52)

i(a —b+ 1}3/2(b a )
—lhoit —i

X [a+b a+a—b+2b(a b+1)hoi—]
T=Tot™,0&m &a,
a =To '[2b(a —b+1)]'~ (a m) 't—

)& [a+b a i+ah—+2b(a b+—1)ho ]'

(2A9)

(2.50}

(2.51)

These solutions are vahd within the semi-infinite region
in Fig. 1 bounded by the straight lines PA, AF, GQ where
P, Q~ ao', within this region p, rt, and a are positive for
all values of a, b, and ho . Points within the region
bounded by the lines BF, FG, GC, and the arc CB corre-
spond to solutions in which p =yp where 1 & y & -,'.
Points within the region bounded by the lines PA, AB,
CQ, and the arc BC correspond to solutions for which
—, & y &0; those in the region hounded by the lines PA,
QD, and the arc AD require hoi to be greater than some
nonzero positive number in order that p &0. The solu-
tions lying on the arc BC represent radiating fluids, i.e.,
p=3p, but are excluded because the Stefan-Boltzmann law
requires a & —,. The solutions represented by PA are ex-
cluded since they require ho to be infinite in order that
p&0. The line AF is a=0 which requires m=0, so
points on this line correspond to solutions with constant
temperature and infinite conductivity. The solutions cor-
responding to points on the line FG have metrics corre-
sponding to the Kasner perfect-fluid solutions and pro-
vide an example of the situation described in Refs. 40 and
41 in which the stress-energy tensor of a perfect fluid may
have identical components to the stress-energy tensor of
an imperfect fluid. In the viscous fiuid interpretation the
ratio y =p/p varies in the range 1 & y & —,

' as ho varies in
the range 0&ho & 00. Note that hp ——0 yields the
perfe:t-fiuid models. The line GQ represents the k=O
FRW models interpreted as viscous fiuids, as discussed in
Refs. 33—38. In this case i) is infinite. Note that points
on the line DQ represent models which, in their perfect-

III. VISCOUS FLUID WITH PARALLEL
MAGNETIC FIELD

In this section we generalize the models of the previous
section by considering a viscous magnetohydrodynamic
fiuid, i.e., we assume that the electromagnetic stress-
energy tensor on the right-hand side of the field equations
(1.1) is nonzero and is due to a magnetic field in the direc-
tion of the spatial velocity component, as viewed by a hy-
persurfaee orthogonal preferred observer. This assump-
tion implies that the only nonzero component of the
Maxwell tensor is F23 and, assuming that the magnetic
field is a function of t only, the Maxwell equations

F)~~ j
——0, F"".„=J", (3.1)

lead to

F23 ——Ao, (3.2)

where Ao is a constant. Using the expression (2.3}for q„,
the field equations (1.1) again lead to b =c and to the fol-
lowing solution:

p= [2b(a b+ 1 }a —b(2 —3b )]—t —i Ao t (3.3)

it= —,
'

To '(2 —3m) [8(2—3m)+(22+3m }e]t~

Note that as e~O, i.e., as the metric approaches that of
the Einstein —de Sitter model, both i) and ~ approach
nonzero finite values. This indicates that the Einstein —de
Sitter model, and FRW models in general, in its perfect-
fiuid interpretation possesses a latent shear viscosity coef-
ficient and a latent thermal conductivity which have no
effect on the field equations because the models have zero
shear, zero heat conductivity, and zero-temperature gra-
dient. None of the solutions described in this section exist
if ui' is comoving, i.e., P=O.
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p= —,
' [Zb(a —b+1)a2+Za+Zb —2a —4ab 3—b ]t

(3 4)

tion of state p=3p.
If a and P are constant then the ratio p/p is constant

and

gX=[(b —a)(a+2b 1—)—2b(a b—+ 1 )P ]t il= —,(2a+1)(p +a)(1—2a) 't (3.15)

(3.5}

together with Eqs. (2.13) and (2.15).
The dominant energy condition applied to the viscous

fluid alone leads to the conditions

2b(2a+b)t ' -A—2t 4'-&0

Zb(a+2b a)—t 2 A0—2t 4k&0,

(a+b a—+ab)t Ao—'t b&0.

(3.6)

If b & —, these conditions, together with the conditions
(2.16) which apply to the total stress-energy tensor, imply
an upper time hmit on the model. On the other hand, if
b = —, the conditions are simply limits on the value of Ao,
and if b & —,

'
they imply a lower time limit on the model.

We shall investigate only those models which are valid as
t~ oo and so we discard the case b & —,

' .
Case l. b= —,'. Equations (2.13), (2.15), and (3.3)—(3.6)

become

which is always positive. If we take T to be of the form
T=Tot, where m is positive, the condition (2.29) is sa-
tisfied provided that a & m and the thermal conductivity
is given by

z = —, To '(2a + 1)(a —m ) 'at (3.16)

Note that a solution exists if u" is comoving, i.e., P=O.
In this case

p= —,
' (2a+1)t

p =—„(2a+ 1)(3—4a }t

rt = —,(2a+1)a(1—2a ) 't

(3.17}

and the heat conduction and temperature gradient are
zero. However, ~ is not zero but approaches a finite limit
as P~O, namely, the expression (3.16) with a = l.

If a is not constant the time derivative of the ratio
y=p/p is given by

p= [(a+ —, )a' ——,
' ——,

' Ao']t

p= —,[(a+—,)a + —,—2a ——,Ao ]t

Q=(a+ —,
' )aPt

AX= [a( —,
' —a ) —(a+ —,

' )P2 —Ao']t

X=Za+(2a —1)at

(Za+ —,')&AD', a&AO', —, +3a/2 —a'&AD'.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

j' = ——,
' (1—2a )(Za —1) aa, (3.18)

t'2=1 +h't" P=ht" (3.19)

so that the desirable requirement j &0 implies that a & 0.
In fact a —+ oo as y —+ —,

'
showing that as the material dis-

tribution approaches radiating matter, its four-velocity
approaches that of light, i.e., it becomes a null vector.
One possible functional form for a satisfying a&0 and
a~co as t~cc is

From Eqs. (3.10) and (3.11) we see that if a & —,', then rtX
is always negative and so a must be sufficiently negative
to counteract the other (positive) term in the expression
for X. This seems to be an unlikely possibility, particular-
ly when t ~ oo, so we discard this case in favor of a & —,'.
Note that the value a = —,

' corresponds to the zero-
curvature FRW model filled with radiating fiuid which
has been discussed in Ref. 38.

Since a & —,', the strongest of the conditions (3.12) is
a 0 Ap ', we shall take Ap to have its maximum value, i.e.,

X [(1—Za )+(1—2 —Zr )h't "]-'t-', (3.20)

and g is always non-negative provided that

l —2a —2r &0 .

Equation (2.28) for x becomes

(3.21}

where h and r are constants with r~0. With this choice
Eqs. (3.10a) and (3.11) lead to

rl = —,
' (2a+1)(a+h't")(1+h't'")'~2

Ap ——a.2

Equations (3.7), (3.8), and (3.10) now become

p= —,
' (2a+ 1)(Za2 —1 }t

p =—„(Za+1)(Za'+I —4a)t-',

(3.13)

(3.7a)

(3.8a)

~ T —1(Za+ 1)(1+h2t2r)1/2h —ktm —i kr—
X(a m+kr+r—)

and a will be non-negative if

a —m+kr+r &0 .

(3.22)

(3.23)

gX= ——,(Za+l)(P +a)t (3.10a)

Equations (3.7a) and (3.8a) show that for all a and t

1 —4a/3 &p/p & —, (3.14)

so these solutions lie within the ultrarelativistic range.
This is clear from Fig. 1 since the line b = —, lies below
the arc BC which represents solutions satisfying the equa- —,(1—2a) &r & —,(1—2a) . (3.24)

Since y~ —, as t ~ oo, we shall assume that the Stefan-
Boltzmann law holds as t~cc, i.e., T p '~const as
t~ oo. From Eqs. (3.7) and (3.19) we see that p t2" ' as-
t~co and, assuming the form (2.33) T-t ~+k' always.
Hence Eq. (2.35) again holds. Since Eq. (3.21) shows that
r & —,, Eq. (2.35) implies that T decreases with time. In
fact, Eqs. (3.21), (3.23), and (2.35) show that
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1 3 s (3.2S}

and the corresponding solution is

p= —', (1+2h't'/')t -', p = —,
' (1+h't'/')t -',

v'= S'(1+4h t )(1+h t )'/

&&(5+h't' ')t-'
T=T ht' ' it=1ST,-'h '(1+h't' ')t-' ',

(3.26)

with metric ds = dt —+t'/dx +t(dy +dz ). Note
that y~ —, as t~0 and y~ —, as t~a&.

Case 2. b & —,'. In this case we shall attempt to find
solutions similar to those of Sec. II satisfying the condi-
tions (2.17)—(2.23). For this purpose we again choose a
and P to b."of the form (2.32). Equations (3.3)—(3.5) be-
come

p=(a b a—+ab—+3b )t

+2b(a b+1)h2t zr —2 1

A
—2t 4b— (3.27)

As an example, we note a set of values of a, m, k, and r
satisfying the required conditions is

the solution to the interior of the region ABCDA in Fig.
1, together with the boundary AD. However, the condi-
tion (2.29) for positive thermal conductivity, assuming
that T is of the form (2.33},leads to the conditions (2.34)
and (2.36) again. The latter condition implies that
a r&—m+kr &0 which, from Eq. (3.33) leads to

a —2b+1 p0 . (3.35)

to ——to ——2Ao4b —2 2r 2 (3.36)

Since the model is not valid at t =0, it never approaches a
radiation state with our choice of tz and so Eq. (2.35) will
not hold in this case and there are no further restrictions.

The line a 2b—+1=0 cuts the boundary of the region
ABCDA at H and J in Fig. 1 so the allowable values of a
and b for a valid solution are those at any point in the in-
terior of the region JHCDJ and the arc DJ (we exclude
FRW models). In part of this region 2b(a +2b —1) is less
than a+b a+a—b and in the remaining part of the in-
equality is reversed. The least value taken by either of
these expressions within the allowable region and its boun-
dary is —,

'
[by 2b(a 2b+—1) at the vertex C]. Hence if

we adopt as the initial time the value to given by

p =(a +b a ab—b—}t-
+ —', b(a b+ 1)h—'t -"-' ——'A, 't

rlX= 2b(a b—+ l)h'—t '" '—A-, 't-4'.

The ratio p!p=y is given by

[a+b a2 —ab —b—+ —,'F(t)]

(3.28)

(3.29)

we know that the model will be valid at all subsequent
times for all values of a and b lying within the allowable
region.

In order to provide an example of this type of solution
we use the fact that the same spacetime may satisfy the
field equations for different matter distributions. Accord-
ingly, we choose the same metric as that used for the ex-
ample given by Eqs. (2.38)—(2.45), viz,

(a+2b —az 2ab —3bz)F—&0 . (3.31)

Now a+2b a 2ab ——3b —(0 implies that y( —,
' al-

ways. We shall confine our attention to models in which

y (—,
'

always so we shall adopt the conditions (2.24) and

(2.25) and F&0, i.e.,

4rb(a b+1—)h t ' '——(1 2b)AO t' (—0. (3.32)

This inequality imposes another condition on the initial
time, a somewhat different condition to the conditions
(3.6). However, this inequality becomes simply a relation
between h and Ao if the powers of t in the two terms
are equal, i.e., if

r =2b —1, (3.33)

an identification that we shall use in the remainder of this
section. The inequahty (3.32) now becomes

X [a b az+—ah+—3bi+F(t)] ', (3.30)

where F(t}=2b(a b+ 1)h t—'——,
'

Ao t, and j'&0
implies that

Ao ——2h (3.38)

Equation (3.36) shows that Ao to = —,', so
h to ——

4 . The complete solution is then

a'=
,', [17+4(t!—t,) "],

P'= —,', [1+4(t!t,) '/'],

p=, „' [187+52(t!t,) '"]t
p= „,[33+52(t!t,) '/']t ',
rI = —,[17+4(t/to) ]

x [17+12(t!t,)-'"]-'(t!t,)-'"t-',

(3.39)

(3.40)

(3.41)

(3.42)

ds = dt +t —dx +t" (dy +dz ), (3.37)

so that a = —,', , b = —', and, from Eq. (3.33},we have r = —,'.
A suitable choice of m and k satisfying the inequalities
(2.36) is m = —, , k = —,

' . Equation (3.34) becomes

Ao( 9'hi so, for the puq osm of our example, we shall

choose

A.'& 4b(a b+1)h', — (3.34)

where equality yields the case y = const.
The conditions (3.6) show that the model starts at some

time t=to~0 given by to &C 'Ao where C is the
least of the quantities 2b(2a+b), 2b(a+2b —1), and
a+b a+ah. The condit—ions (2.24) and (2.25) confine

T=T,2 '/'[1+4(t!t, ) '"]'/"t
a-= —,2' '[17+4(t!t,) ' ']' '

X [1+4(t/t )
—2/3]13/16t —7/ST —1

[ 17 +4( t /t )
—2/3 ]

—1/2t —23 /12

(3.43)

(3.44}

(3.45)
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i Bi =A t-' '=2-' '(t/t ) '"-t (3.46)

Note that y=0. 11855 when t =to and y~ —„as t~ cc.
Alternatively, using the same values for a, b, r, rn, and

k, we can obtain a solution in which y = —,', for all t by re-

placing Eq. (3.38) by

Ao ———,h2 22 2 (3.47)

and the magnitude of the magnetic field as measured by a
hypersurface-orthogonal comoving observer is

2(ab+bc+ca)&AO t"
b+c b —c—+ah+ca & Ao t

(a+c)(a+b+c —1) & Ao t "
a+b ai —bi+—bc+ca & Ao'ti"

(4.7)

(4.8)

(4.9)

(4.10)

where X is given by Eq. (2.9).
Applying the dominant energy condition to the viscous

fluid alone we obtain

so that h to / ~ . In this case the solution is

a = „', [187+36(t /to) ],
P'= „', [11+36(t/t, ) '"], (3.48)

in addition to Eqs. (1.8), which apply to the total stress-
energy tensor. We are interested only in models which are
valid as t~ ao, so the above equations imply that
a+c —1 &0.

From Eqs. (4.5) and (4.6) we obtain

rl = 18X 11'/ [187+36(t/t ) ~/~]'/2

x [187+1{)8(t/to)
—2/3] —1{t /to )

—2/3t —I

Ao t " ' "=(c b}[(a—+b+c —1)+2rtat], (4.11}

(3.49) which, from Eq. (1.9), shows that

T T ( 176)—3/is[1 1+36(t/t )
—2/3]3/1st —1/8

&vs ~ 1 ~ 3/16t 7/SK= 3 To C+

(3.50) c b&0,—

(3.51} and it follows that

(4.12)

with
~

B
~

again given by Eq. (3.46).
Note that the solution given by Eq. (3.17) is the only

solution of this section that exists for a comoving velocity.

F3) ——Ao, (4.1)

where Ao is a constant. Assuming that q„again has the
form (2.3},the field equations (1.1) become

(ab+bc+ca)t = —,
' Acct 2"+"+pa +pp2 ——,

'
rlXp

IV. VISCOUS FLUID WITH ORTHOGONAL
MAGNETIC FIELD

We now consider the case of a viscous magnetohydro-
dynamic fluid in which the magnetic field is in a direction
orthogonal to that of the spatial velocity component. We
shall again assume that the four-velocity is of the form
(2.1) and we take the magnetic field to act in the direction
of the y axis only, as viewed by a hypersurface-orthogonal
preferred observer. This implies that the only nonzero
component of the Maxwell tensor is Eii, and the Maxwell
equations (3.1) then l~~ to

Ao t " ' "&(c b)(a+b—+c—1), (4.13)

a+c=1, (4.14)

in which case the inequalities (4.7)—(4.10) and (4.13) serve
only to limit the value of Ao and impose no restrictions
on the time coordinate.

Using Eq. (4.14), the field equations (4.2)—(4.6) lead to

p=[(2 +b 2a'+ab—b' A, '—)a'—
—(a a+ah —b —+ —,'Ac )]t

p = -,
' [(2a+b 2a i+ab —bi—Aoi)ai-

—(a +ab +b —a + —,
'

Ao )]t

Q=(2a+b —2a +ab —b —Ao )apt

rl [2a+ (3a b —1)at ']—

(4.15}

(4.16}

(4.17}

= —(2a+b —2a +ab —b —AO2)(a —1)t

for rl &0 and for this to be valid as t~ oo we must have
a+c —1&0. Thus all conditions on the time coordinate
can be satisfied as t~ ao if and only if

—2QaP,
0= —(p+p)ap+ —,

' rtXap+Q(a +p ),
(4.2}

(4.3)

——,
' [b(3a b —1)Aot]t— (4.18)

Eliminating g between Eqs. (4.11) and (4.18) we obtain the
differential equation for a:

(b+c b bc c)t =——'A—t —"+'+pp +pai
——,rlXa —2QaP,

n ta/a=l —h a

(4.4) where

n =Ao —b(1 —a b), —

(4.19)

(4.20}

(c+a c2 ca ——ai)t—2= , Aoit i"+"—+p—+—,gX h =(1—a b)(2a+b 2a +a—b —b —Ao—), (4.21}

rt(b —c)at— {4.5) l=h +(1—2a)AO (4.22)

(a+b a ab b2}t i=
2
—A02—t 2"—+"+p+ ,

' rtX——
+rt(b —c )at

Note that n i is positive from Eqs. (4.13}and (4.14) and h

is positive from Eqs. {4.8), (4.12), and (4.14).
If ~e choose I ~0, i.e., 3= —n, then the solution to

2 2 2m~/n~Eq. (4.19) is a =ni (C t " —h ) ', where C is a
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constant, and the condition a & l implies that
2 2m2/n2m2+h2&C2t2 /" &h2, thus imposing both upper and

lower hmits on the values of t T. he choice 1=0 also im-
poses an upper limit on t. Since we are interested only in
solutions which remain valid as t~ao, we reject these
choices and consider only the case I =m & 0. In this case
the solution is

a =(m /h )[1 (—t/tp) /" ] (4.23)

where tp (&0) is a constant of integration that can be
identified with the initial time of validity of the model.
Note that a~oo as t +tp -and a ~m /h2 as t~ao.
This implies that m2&h and hence, from Eq. (4.22),

S ( ~y , 'y &

a& —, . (4.24)
0

Using Eq. (4.23), we find that p/p~ —oo as t ~tp, so the
condition (2.29) implies that T/T~ ao as t~tp and the
temperature is initially increasing. Furthermore, a simple
analysis using Eqs. (2.29) and (4.23) shows that T is of the
form T=p 'F(t), where F(tp) is finite, so that T=O
when t=tp We. reject this solution as unsatisfactory
since it represents a universe expanding out of an initial
radiation state with zero temperature.

The only remaining possible solution of Eq. (4.19) is

a=mh '= const . (4.25)

Since this implies again that m &h, it follows that Eq.
(4.24) holds in this case also.

Using Eq. (4.14), condition (4.12) becomes

1 —a b&0,— (4.26)

and the inequalities (4.7)—(4.10) and (4.13}satisfied by A p

are

Ap «2(a+b —a ),
o &2a+b —2a +ab —b go &

Ao &2a+2b —2a~ —ab —b

Ap &b(l —a b), —

(4.27)

and the first four of these are compatible with the fifth
provided that a &0 and that the dominant energy condi-
tion holds, i.e., the conditions (1.8) with Eq. (4.14).

The values of a and b corresponding to physically ac-
ceptable models satisfying all necessary energy and posi-
tivity conditions are represented by the region enclosed by
the quadrilateral OABC in Fig. 2. The boundary OA
(a =0) is excluded since this leads to a being infinite at all
times; the boundary AB (a+b=1) is excluded since,
from Eqs. (4.21), (4.22), and (4.25), Ap ——0 along this line.
The boundary BC (a = —,

'
) corresponds to a =1, p=O, so

a solution with comoving velocity does exist; in this case
the heat conduction vector and the projection of the tem-
perature gradient orthogonal to the preferred observer are
zero but the thermal conductivity is finite and nonzero, as
in the case of the solution given by Eq. (3.17). The
boundary CO (b =0) is excluded since this corresponds to
Ap ——0. The arc OB is an arc of the circle a +b a=0;—
this corresponds to pure radiation models, i.e., models
with y=-, . The models are excluded since they require

FIG. 2. Models with a magnetic field orthogonal to the direc-
tion of tilt are represented by the interior of the quadrilateral
OABC together with the open line BCbut excluding the circular
arc 08.

pT to be constant always, a requirement that does not
satisfy the condition (2.29) unless a & —,'. It follows that
the only radiation model in the allowable region is the one
represented by the point 8, i.e., a=b=c= —,, which is the
radiating FR% model and so is excluded. Hence, the al-
lowable models are those represented by the interior of the
quadrilateral OABC plus the open line BC but excluding
the circular arc OB. The models represented by the re-
gions OABO and OBCO have equations of state @=A
with y & —,

' and y & —,', respectively, where y is a constant
for all t.

To illustrate these solutions we choose a model
represented by a point in the region OABO so that y & 3 .
Our choice is

so that the metric of the model is

(4.28)

$2= dt2+t I dx—+t dy +t3/ dZ (4.29)

o (4.30}

With this choice, Eqs. (4.21) and (4.22) give
m = —,', so that

(4.31)

and the complete solution is

2
—1/2t —5/4

~

B
~

2
—i/2t —3/2 (4 33)

Q=t T=T t ' a=T '( —' r) 't '+"—(4.34)

The conditions (4.27) lead to —,
'

&Ap & —,
'

and, for the
purposes of our example, we choose
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where O~r ~ —,.
Finally, we note that if Ao takes its minimum possible

value which, from Eq. (4.27), is

Ao ——b(1 —a b—), (4.35)

2 7a =—
5 )

2

5 (4.36)

(4.37)

then q=O and the model represents a magnetohydro-
dynamic fluid with heat conduction. As an example of
this situation consider the metric used in the previous ex-

ample, i.e., given by Eqs. (4.28) and (4.29). In this case we
find that Ao ———,

' and the complete solution is

investigation is the existence of type-I models in which a
magnetic field is orthogonal to the spatial component of
the velocity vector. For such models the (2,2) and (3,3)
components of the field equations are not identical so we
have an additional independent equation which enables us
to find the velocity components, rather than by simply
choosing a suitable function. Unlike the FRW models,
these type-I models are not, in general, reinterpretations of
perfect-fluid models, the sole exception being the Kasner
model which was found in Sec. II. They are thus the first
known solutions of Eqs. (1.1)—(1.8) which are uniquely
viscous magnetohydrodynamic models.

AC KNO%'LEDGMENTS

Q= ,'(&—7/2)t ', T=T,t ',
tc = —,

' ~14( —,
' r) ' To—'t '+',

n=no( ')' —t ' ',
~

B
~

=0.418t —' '

V. CONCLUSION

(4.38)

(4.39)

Some of the work described in this paper originally
formed part of an M.Sc. (Physics) thesis submitted by

to the University of New Brunswick. The
remainder of this research was supported by the Natural
Sciences and Engineering Research Council of Canada
through an Operating grant to B.O.J.T.

We have shown that the simple class of Bianchi type-I
universes with metric (1.13} contains many possible
models which represent viscous fluids with or without an
axial magnetic field which may be either parallel to or
orthogonal to the spacelike direction of the tilting veloci-
ty. All of these models satisfy appropriate thermodynam-
ic conditions and satisfy the dominant energy condition at
all times. Some of these models expand out of an initial
radiation state into a matter-dominated state, others have
a constant value for the ratio p/p, while still others
describe an ultrarelativistic state; i.e., the models cover
virtually the entire gamut of possibilities of the equation
of state between p and p.

Contrary to the findings of Belinskii and Khalatni-
kov, ' whose investigations of type-I models led to models
which, near the initial state, possess a material energy
density which vanishes and later increases, all of our
models have a material energy density which is always de-
creasing. In most cases this density is infinite at the ini-
tial time t =0, but when a magnetic field is present some
models are valid only for t & to ~ 0, in which case the ma-
terial energy density is finite at the initial time t =to.

The most notable difference betwo:n the investigation
of zero-curvature FRW models satisfying the viscous
magnetohydrodynamic fiel equations and the present

APPENDIX

The volume expansion 8, shear tensor o&", and ac-
celeration four-vector a&, corresponding to a unit timelike
vector ut' are defined as

B=u
v & a vP vo„"=, hq h' (—uap+up. a) . —,h„B—,

a"=u".~" .

(A1)

(A2)

(A3)

For the metric (1.13) and the four-velocity given by Eq.
(2.2), i.e.,

1 ] 2 2(7] 3 CX Xy 672 03 6 X

where X is given by Eq. (2.9), and

a =p(p+apt '), a'=at '(p+apt ') .

(A5)

(A6)

u" =(a,Pt ',0,0),
8 and the nonzero components of o„"and a& are given by

8=a+(a+b+c }at

oo= ——,
'
P X, oo' —— ,

' aPt 'X—, —
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