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Certain processes predicted by quantum field theory, such as the Hawking black-hole evaporation
process and radiation by moving mirrors, involve stress-energy tensors which exhibit peculiar prop-
erties from the classical point of view. More specifically, these stress-energy tensors do not obey the
weak energy condition because they involve negative-energy densities and we show that, as a result,

they are nondiagonalizable by a local Lorentz transformation under certain circumstances. In addi-

tion, we show that T,b U'U~ is not bounded below for a11 unit timelike vectors U' and that this is
also a property of the stress-energy tensor associated with the Casimir effect. These observations
are important in view of the fact that Tipler has sho~n that if T,b is diagonalizable (type I) and if
T,b O'U is bounded below, then the weak energy condition is the weakest energy condition that can
be defined locally. One might conjecture that the existence of similar (although as yet unknown)

quantum processes, in which the weak energy condition is violated locally, could prevent the eventu-

al formation of a singularity in the gravitational collapse of a star. Although we do not present a
specific model, it is possible that in such a process the weak energy condition, while violated locally,
would stil1 hold on the average. Extending earlier results of Tipler, we show that Penrose's singular-

ity theorem will still hold if the weak energy condition is replaced by a weaker (nonlocal} energy con-
dition and if the null generic condition holds.

I. INTRODUCTION

Some of the most important results of the general
theory of relativity in the past two decades have been the
development of the singularity theorems, due most not-
ably to Hawking, Penrose, and Geroch. These theorems
predict the occurrence of singularities in spacetime under
very general and physically reasonable conditions. This is
an important prediction since the presence of a singularity
indicates the breakdown of the structure of spacetime as
we understand it, and hence signals the breakdown of all
known physical laws as well.

A central assumption in every singularity theorem is
some type of "energy condition. " The function of such a
condition in a singularity theorem is to ensure focusing of
timelike or null geodesics. Once convergence has been ini-
tiated in bundles of geodesics, the energy condition
guarantees the subsequent formation of conjugate points
in the geodesic bundle, a conjugate point being a point
where infinitesimally neighboring geodesics intersect. The
existence of conjugate points, together with some addi-
tional assumptions about the global causal properties of
the spacetime, can then be shown to contradict the as-
sumed geodesic completeness of the spacetime, thus im-

plying the presence of a singularity.
The Neak energy condltlon requlies t1lat T,b O'U )0

for every tirnelike vector O'. By continuity, this inequali-
ty will also hold when U' is a nu11 vector. This require-
ment implies that the energy density as measured by any
observer is non-negative. It is also a sufficient condition
for the focusing of null geodesics. A sufficient condition
for the focusing of timelike geodesics is the strong energy
condition which requires that (T,b —,

'
g,b T)U'U )0 —for

every timelike vector U'. Again, by continuity, the coa-
dition will hold when U' is a null vector. This inequality
implies that gravity is always an attractive force. [For
further details, see Hawking and Ellis' (HE).]

Since the weak and strong energy conditions are suffi-
cient but not necessary requirements for the formation of
conjugate points, one can ask whether conjugate points
will still develop with milder restrictions on the stress-
energy tensor. This question has been extensively investi-
gated by Tipler. '3 In particular, Tipler has shown that a
complete causal (i.e., timelike or null) geodesic y(t) will
have a pair of conjugate points if the following inequality
is satisfied:

f F(t)dt &0

F(t)=(1ln)(R,sU'U +2o ),
where U' is the tangent vector to the geodesic, t is an af-
fine parameter along y(t), n =2 for null geodesics and
n =3 for timelike geodesics, and o is the shear (see Refs.
1 and 2 for details). The function 2ot is non-negative.
For null geodesics 2a =g;Jo' where i,j=1,2 label the
two spacelike directions of a pseudo-orthonormal frame
parallel propagated along y(t). For timelike geodesics
2o. —:ok~cr

' where k, I=1,2,3 label the three spacelike
directions of an orthonormal frame parallel propagated
along y(t)

The inequality (1) will hold, as Tipler shows, if the fol-
lowing conditions are satisfied: (a) f R,bU'U~dt~0
along every complete causal geodesic y(tI, equality hold-
ing only if R,t, U'U =0 over the entire history of y(t);
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(b) every causal geodesic contains a point for which
O'U"U(, Rb),d(, Uf)&0 (i.e., the "generic" condition
holds).

The inequality in condition (a) may be rewritten using
the Einstein equations as

f ( T,b —,
'
g,b—T)O'Ubdt & 0 .

Therefore condition (a) is equivalent to the statement that
the strong energy condition holds on the average, where
the average is taken over the entire history of a causal
geodesic. Tipler uses this "averaged strong energy condi-
tion" to prove several new singularity theorems, most not-
ably the following.

(i) Spacetime (M,g ) is not timelike and null geodesical-
ly complete if conditions (a) and (b) hold, there are no
closed timelike curves, and there exists a compact achron-
al set without edge (i.e., the universe is "closed").

(ii) The Hawking-Penrose theorem (the most general of
the singularity theorems) will still hold if the strong ener-

gy condition is replaced with the assumption that the
weak energy condition holds everywhere and the strong
energy condition holds on the average.

In considering whether the weak energy condition can
be violated, Tipler proves the following proposition.

Proposition 4 (Tipler ). If T,b O'Ub is bounded below
for all unit timelike vectors U in Tz and if T,b is type I,
then T,bE'E" &0 at p for all null vectors E' in T~. (T~
is the set of all tangent vectors at a point p in M. )

The assumption that T,b is type I means that at each
point p there is an orthonormal frame EO, Ei,E2,Ei for
which the tensor takes the form (HE, p. 89)

p 0 0 0
0 p, 0 0

Tab —
0 0 0

0 0 0 p3

where p denotes the energy density and the p s denote the
principal pressures. The stress-energy tensors of all
known classical fields are type I, except for those of zero-
rest-mass fields when they represent radiation all of
which is traveling in a single direction (HE-type II, pp. 89
and 90). For a type-I stress tensor, the T,o "flux" term
can always be made to vanish by an appropriate choice of
local Lorentz transformation (i.e., there is always some
physical observer who sos no net energy flux in any
direction).

Tip]er s proposition 4 essentially says that if T,b has
the form of most known classical fields and if T,b O'U is
bounded below for all unit timelike vectoi's, theli the weak
energy condition still holds for all null vectors, even
though it may be violated for some timelike vectors. The
function of the weak energy condition in singularity
theorems is to ensure the focusing of null geodesics.
Therefore, any singularity theorem which uses the weak
energy condition to prove null geodesic incompleteness
will still hold if the condition is violated for some timelike
vectors, provided that proposition 4 holds. Tipler con-
cludes that the weak energy condition is the weakest ener-

gy condition that can be defined locally.

Both the weak and strong energy conditions are local
conditions in that they are defined at a point in spacetime.
By contrast, the "averaged strong energy condition" is a
global condition in the sense that it is defined over the en-
tire length of a complete causal geodesic. The physical
implication of the singularity theorems proved by Tipler
using this condition is that a small localized violation of
the strong energy condition is insufficient to prevent the
occurrence of a singularity.

In this paper we extend the results of Tipler by defining

an analogous "averaged weak energy condition, " and

show that Penrose's singularity theorem'~ will still hold if
the weak energy condition is replaced by the averaged
weak energy condition and the null generic conditi. on.
Our motivation for considering a weaker energy condition
is the fact that there are now known processes, predicted

by quantum field theory, which violate the weak energy
condition. One such process is the Hawking black-hole
evaporation. Calculations of the vacuum expe:tation
value of the stress-energy tensor (T,b), representing a
massless scalar field, in the vicinity of the horizon ' indi-

cate a "flux" of negative energy across the horizon which

accounts for the decrease in the horizon surface area and

the (presumed) eventual disappearance of the black hole.
Candelas has shown that (T,b ) is well behaved on the
future horizon (in the "Hartle-Hawking" and "Unruh"
vacuum states ), and from this fact he has computed the
area decrease of a four-dimensional Schwarzschild black
hole to first order. He found that the area of the black
hole decreases at the rate expected from the magnitude of
the corresponding positive-energy flux at infinity. Al-
though the Hawking process is negligible for stellar mass
holes, it is expected to be very significant for mini black
holes. Another, somewhat related, process is the radiation
of negative energy from moving mirrors. ' Further-
more, the stress-energy tensor (T,b) for each of these
processes does not obey either of the conditions in Tipler's
proposition 4: it is not type I and (T,b) O'U is not
bounded below for all unit timelike vectors. The latter
property is also a feature of the stress-energy tensor asso-
ciated with the (experimentally verified) Casimir effect.

In light of these observations, it is of interest to see if
singularities will still occur with a weaker energy condi-
tion than the weak energy condition. (For a slightly dif-
ferent approach to this problem, see Roman and Berg-
mann. ") The paper is organized as follows. In Sec. II we

argue that ( T,b ) for a generic spherically symmetric eva-

porating black hole is type IV (HE, p. 90); i.e., it has no
timelike or null eigenvector and it cannot be diagonalized

by a local Lorentz transformation. We also show that
( T,b ) for a two-dimensional moving mirror is type II and

may violate the weak energy condition under certain cir-
cumstances. In Sec. III we prove that for type-IV stress
tensors, type-II stress tensors (representing zero-rest-mass
fields) which violate the weak energy condition, and the
stress tensor associated with the Casimir effect, T,b U U
cannot be bounded below for all unit timelike vectors U'.
This indicates that one should consider a weaker (nonlo-

cal) energy condition.
It is conceivable that there may exist other as yet un-

known processes, with properties similar to those dis-
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cussed in this paper, in which local violations of the weak
energy condition could inhibit the formation of a singu-
larity in a collapsing star. Although we do not propose a
specific model of such an exotic quantum process, we
prove in Sec. IV that the singularities predicted by
Penrose's theorem will still occur if there exists a closed
trapped surface W (HE, p. 262) for which the weak ener-

gy condition holds on the average along each complete
null geodesic that generates the boundary of the future of
W and if the "null generic condition" holds (HE, p. 101).
Thus, local violations of the weak energy condition would
be insufficient to prevent the formation of the singularity,
provided that the "averaged" weak energy condition was
satisfied in such a hypothetical quantum process.

We will work in units of 6=v =1 and our metric sig-
nature is chosen to be ( —,+,+,+). Latin indices range
over 0,1,2,3 unless otherwise noted.

II. NONSTANDARD STRESS-TENSOR TYPES

In a paper by Roman and Bergmann" (RB}, a model
representing a collapsing spherical cloud of matter was
constructed. This model contained a region of trapped
surfaces which formed and subsequently disappeared due
to a violatian of the weak energy condition (WEC}. The
metric was taken to be

ds = —2F(u, v}du dv+r (u, v)dQ

where dQ =d8 +sin edge, r =r(u, v) is the luminosity
radius, and u, v are null coordinates. Since the goal of RB
was to construct a model representing a collapsing "star"
which was everywhere singularity-free, the following as-
sumptions were made about the functions F and r Fwa.s
taken to be an undetermined function of u, v; the only
a priori requirements were that Fy0 and finite every-
where, and that F be CI. The luminosity radius r(u, v)
was taken to be a nonvanishing positive C function of u
and v (except at the center where r =0).

In Sec. III of RB, it was shown that T &0 in a neigh-
borhood of the outer boundary of the region containing
trapped surfaces (i.e., the apparent horizon). This viola-
tion of the WEC along outgoing null rays was unavoid-
able in the sense that it was shown to be independent af
the function F and its derivatives, arising solely from the
fact that on the apparent horizon the r=canst curves un-
derwent a transition from spacelike to timelike. (See RB
for details. ) Therefore, we would expect the same con-
clusion to hold. , i.e., T„„&0,in any spherically symmetric
spacetime where a transition of this type occurs.

Let us now consider the Hawking black-hole evapora-
tion process. If we assume that a generic spherically sym-
metric evaporating black hale (SEBH} is correctly
represented by R Penrose diagram of the form given in
Fig. I, where the dashed curve M is the apparent horizon,
then the r=const curves (indicated by the sohd wavy
lines) would have the form shown in the figure. The
heavy solid line 8' is the event horizon; the double solid
line represents the singularity at r =0.

If thc black llalc dlsappcRI's lll R flllltc tlnlc (Rssu1111llg

that there is no "Planck mass remnant" left), it is difficult

FIG. 1. Penrose diagram for a generic spherically symmetric
evaporating black hole.

to see what possible relationship the horizon, the apparent
horizon, and the r =const curves could have to one anoth-
er, other than that shown in Fig. l. Since the r=const
curves inside the black hole must eventually "join up" at
timehke infinity i+, there must be a region where they
undergo a transition from spacelike to timelike. This
transition occurs along the apparent horizon M, where
the r=const curves become null. It seems, therefore, that
for a generic SEBH, the apparent horizon always lies out-
side the event horizon. ' ' From the results of Sec. ID of
RB, T„„must be negative in a neighborhood of the ap-
parent horizon of a generic SEBH, provided, of course,
that the Penrose diagram resembles that of Fig. l. (A
similar argument was first given by Novikov. I

)

The difference between the SEBH and the RB model is
that in the latter, the region of trapped surfaces is located
entirely inside the body of the collapsing matter cloud,
whereas in the former, this region extends into the vacu-
um outside the collapsing star. Therefore, in the discus-
sion of the SEBH, when we refer to the component T~ or
to T~ in general, we implicitly mean (T ), (T,s), i.e.,
the renormalized vacuum expectation values of these
quantities in a suitable vacuum state. ( T,b ) is expected
to satisfy the semiclassical Einstein equations

G,l, ——Sm(T,s} .

En the semiclassical theory, the spacetime geometry is
treated classically and an effective stress-energy (T~ ) is
assigned to the created particles which acts as a source of
the gravitational field. Unfortunately, no four
dimensional expression for ( T,& } is known for a nonstat-
ic SEBH, although some pro~ress has been made in two-
dimensional calculations. ' '

We now consider the issue of stress-tensar type. In Sec.
IV of RB, it was shown that for a stress tensor of form
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T00 T10

T10 T11
Tab Q Q T Q

0 0 0 T33

(3)

a necessary (though not sufficient) condition for diagonal-
ization by a local Lorentz transformation is

4 T10 & ( T00 + T11 } (4)

An equivalent condition, written in terms of null coordi-
nates is

Tous &0 (5)

0 v 0 0

For the case of the SEBH, since T„„&0 (we will hereafter
omit the expectation value signs) in a neighborhood of the
apparent horizon, the issue of diagonalizability rests on
the sign of T„„in this region.

It would seem plausible that outside the collapsing
matter in a neighborhood of W, T„„&0, if the black hole
is seen to produce particles at infinity. This conjecture is
supported by two-dimensional calculations of the vacuum
expectation value of the stress-tensor operator for a mass-
less scalar field propagating in a Vaidya spacetime. (The
two-dimensional Vaidya spacetime represents the simplest
nonstatic generalization of the two-dimensional
Schwarzschild spacetime. See Balbinot, ' and Balbinot
and Brown, ' and references therein. } Of course, the main
drawback of the two-dimensional calculations is that there
are no Einstein equations in two dimensions, so one can-
not tie the calculated expectation values of T,b back to
the spacetime geometry. However, these results do sug-
gest general properties of T,b, such as those discussed
above, that one might expect to hold in four dimensions
also.

If T &0 and T„„&0in a neighborhood of M then Eq.
(5) cannot be satisfied. Classically speaking, there exist no
local observers in this region who see zero energy flux.
[For the slightly different case of a massless scalar field
propagating on a two-dimensional Schwarzschild (non-
dynamic} background, this property of T,b was first no-
ticed by FuBing. ' ] However, one should be cautious
about interpreting (T,b ) as an actual flow of matter;
( T,b ) represents probabilistic information about the out-
comes of certain idealized experiments. '

For a stress tensor given by Eq. (3), it was shown in Sec.
IV of RB that if T„„&0,T &0 and T~&0, Tii &0 in
some local Lorentz frame then T,b is nondiagonalizable
and there will also exist local Lorentz frames in which the
energy density T00 is negative. By continuity, there will
also exist local Lorentz frames in which the energy densi-
ty is zero. In such a frame, the contravariant components
of the stress-energy tensor will have the form

a &4v

This is the form of stress-energy tensor known as type IV;
it has no timelike or null eigenvector and it does not obey
the WEC (see HE, p. 90). The argument of RB also ap-
plies for the SEBH, so T,b is type IV in that case as well.

To summarize, we have shown that if a generic SEBH
is correctly described by a Penrose diagram like Fig. 1,
then T» &0 in a neighborhood of the apparent horizon.
If, in addition, T„„&0 in this region, then T,b is type IV.
The conclusion that T„„&0and T„„&0 in a neighbor-
hood of the apparent horizon is also supported by two-
dimensional calculations of T,b for a massless scalar field
in various model BH spacetimes.

We now consider the two-dimensional moving-mirror
model. Fulling and Davies have shown that for a mirror
traveling along the trajectory

x=0, t &0

=z(t), t&0

in Minkowski spacetime with the state of the massless
scalar field chosen to correspond to the vacuum in the
past (t &0}, the renormalized vacuum expectation values
of T,b are given by

TOO T11 T10

T01

1 (1—z )'~ d z'

1277 (1 z)z dT„(1 z z)i~i

(8)
The parameter v„ is the time coordinate of the mirror
when its trajectory intersects the retarded null ray tt

(it =t —x, 0=t+x). The right-hand side of (8) may be
rewritten as

(9)

where V=i and a =z/(1 i )
~ —is the acceleration in the

instantaneous rest frame of the mirror. The expressions
(8) and (9) apply to the right of the mirror. We see that if
the acceleration increases with time, to the right, the mir-
ror radiates negative energy —a violation of the WEC.
The same will be true if the acceleration decreases to the
left.

The stress tensor (8) has the form

(10)

This is a two-dimensional example of a type-II stress-
energy tensor. The general expression for the contravari-
ant components of a type-II stress-energy tensor is given
by

v —v 0 0
~ah

0 0 0 p2

where

Tab

v+~ v 0 0
v v —sc 0 0
0 0 P1 0
0 0 0 p2
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(Compare with HE, pp. 89 and 90, and Landau and
Lifshitz, ' pp. 273 and 274.) Equation (10) is the covari-
ant two-dimensional form of (11) for a zero-rest-mass
field representing radiation all of which is traveling in the
Eo+Ei direction. In this case, Pi, Pi, and K are zero.
For (10},v will be negative when the mirror is emitting
negative energy, i.e., when expression (9) is negative.

The question of whether such negative-energy fluxes
can violate the second law of thermodynamics has been
investigated by Ford and Davies, and by Deutsch, Ot-
tewill, and Sciama. ' It should alsa be noted that the ex-
istence of negative-energy "acceleration" radiation from
moving mirrors is required in the "black-hole mining"
process of Unruh and Wald' in arder to Prevent a viola-
tion of the generalized second law of thermodynamics.

agonalizability requirement for type-IV stress tensors.
An explicit (although admittedly naive) example of a

type-IV stress tensor is

Tab 2 ~ 2

2—poPy'

0 (14)

This stress tensor represents two streams of oppositely
moving noninteracting particles, with equal and opposite
rest-mass densities, in a two-dimensional Minkowski
spacetime. The stress tensor of each stream is given by

Tub p(4 u—kb

with go
———y, g, =+Py with 0&P&1 and po&0. For

(14) and the baosted unit timelike vector (y', —y'P'), Eq.
(13) becomes

III. IS THE %'EC VIOI.ATION SOUNDED HEI 0%'? T.b U'U'=(y')'P'(2poPy') (15)

In this section we will show that the condition, that
T,bU'U be bounded below for all unit timelike vectors
cannot be satisfied by type-IV stress tensors, certain kinds
of type-II stress tensors which violate the WEC, and the
stress tensor associated with the Casimir effect.

Proposition l. If T,b is type IV, then T,b O'U cannot
be bounded below for all unit timelike vectors U'.

Proof. Since T,b is type IV, then there is an orthonor-
mal frame Eo,Ei,Ei,E3 with T,b represented in covariant
farm by

0 —v 0 0
—v —z 0 0

Tab 0 0 p 0 (12)

I

where K2 &4v . Note that Eq. (7) is the condition that T,b
be nondiagonalizable by a local Lorentz transformation;
i.e., it is the opposite of Eq. (4). If we perform a Lorentz
boost in the Ei direction, we obtain a new unit timelike
vector (y, —yP,O,O) which satisfies

T,b U'Ub =y2p(2v 13K), — (13}

where P is the usual special-relativistic velocity parameter
and y=[1/(I —P )'~ ], y~) 1, while 1 &P& —1. There
are two cases: P&0 and P&0. For P&0, Eq. (13) is
bounded below only if 2v&pK or in the limiting case
2v & K (since p can be arbitrarily close to 1). For p & 0 Eq.
(13) will be bounded below only if 2v& —K (since for
P &0, P can be arbitrarily close to —1). Since (13) must
be bounded below irrespective of the sign of P, the only
way that both conditions can be satisfied is if —K & 2v& K,
which imphes that K & 0. For T,b to be type IV, the non-
diagonalizability condition (7) inust also be satisfied.
Now we ask: Can —K&2v&K and K &4v simultaneous-
ly hold? Again there are two cases: v&0, v~O. For
v&0, K &0 then —K & 2v (since 2v& K always), which im-
plies (

K
(

&
(
2v

(
or K &4v . For v&0, K &0, then 2v& K

(since —K&2v always), which implies ~K~ & ~2v~ or
K &4v . Thus our conclusion is that if T,b is type IV,
then the condition that T~ U'U be bounded below for all
unit tirnelike vectors is incompatible with the nondi-

v —v 0 0
—v v 0 0
0 0 0 0
0 0 0 0

with v~O .

(Compare with HE, pp. 89 and 90, and Landau and

(This is the special case when K=O.) If p'&0, then p) 0
far (15) to be bounded below. Conversely, if P'&0, then

P &0 for (15}to be bounded below. The only way for both
conditions to hold is for P=O, which implies that T~
vanishes. Therefore (15) is not bounded below, so propo-
sition 1 is satisfied.

There is no noncausal propagation of information in
this example, since the particles in each stream move with
a velocity less than that of light, although the energy-
momentum flux vector S'= T'bUb is spacelike
(S =4po P y &0). This peculiar state of affairs has
arisen because we allowed the particle masses to have ei-
ther sign. A similar situation occurs in electrodynamics
for the case of two streams of oppositely moving charges
with equal and opposite charge densities. The four-
current density of each stream is given by

JO +p UQ

with Uo=y, U'=+py with 0&p&1 and po&0, where
here po is the absolute value of the charge density in the
rest frame of the charges. The total current four-vector
J of the system is J'=(0,2poPy), which is spacelike
(J =4po p y &0). This is possible because two kinds of
charges exist in nature.

We should emphasize that nondiagonalizability of T,b
by a Lorentz transformation does not, in itself, imply a
violation of the WEC. For example, the stress-energy ten-
sor for electromagnetic radiation, all of which is moving
in one direction, is nondiagonalizable, but obviously does
not violate the %BC.

The covariant components of T,b for a zero-rest-mass
field representing radiation all of which is traveling in the
Eo+Ei direction (with respect to the orthonormal frame
Eo,Ei,E2,E&) and which violates the WEC, can be written
in the form
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Lifshitz, '
pp. 273 and 274.) As we showed in Sec. II, T,b

for a moving mirror emitting negative energy is a two-
dimensional example of (16).

Propo$1 tlon 2. If T~ is a type-II stress tellsor with
form given by (16), then T,bU'Ub cannot be bounded
below for all unit timelike vectors U'.

Proof. With the stress-energy tensor given by (16}and
the boosted unit timelike vector (y, —yP,O,O), we obtain

T~U'Ub=vy {1+P) (17}

Since v~0 and y & 1 and since —1 gP&1 implies that
(1+P) & 0, (17) cannot be bounded below.

The renormalized vacuum expectation value of the
stress-energy tensor for the electromagnetic field between
two neutral infinite parallel plane conductors is given by

'

—1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 —3

(18)

From {18},we see that pi ———3
~ p ~, so (20) is not satis-

fied. Consequently, for the Casimir stress tensor,
T,b U'Ub is not bounded below for all unit timelike vec-
tors, even though T,b is type I.

It therefore would seem that for quantum fields, we
should not necessarily expect Tipler's "bounded below"
condition to hold, whatever the type of the stress tensor.

Wald has noted that a feature of the expectation value

(f ~
T,b ~

f) of the quantum stress-energy operator T~ in
a state g is that it need not satisfy any of the energy con-
ditions that may be satisfied by the classical stress-energy
tensor. He points out that even in flat spacetime one can
find states where the expectation value of the normal-
ordered Klein-Gordon stress-energy operator has
negative-energy density in a region of spacetime, even
though the energy density of the classical stress-energy
tensor of a Klein-Gordon field is manifestly positive de-
finite everywhere for aB field configurations. (However,
the total energy E=J (T~)Pn, where P is a time
translation Kiihng field is always non-negative for the
free Klein-Gordon field in Minkowski spacetime. ) There-

where a is the plate separation and the x ~ direction is tak-
en perpendicular to the plates. This is the well-known

(and experimentally verified) Casimir effect. Note that
the energy density p, and the pressure component pi are
both negative, so (18} obviously violates the WEC, al-

though in practice the energy density is very small (for a
plate separation of 0.5 pm, T~- —0.07 erglcmi). A unit
timelike vector which is Lorentz boosted in the a dirtx:-

tion (a=1,2,3) yields a new unit timelike vector which,
for a type-I stress tensor, satisfies

T UoUb y2(~+P2p ) (19)

If p &0, (19) will not be bounded below unless p &
~ p ~

(Tipler }. Equation (19) applied to the Casimir stress ten-
sor (18}with the boosted unit timelike vector (y,0,0,—yP)
will be bounded below only if

fore, properties which hold in classical general relativity
due to energy conditions satisfied by matter will not
necessarily hold for quantum fields.

IV. A "VEEAKER" %PEAK ENERGY CONDITIONS

8 x
dA,

+F(A, )x =0 (21)

and the initial conditions

x(0)=1, =X',
~=o

The results of the last two sections suggest that one
should seek a weaker energy condition than the WEC. It
seems intuitively clear that such a condition should exist.
Consider the following crude but illustrative example:
imagine throwing a small "lump" of negative mass energy
into a solar-mass black hole (we will ignore the problem
of how one obtains such a "lump" ). The presence of the
lump constitutes a local violation of the WEC. However,
it is highly unlikely that this small violation could eradi-
cate the singularity inside the black hole; i.e., we would
expect the singularity theorems to remain valid under
these circumstances.

Penrose's singularity theorem assumes the existence of a
closed trapped surface, defined to be a closed spacelike
two-surface on which both the ingoing and outgoing null
geodesics orthogonal to the surface are converging. The
appearance of a trapped surface in the evolution of a col-
lapsing star, for example, signals that gravitational col-
lapse has reached a certain critical stage. If the WEC
holds, then a conjugate point will form along every
future-directed null geodesic orthogonal to the trapped
surface, implying that the boundary of the future of the
surface is compact. This situation is topologically incom-
patible with another assumption of the theorem, namely,
that there exists a noncompact Cauchy surface in space-
time (i.e., "the Universe is open"). Hence, one arrives at a
contradiction, which implies that spacetime cannot be null
geodesically complete.

Singularity theorems such as Penrose's theorem, which
use only the WEC, prove null geodesic incompleteness of
spacetime. It should be possible to reach the same con-
clusion with a weaker restriction on the stress-energy ten-
sor, provided that this condition still guarantees the ex-
istence of a conjugate point along every complete future-
directed null geodesic orthogonal to a closed trapped sur-
face. Since it is easily shown that the WEC is locally
violated along some null vector in each of the quantum
processes described earlier, the indications are that our
proposed condition should be of global rather than a local
character. We now extend the earher results of Tipler.

Definition Apoin. t p is said to be conjugate to a space-
like two-surface S along a null geodesic y(A, ) which inter-
sects S orthogonally if there exists along y(A, ) a function
x(A, ) with x(p) =0, and in addition x(A, ) everywhere sat-
isfies the equation
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at the point y(0) =y(A, ) AS. X', is the contraction of the

second null fundamental form X b of S (see HE, pp. 101
and 102). F(A, )= , (R—~EK +2cr ), where K' is the

tangent vector to the null geodesic and a is the shear.
[Equation (21) is essentially just an alternative way of
writing the Raychaudhuri equation for null geodesics.
See Ref. 2 for details. ]

Theorem l. I.et F(A, ) be continuous on [0, + ao ). If

I F(A, )d A. & 0 (22)

along y(A, } and the initial conditions

x(0)=1, (23)

The proof of our theorem 1 is a trivial modification of the
proof of theorem 2 of Tipler. ~

The following theorem shows that if the WEC holds on
the average along all the null geodesics which generate the
boundary of the future of a closed trapped surface, then
the singularities predicted by Penrose's theorem will still
occur.

Theorem 2 (modified Penrose theorem). Spacetime
(M,g) cannot be null geodesically complete if (1) there is
a closed trapped surface W ru M, (2) I R,sK'K d'e

& 0 along every complete null geodesic y(A. W orthogonal to
W, equality holding only if R~ E'E =Oat every p—oint of
y(A, ) for A, C[0,+ ce ) [E' is the tangent vector to y(A, ), A,

is an affine parameter, and y(0)—:y(A, )A~, (3) every
null geodesic orthogonal to W contains a point y(A, i),
with A, i E [0,+ oo },for which

K'K K(,Rb),e(,KI}&0

(i.e., the null generic condition holds for every null geo-
desic in the boundary of the future of M, (4) there is a
noncompact Cauchy surface P in M

Note R,bK'E. dA. &0 and the Einstein equations,
0

l
G,b ——R,b

—
2 g,bR =8~T,b,

imply that J T,bK'E dA, &0, provided E' isa null vec-
tor. Therefore, condition (2) implies that the WEC holds
on the average along a null geodesic orthogonal to W,
where the average is taken over the history of the null
geodesic to the future of W.

Proof. Suppose M were null geodescially complete.
Conditions (2) and (3) imply that J F{A,)dA, &0 along

0
each null geodesic orthogonal to W. {See the proof of
theorem 1 of Tipler. i) By the definition of a closed
trapped surface, iX,bg' and iX,bg', the two second null
fundamental forms of M are negative. Therefore, condi-
tion (1) and our theorem 1 imply that there will be a point

are satisfied at the point y(0) =y(A, ) AS, then there will be
a point conjugate to S along y(A, ) for some value of
A, G [0,+ ce ). Our theorem will still be true even if the in-
tegral in (22) does not converge, provided we regard (22)
as a shorthand notation for

A,
'

lim inf J F(A, }dA, & 0 .

conjugate to W along every complete future-directed null
geodesic orthogonal to W for some value of A, K [0,+ co }.
By proposition (4.5.14) of HE, points on such a null geo-
desic beyond the point conjugate to W would lie in
I+(W). Thus each generating segment of J+(W) would
have a future end point at or before the point conjugate to

Penrose has shown (see Penrose or HE, pp. 263 and

264) that this situation implies J+(W) is compact and

that compactness of J+(W) is incompatible with condi-
tion (4). Therefore, M cannot be null geodesically com-
plete.

Comment Th. e WEC, T,bU'U &0 for all timelike
vectors U, is a local condition. By continuity,
T,bK'K )0 for all null vectors E' as well. If a global
condition such as I T,bU'U dA, &0 is satisfied for all
timelike geodesics, tIns does not allow us to conclude,
a priori, that the condition also holds for all null geo-
desics. These are separate assumptions. We could say
that the stress-energy tensor satisfies the "averaged weak
energy condition" if I T,b U'U dA, )0 along every
timelike or null geodesic y(A, ), where U' is the tangent
vector to the geodesic and I, is an affine parameter along
the geodesic. Note, however, that no restrictions on the
behavior of timelike geodesics were required to prove null
geodesic incompleteness. (In the original Penrose
theorem, it is really only necessary to require that the
WEC hold for all null vectors. )

The addition of the null generic condition (3) does not
represent a drawback. Condition (3) roughly says that the
spacetime M is "general enough" so that every future-
directed null geodesic orthogonal to W encounters some
"effective curvature" at least at one point in its history to
the future of W. This guarantees that the spacetime M is
not algebraically special (for further details regarding the
null generic condition, see HE, p. 101}. Although condi-
tion (3) tends to fail for the known exact solutions, such as
spherically symmetric collapse, one must recall that the
original purpose in developing singularity theorems was
precisely to prove that singularities are an intrinsic feature
of general relativity, i.e., that they will still occur when
spacetime possesses no exact symmetries.

V. CONCLUSION

We have shown that the stress-energy tensors of various
quantum processes, such as the Hawking black-hole eva-
poration and radiation by moving mirrors, do not share
the usual properties of the stress-energy tensors associated
with most known classical matter fields. In particular, we
argued that the vacuum expectation value T,b of the
stress-energy tensor for a generic spherically symmetric
evaporating black hole violates the %BC, and as a result
is nondiagonalizable by a local Lorentz transformation, in
the vicinity of the apparent horizon, i.e., the stress tensor
is type IV in this region. It was also demonstrated that
T,b for the massless scalar radiation emitted by a two-
dimensional moving mirror is type II and can violate the
WEC for certain accelerations of the mirror. These stress
tensors, as well as the stress tensor associated with the ex-
perimentally verified Casimir effect, were shown to have
the peculiar property that T,b O'U is not bounded below
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for all unit timelike vectors O'.
Such unusual features are significant because a proposi-

tion of Tipler claims that the WEC is the weakest energy
condition which can be defined locally provided that T,b
is type I and T~b O'O is bounded below for all unit time-
like vectors O'. Tipler proves that if these two conditions
are satisfied, then the WEC holds for all null vectors.
(All of the quantum stress tensors mentioned earlier
violate the WEC along some null vectors. ) Thus Tipler's
assumptions, although reasonable for most classical
matter fields, cannot be expected to hold in general for
quantum matter fields.

It is therefore important to try to prove singularity
theorems using a weaker restriction on the stress-energy
tensor than the WEC. Our motivation is the possibility
that there could exist as yet unknown quantum processes,
whose stress tensors have characteristics similar to the ex-
amples discussed in this paper, in which the WEC is lo-
cally violated during the gravitational collapse of a star.
By extending earlier results of Tipler, we have shown that
the singularities predicted by Penrose's theorem (which
utilizes only the weak energy condition) will still occur if
there exists at least one closed trapped surface in space-
time for which the WEC holds only on the average along
every null geodesic making up the boundary of the future
of that surface. Although we have not presented a specif-
ic model for a quantum process exhibiting these proper-
ties, the physical implication of our theorem is that once a

trapped surface has formed in the gravitational collapse of
a star, a small localized violation of the WEC is insuffi-
cient to prevent the subsequent formation of a singularity.

Most workers would agree that the prediction of space-
time singularities heralds a breakdown of the field equa-
tions of general relativity. Einstein himself was aware of
the liinitations of his own theory when, in referring to
cosmology, he said: "For large densities of field and of
matter, the field equations and even the field variables
which enter into them will have no real significance. One
may not therefore assume the validity of the equations for
very high density of field and of matter, and one may not
conclude that the 'beginning of the expansion' must mean
a singularity in the mathematical sense. All we have to
realize is that the equations may not be continued over
such regions. " Of course, what might result in place of
a singularity is still anybody's guess. Perhaps the answer
lies in the long-awaited (and as yet unknown) quantum
theory of gravity that will one day supercede general rela-
tivity.
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