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Axion emission rates in stars and constraints on its mass
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We have calculated in detail the emission rates of the invisible axion of Dine, Fischler, and Sred-

nicki in several representative types of stars and derived upper bounds for its mass. We give, in par-

ticular, complete reaction amplitudes and energy rates for axion emission. Our results for the axion

mass limits are in qualitative agreement with previous estimates for most of the cases except for the

neutron stars which give a stronger bound on the axion mass.

I. INTRODUCTION

Although the invisible axion was proposed to be a
natural solution to the strong CP problem, ' its mass in the
Dine, Fischler, and Srednicki (DFS) model is left un-
determined. Since the coupling of this axion to matter is
presumably very weak, laboratory experiments are unable
to detect it and one can derive only bounds on its mass
from astrophysical considerations. In our calculations we
have extended the work of Fukugita, Watamura, and
Yoshimura, which concentrated for the most part in the
nondegenerate and nonrelativistic electron gas region, and
the work of Iwamoto, which examined axion emission in
neutron stars, to most of the significant regions, typical
for hydrogen-burning stars, helium-burning stars, carbon-
and oxygen-burning stars, supernovae, and neutron stars.
The plasmon effects are always included in the relevant
reactions, and the axion mass is not neglected at low tem-
peratures.

We examine in detail the annihilation process
e+ +e ~y+ a, the Primakoff reaction ( Z, e)
+y ~(Z, e ) +a, the Compton process e +y ~e +a, and
the plasma decay yu~~y+a, in all of the above regions,
and axion bremsstrahlung of the Compton and Primakoff
type e+(Z,A)~e+(Z, A)+a and from neutron-neutron
collisions n +n ~n +n +a, in degenerate regions (Fig. 1).

The axion couples to matter through a pseudoscalar in-
teraction and the interaction Lagrangian is given, in the
notation of Refs. 2 and 3, by

2i 1L, =
2 Muy~ua

x +1

II. EMISSION RATES

The axion emission rates are calculated for each reac-
tion by integrating the spin-summed squared matrix ele-
ment, weighted by the axion emitted energy, over the total
final and initial phase space available, taking care of the
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where N is the number of generations, which is taken to
be three in our calculations, and z = (M„ttu ) /
(Mgdd ) =0.56.

X+
2

(Mgdysda +M, ey5ea)
x +1

and similarly for heavier generations. The parameter x is
arbitrary in the model and we choose the simplifying
value x =1. The axion couples to photons through a fer-
mion loop and the effective vertex is

(Z, A)

T(a~2y)= Tr(QsQ )F„„F"", (1.2)

where Q5 is the U(l)pO charge' and Q is the electric
charge generator. Using current-algebra methods, the
trace is calculated to be

FIG. 1. Axion emission processes in stars: (1) e+e annihi-
lation process; (2) Cornpton process; (3) Primakoff process; (4)
plasma decay; (5) neutron-neutron axion bremsstrahlung; (6}
Compton-type axion bremsstrahlung; (7) Primakoff-type axion
bremsstrahlung.
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screening due to fermion degeneracy in the final states.
Axion reabsorption is negligible since the mean free path
of the axion is much larger than the sizes of stars for the
range of the axion mass that we consider.

The number densities of fermions and photons are
given by

dn+ = i d p n+{p),2 3

(2m)

dn„=, d'p(eE'T 1—)-',2

(2n )3

(2.1)

where n ~ (p) is the Fermi function (e'E+-"'~T+ 1)
Throughout this paper we use the natural units in which
c =A= kii ——1. From the requirement of charge neutrality
we get

pf —n+ =Kg P
Pe

where

(2.2)

X;Z;
Pe

Nq is Avogadro s number, X; is the chemical composition
parameter, and p the density in units of gem i. At high
densities and relatively low temperatures the photon ac-
quires an effective mass: Er2-co +k, due to constant
interaction with the electron gas, which is given by

' 1/2

where g=M, /u& ——1.41X10 " m, /eV. It turns out
that the term multiplied by m, is important only at high
temperatures T&M„but then (m, /T) «1, so we can
neglect it in all regions. After integration of the final
states we obtain

g a p dP&P~ dP2P2

32~4 J (E& —P, )/T (E2+P)/T~P e +1 e +1
d cos8&2

X + U {u + 1+Uu)
1 1

1 2

1+U
1 —U

2 3-2M /T~e=g axe 1—
4pm &2

3
2

whe«u =pi pz/M„u=pi p2/EiE2, and U=[(u —1)/
(u +1)]' . To bring it in this form we made a Lorentz
boost to an arbitrary frame. Now we calculate the emis-
sion rate given by Eq. (2.7) in various physical regions.

(i) Nonrelativistic and mildly degenerate electron gas,
@=M,. This is the case for T & 10~ K and p & 10 g cm
or T 109 K and p 106 gcm, see Ref. 7. Then Eq.
(2.7) gives

X 2+, , (e' "+1) ', (2.3)
1

X 1+ 1+T

E2 &2+ ~ k2
~ (2.4)

for transverse plasmons. Here a=e /4m, A, = T/M„and
v=p/T. Longitudinal plasmons become important when
both electron and positron gases are relativistic. The
dispersion relation for longitudinal plasmons is then given
by

Here g is the Riemann zeta function.
(ii) Nonrelativistic and nondegenerate electron gas,

T &M, and p «M, . This is true for p & 10 gem
3 and

10 &T&10 K with higher densities requiring higher
temperatures. The emission rate becomes

A. e+e annihilation process

2 3Me T —2M'6'~=g A
3

e 1+
4pm

(2.9)

The lowest-order Feynman diagram is depicted in Fig.
1(1) and the energy loss per unit mass for the reaction
e+(p2)+e (pi)~y(k)+a(k ) is given by

1 dn+ dn d k d3k
(2n )

p 2E, 2E, 2k. 2k

X&'(p i+p 2 k —k. )k.'IM'('—.

(2.5)

The amplitude is conveniently calculated in the rest frame
of the electron:

This agrees with the result of Ref. 3 in the limit
T/M, +0. —

(iii) Nonrelativistic but degenerate electron gas,
M, /T«p, /T«2M, /T. This is the case for T&10s K
and 10 &p~10 gcm . %e get

2 3Me T (M +p)/T
Ea gQ e

prr4

X fdxv x dykey x+y T
ex —++1/A, +, 1 0

1+
6 Me

(2.10)(M, +Eg)
fM'[ = (ge} E.(E,+M, E.}—

m, (E2 E,)—1+
2M, E,(M, +E2 E,)—(2.6)

(iv) Electron gas is very relativistic and degenerate but
positron ~as is nonrelativistic . This is the region for
which 10 ~T~10 K, and 10' ~p~10' gcm, such
as the interior of neutron stars. Equation (2.7} reduces to
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(~ +p, )/7 Mg T 2s1/2 9/2

E'~=g ae 44'
Note that for the cases of (iii), (iv), and (v) numerical in-
tegration is needixl for the emission rates.

dX X
X

0 z —v+]
2M,

1+ S. Compton process

(2.11)
(v) Electron gas and positron gas are relativistic,

ru » T & M, . This is true for T & 10'0 K and
10' &p&10 gcm, the conditions of a supernova ex-
plosion. %e obtain

T 7 —p/T
2a=g a

12' M,

dxx'(x' —A, ')'"
X

]/g Z -V+

The energy-loss rate per unit mass for the reaction
e(pi )+y(k)~e(p2)+a (k, ), Fig. 1(2), is given by

dn dna dk, dp2
2m 1 —n E2

X5 (pi+k —pq —k, )E, ~M'~2.

(2.13)

d~~ (~2 Z
—2)i /2

1/A.

lnxy+2 ln
2T 5

6
(2.12)

The factor 1 —n (E2) comes from screening due to Fermi
statistics. In the rest frame of the initial electron, keeping
the terms up to the first order in m, , the spin summed
squared matrix element is

[
M'

)

2 =(ge) 2

2M,

2m. E~
E 2

2

2 ~ E
2M,

NME, Ey+
e

a)i/2M, i m, Er+co /M,

2M i' Er+co /2M
E~ Ey+

e

(Er co )(E, m—, ) [M,—(E, E—r)+E,Er ——(m, +co )/2]
2 2

yE —N
(2.14)

' 1/2

dX X
CO

T2ga +A T 14 g (Pi ) 6x T
&c= X + X

3m p M' i e"—1 3 M'
where (pi ) =f dn pi /f dn . This holds for nonrelativistic and mildly degenerate electron gas.

(ii) 10 & T & 5X 10 K and p & 10 gem . In this region we can neglect safely the axion mass and we can still consid-
er the electrons as approximately nonrelativistic or mildly relativistic with higher densities requiring higher temperatures.
The energy rate is

2 X 2

m~ +
T

(2.15)

where c0 is the plasmon effective mass. This reduces to the approximate result of Ref. 3 in the limit m, =co =0. Only
transverse plasmons are significant in the examined regions. In order to give analytic expressions of the energy-loss rate
we examine three regions.

(i) T&10 K and p&10 gcm . Then ro, m, &T«M„so we can expand in co and m, and keep the terms up to
first order. The result is

gA (I (M ))~ T f~ dx(x —0)
3 m M n e —I

4 X Q
X

2
Q~ 5 5X 3Q2+X
2

14x'
2 3

4

10x 0 0
3 +6 (2.16)
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where Q=ai/T. Plasmon effects can be important for
this region.

(iii) 10 & T & 10' K and 10"&p & 10' g cm . In this
region the electron gas is very relativistic and degenerate.
Also co »T so the transverse plasmon effects are very im-
portant. Longitudinal plasmons are also present but the
correction is sma11. The energy-loss rate is

e, = 2 [1 n(—Pp)]Ng T
3Pe &

XE,[1—n(p2)] .
The effective ayy vertex is

5 2Axc p op~~k k
fly

(2.18)

dnl dnr d p2 d kg

p, z I 2El 2Er I 2E2 2E,

X54(pl —p2+k —k, )
~

M'
i

'

~ dx(x —Q )'/
X

Q pZ

r
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B B+

I I

3

1+2B +B

'2

(2.17)
3 2

~M'~
KVy

M2 M E& +E. M ~+m.
2 2 E —E, 2 E —E,

=Tr(gsg ) .
Vy

The spin-summed squared matrix element in the rest
frame of the initial electron (or nucleus) is

where PF is the Fermi energy of the electron gas, so that
n (PF) = —,

'
and 8 =co/M, For l.arge densities the energy

rate decreases exponentially like e

(co —m, ) coE
+

8(E,—E.)' 2(E„—E. )

ma Ea2

2(E„E,}— (2.19)

C. Primskoff process

The energy-loss rate per unit mass for the reaction
Z, e (pl )+y(k)~Z, e (p2)+a (k, ), see Fig. 1(3), is the sum
of the contributions from atomic electrons and nuclei,
e~ =e~(e}+e~(Z). The emission rate for this process is

which reproduces the result of Ref. 3 if the recoil effect is
neglected and. co=0. Here M is the mass of the partici-
pating electron or nucleus. As before we consider three
regions of interest and derive expressions for the emission
rate.

(i) T&10 K and p&10 gcm 2. Then m, co&T«M
and we keep the terms up to first order in m, and co .
The result is

2(23c2 Ng ~ ~ dx (x2 Q2)l/2

% VP Pe ~ 8 —1

2xT 1

(~2 m 2) l/2
0
4

2
ma 2Tx
2T2 (

2 m 2)1/2
1n (2.20)

where

1 =+X;Z;(Z;+1)/A; .

(ii) 10 & T & 5)& 10 K and p & 10 g cm . In this region we can neglect the axion mass and treat the electrons as ap-
proximately nonrelativistic. The nuclei are nonrelativistic. We get

2ac T ~dxx(x —Q)'
E Ng~'v ' Q ~Z

,

, Pe

1 x —Q /2 x+(x —Q )'

X(x' —Q')' '——+ ln 0

+ [1 n(M, }]—
Pe

3 Q2 T——x 1—
4 g2 Me

r

2 &Pi') 1 x +(x' —Q')'"
+

M, I(1—Q/x )'2 ln 0
3 0+—1—

X2
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The second term is due only to the electron contribution.
(iii) 10 &T&10' K and 10"&p&10' gcm . Here

co AT and the electrons are very relativistic and degen-
erate. The nuclei are considered to be nonrelativistic and
their contribution is given by the first term of Eq. (2.21),
with the substitution 1/M,'~1/p, ' —1/u, . The electron
contribution is (y =PF/M, )

~3c2 M
e (e)= T

m' vy pg

- dx(x' —n')'"
X

t."—1

B4(By+1)2(By+—, )(y+B/2)2
X

(1+2By+B )

(2.22)

For high densities the energy loss becomes small like
e "~T. Correction due to the presence of longitudinal
plasmons is negligible.

with ei ~& T, so that it decreases like e "~ . In our physi-
cal regions we always have ai «2M; for most of the fer-
mions.

E. Neutron-neutron axion bremsstrahlung

The Feynman diagram for this process is shown in Fig.
1(5) and the one-pion-exchange model is used for the
neutron-neutron scattering. The axion-neutron effective
Lagrangian is L„~=ignyzna where g =C,M„/Ue, with
C, =1.25, the axial-vector renormalization constant. The
energy-loss rate per unit mass for the reaction n(pi)
+ n (pg)~n (p3 )+n (p4)+a (p5) is

5 dp.g f n(p, )n(p )[)—n(p )]
i=i ~i

X [1 n(p4—)](2n )

D. Plasma decay process
x&'(pi+p2 —p3 p4 —p5) IM I Es . (2.27)

Transverse plasmons can decay via y~i(k~i )
~y(k)+a (k, ) and the energy-loss rate per unit mass of
the star is [see Fig. 1(4}]

In the nonrelativistic limit the spin sumined squared ma-
trix element is

1 dnii dk dk

x 5 (kpi —k —k, ) I
M'

I
'E, . (2.23)

I

M'
I

=512g f M„'~
Pe

I pi-pi I

'
(

I pi —p~ I
'+i .')'

I
pi-p41'

(
I pi —p41 +0

I
M'

I

2
'-2

C 2&2 mo1—
4v 2m'

k2 sin28, (2.24)

The effective y»ya vertex is the same as that in the
Primakoff process [Fig. 1(3)].

For ei & 2M;, where Mi are lepton or quark masses, the
squared amplitude is

(2.28)

where p is the pion mass, M„' the neutron effective mass
f~1.00, and the

o(
I pi —pi I

'/M."(
I pi —p31'+u.')')

am@ T ma
equi(r)=, 1—

4Spm vp co

X
~ dxx(x —0 )'

e"—1
(2.25)

where 8 is the angle between k and k~i. The energy-loss
rate due to transverse plmmon decay is

terms are neglected. Assuming neutron degeneracy we
can use the technique by Friman and Maxwell' to calcu-
late the energy-loss rate:

M"P T'
189(brp p~ p

Longitudinal plasmons become significant when the elec-
tron and positron gases become relativistic. The energy-
loss rate is

2x 1+2x arctan-
1+x X

(2.29)

' 3/2
2C 2T7 5

epi(&) =
48p& Uy

- dx x'(x' —0')'~'
Q ez 1

(2.26}

where x =p /2PF and PF is the neutron Fermi momen-
turn. The axion mass is at these energies neglected com-
pared to neutron or pion mass. We get here a different re-
sult from the work of Iwamoto which results to a stronger
bound of the axion mass.
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F. Compton-type axion bremsstrahlung

This process, see Fig. 1(6), occurs with the interaction
of the degenerate electrons with a Coulomb field of the
nuclei which are assumed to be fixed. This field is weakly
screened:

dn, dpi dk,
2 a

X & (P +q —pi —k, )
i

M'
i
iE„

gpo ~r
(2.30) (2.31)

where q~=&4a/mPF(e) Th. e energy-loss rate per unit
mass for the reaction e(pi)+(Z, A)~e(pi) + (Z, A)
+Q(k ) ls

where Mz the proton mass and q the momentum of the
Coulomb field. The spin-summed squared matrix ele-

ment, assuming strong electron degeneracy is given by

2Zz 4 zpz cos82, cos8i, +1—cos8iz —
&

(cos 8ia+cos 8i, )
[M' f'=

(qs. '+q')' . (1—P cos8i, )(1—P cos8q, )
(2.32)

where /3=P/E and the subscript a denotes the axion.
Analytical and simple expressions for the emission rate
can be derived for various limiting cases. For example,
very relativistic electrons give the emission rate

Z'2 2 T4
c 120 ~~ P

e,b —— (2 ln2y —1) (2.33)

with y=(l —P ) '~, a result reached by Iwamoto re-

cently. For nonrelativistic electrons [P=P(PF)], we ob-
tain

where q =pi —pi and a denotes the axion. Then the
energy-loss rate per unit mass is computed to be, using the
Sommerfeld expansion,

(2.37)

where P=P(PF ). This rate is smaller than the Compton-
type rate, due to the factor a .

ir'a Z'g' T4

90 AM P' (2.34} III. AXION EMISSION IN STARS

X5 (pi+k —pi —k, ) iM'
i
2E,

X[1—ii(P2)] . (2.35)

For very degenerate electrons the spin-summed squared
amplitude is

(k2+ 2)2 2 4

X [ 4( 1 —cos8i2)(cos8~ cos8i~ —cos8i2)

G. Primakoff-type axion bremsstrahlung

In this process, Fig. 1(7), the axion is emitted by the
screened, static Coulomb field, which is interacting with
the electron gas. The energy-loss rate per unit mass for
e(1)+(Z,A)~e(2)+(Z, A)+a, Primakoff type, is given

by

diii i dpi d k~
E d'k

AMq 2Ei 2E2 2E,

In this section we examine, with the emission rates ob-
tained in the preceding section, stars at various stages of
evolution. We can get an upper bound on the axion mass
by requiring that the emission rates due to axions either
are smaller than the nuclear energy generation in the inte-
rior of the stars or, if such energy generation is not known
accurately and safely, as in the cases of white dwarfs and
neutron stars, the emission rates do not violate the stan-
dard neutrino emission scenario which is in agreement
with observations. ' "

A. Hydrogen-burning stars

Among hydrogen-burning stars the Sun is selected since
its physical parameters are best known. The interior tem-
perature is around 10 K and the density about 10
g cm so the electron gas is mildly degenerate and nonre-
lativistic. Plasma effects are small since colT-0.2, see
Fig. 2, for the relevant region, becoming stronger at lower
temperatures. The Primakoff process and the Compton
process contribute to the energy loss, while the annihila-
tion and the plasma decay processes are negligible, see
Fig. 3. %'e require

fMg
dM (r}g e; (p, T, C) & ez ——3.86 X 10 erg sec

+(1+cos8ii)(cos82, —cos8i, ) ] (2.36) (3.1)
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FIG. 6. Axion energy-loss rate as a function of temperature
for p=10 gcm, p, =p,'=1, and m, =1 eV. (1) e+e; (2)
Compton; (3) Primakoff; {4)plasma decay.

FIG. 8. Axion energy-loss rate as a function of temperature
for p=10' gem and m, =1 eV. (1) n-n bremsstrahlung; (2)
Compton bremsstrahlung; {3)Primakoff bremsstrahlung.

these limits, the currently accepted scenario of stellar evo-
lution will have to be drastically revised. At higher tem-
peratures there is no such problem because the neutrino
emission becomes more important if the axion mass is in
the range of our interest. '

C. Carbon- and oxygen-burning stars

We examine here the white dwarfs of the Hyades for
which Stothers' has found agreement between theoretical
luminosity functions and the current data of luminosities
unless the cooling due to neutrino emission is 102 times
stronger. The stellar structure is simple with a uniform
temperature T,=2X10 K and p, =10 gcm for

M Mo and log10L/Ls (—1.6 (blue sequence}. The
low-mass sequence was not considered because the neutri-
no effects there are small. Here at core densities the plas-
ma effects are very strong since co/T-30 and electrons
are very degenerate and relativistic. However, most of the
contribution comes from the outer parts of the star, where
p=10 —10 g cm, co/T -2 10 and the—electrons. are de-

generate and at most mildly relativistic, since the plasmon
mass strongly suppress the momentum transfer to axions.
Only the Compton process contributes significantly, see
Figs. 5 and 6. The neutrino emission in this region is'
5&10 ergg 'sec ' and the condition e g5&10
g 'sec ' gives m, (1.5 eV. This bound is also model
dependent with an estimated 20% uncertainty.

1020 I I I I I III
I I I I I III
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~o 1010
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100

1OO

5 10

T f lP K)
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FIG. 7. Axion energy-loss rate as a function of temperature
for p=10" gcm and m, =1 eV. (1) n-n bremsstrahlung; (2}
Compton bremsstrahlung; (3) Primakoff bremsstrahlung.

FIG. 9. Axion energy-loss rate as a function of temperature
for p=10' gcm and m, =1 eV. (1) n-n bremsstrahlung; (2)
Compton bremsstrahlung; (3}Primakoff bremsstrahlung.
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TABLE I. Upper bounds on the axion mass.

Stellar object

Sun
Red giants
Super giants
Hyades
Supernovae
Neutron star crust
Neutron star core

Upper bound
for I,

(eV)

2.7+ 10%
-0.07
—1.05
1.5+20%
No bound
0.03—0.04
2—3 y10-'

Lower bound
for Uo

(GeV)

10
-5g10'
-4x 10'
3g10'
No bound
0.9—1.1X 10'
1.3—1.9X 10"

D. Supernovae

Supernovae have typical temperatures T, -10 —10' K
and densities p, —10s—10" gcm . The electron and
positron gases are extremely relativistic and the e+e an-
nihilation processes are the dominant neutrino- and
axion-production processes, the others being suppressed
by electron degeneracy or plasmon effects. For an axion
mass of the order of a few eV, the neutrino emission rate's
is much higher than the axion rate, Eq. (2.12) so that

-2
2 4 '2

ev GF Me ~ me

g2o, T eV
(3.2)

Thus no useful bound can be obtained in this case.

E. Neutron stars

We have a different physical picture in the case of neu-
tron stars. With typical core densities p, —10' gcm
and temperatures T—10 —10' K, plasmon effects
(co/T & 100, see Fig. 2) suppress all photoproduction pro-
cesses, while the presence of positrons is negligible. The
electron gas is extremely relativistic and completely de-
generate while nucleons are approximately nonrelativistic
and degenerate.

Following Iwamoto we choose two characteristic equa™
tions of state, by Bethe and Johnson' and by Pandhari-
pande and Smith, ' for neutron star matter. The neutrino
emission from the dominant modified URCA process
n +n~n+p+e +v, and n +p+e ~n +n +v„ is
suppressed as the temperature goes down to 4.6&10 K
due to proton superfluidity. '9 At lower temperatures the
neutrino emission from the crust ' ' becomes the dom-

inant cooling mechanism. Comparing that rate with the
neutron-neutron axion bremsstrahlung from the core, and
taking the crust density to be p-1.5&&10' gcm (we
calculate the rates for T= 1—4 X 10 K) we get
m, & 1.9—2.8&10 eV, allowing two different equations
of state. At even lower temperatures the neutrons also be-
come superfluid and at a temperature T =2—3&&10 K
photon radiation from the crust becomes the dominant
mechanism. We compare at this temperature the
Compton-type axion bremsstrahlung from the crust with
the corresponding neutrino rate ' ' (the Primakoff-type
bremsstrahlung is always negligible) and demanding that
e, ge we obtain m, g0.03—0.04 eV. Again these re-
sults are model dependent but required in order to have
consistency between experimental data and the standard
neutrino cooling scenario. " In Figs. 7—9 the axion emis-
sion rates due to the above three processes are compared
for different densities. Nucleon superfluidity is not in-
cluded.

IU. SUMMARY

We have calculated in detail axion emission rates in
hydrogen-, helium-, carbon-, and oxygen-burning stars,
neutron stars, and supernovae. The main reactions are
photoproduction processes of Compton and Primakoff
type, e+e annihilation process, plasmon decay, and
bremsstrahlung by electrons of Compton and Primakoff
type and from neutron-neutron collisions. We get a quali-
tative agreement with the work of Fukugita, Watamura,
and Yoshimura3 but we obtain a stronger result for neu-
tron stars We su.mmarize our results of the constraints
on the axion mass for each and every case that we have
considered in Table I. As discussed in the previous sec-
tion, most of those results rely on our present understand-
ing of stellar evolution and are model dependent. Even an
axion mass of 3X10 eV may require a revision of the
standard model of neutrino cooling for neutron stars. On
the other hand, we find that axions would have no effect
on gravitational collapse triggering supernovae explosions.
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