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Bag formation in a chiral model
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~e sho~ that a bag can be automatically formed in a model where the Skyrme Lagrangian is modified to

possess the correct @CD scaling behavior.

The nonlinear chiral Lagrangian provides a succinct sum-

mary of the "current-algebra" results in low-energy pion
physics which agree nicely with experiment. Since the alge-
bra of currents is respected by QCD, this Lagrangian may
be considered to be a basic building block for an effective
low-energy QCD Lagrangian. The leading term' is
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where F = 132 MeV is the pion-decay constant and P is

the pseudoscalar field multiplet. A long-standing question
of great importance has been to determine what additional
terms are needed to fill in the three dots in (1). The whole
question has been made more topical by the revival of
Skyrme's model for explaining the nucleon as a topologi-
cal soliton of (1). To stabilize the soliton against collapse
he added a term
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where a is a dimensionless parameter and A, which has
mass dimension one, is the needed scale for QCD. The po-
tential term in (4) has a minimum at (H) =A'/e. This
yields a negative vacuum energy density —(H)/4. A bub-
ble of higher-energy density should increase the tota1 energy
and hence be unstable to collapse. We will see how soliton-
ic "matter" stabilizes this bubble. Expanding H around its
vacuum value gives a fluctuation field for a scalar glueball
with squared mass

QCD without matter. We assume that the degrees of free-
dom reduce to that of the single "order-parameter" field H
defined in (3). Then, as has been discussed in detail else-
where, ""the unique Lagrangian (up to two derivatives)
which satisfies the trace-anomaly equation (3) is

, Tr( [(B„U)U, (B„U)U l')
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(where e, is a new dimensionless parameter), which might
result from "integrating out" some of the heavier particles.
It is remarkable that a model as economical as the sum of
(1) and (2) can roughly explain the low-energy properties of
the nucleon. However, there is no special reason why the
effective Lagrangian should not also include reference to
the other low-mass particles. Clearly, including them is a
very complicated undertaking' since many new particles and
couplings may be introduced without violating well-known
principles. Thus it seems interesting to embark on a slightly
different approach and to modify the Skyrme Lagrangian to
take account of the anomalous symmetry structure of QCD.
The most characteristic feature of QCD is its anomalous
behavior under scale transformations. As it stands, the
Skyrme model does not correctly display this behavior. In
the present note we shall give a minimal extension of the
Skyrme model to achieve the correct QCD scaling laws (with
massless quarks):

8»= — g Tr(F~„F„„)= H
rt( )

~here 8», the trace of the energy-momentum tensor, is
identical to the divergence of the scale current. %'e find
that the resulting simple model provides a natural mechan-
isrn for the formation of a "bubble" in the vacuum which
has a higher-energy density. ' The model introduces two
new parameters: the vacuum value (H) and a scalar glue-
bali mass.

First, let us consider a simple effective Lagrangian for

2 Tr(B„UB„U )+Wsx
g y

2 (6)

where (P) = A/e'i4. Note that Wobeys the large-X, count-
ing rules (see Ref. 5) with a, A2, F ', and e, 2 all behaving
as N, .

To investigate the solitons associated with (6) we make
the Skyrme ansatz' Uo=exp[ix rF(r)), F(0) =m as well
as the additional assumption ill= /(r) and obtain the for-
mula for the static energy,

Note that the Lagrangian in (4) is not well defined for
H ~0. This, however, may not be a problem since the
equation of motion for H has a solution for which H is al-

ways non-negative. We can therefore set" H = p' which is

more convenient for the numerical treatment.
Since (4) already satisfies the anomaly equation (3) we

should take the rest of the Lagrangian to be scale invariant.
It is convenient'4 to assign the pion field to scale with mass
dimension zero: 8@(x)= —p(0+x B)P(x) for Sx„- —px„. Then we immediately observe that the Skyrme
term (2) as well as any other similar four-derivative term,
e.g. , Tr{ [(B„U)U', (B„U)U ]~ }', is scale invariant as it

stands. This is not true for (1), however, which should be
multiplied by p'/(p)'. Thus we have the following minimal
extension'5 of the soliton Lagrangian which also satisfies the
trace-anomaly constraint:
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m(N) M+ 3
8z

m(h) M+ 15
8z '

(9)

which gives M 0.87 GeV and A, =5.1 GeV '. In this ap-
proach, in order to achieve a reasonable fit it seems to have
been necessary6 to take a value of F considerably less (by
about 30%) than the experimental value. In the present
model adjustment of the parameters a and A can be used to
fit the N and 5 masses with the physica1 value of F .

Now let us discuss the main result of this model —the
formation of a "bag." We say that a bag is formed, if, in
the small-r region, P is suppressed from its asymptotic value
A/e'i~. Our procedure will involve the numerical minimiza-
tion of (7) but the basic feature can be understood frotn the
fo11owing qualitative argument. Consider the "potential"
terms for the field p with, as seems to be roughly the case
in our numerical work, fixed soliton shape function F(r ):

4 e 1/2

V(q)- ~ ln & +q'G(. )
4 A 4

where G(r)-(F' 22+i sFn/2r'). For large r the quantity
G(r) will be very small and the first term of (10) dom-
inates. This yields the "outside" vacuum value

(p) =A/e'i . On the other hand, for small r, and suitable
values of the parameters, the second term wi11 dominate,
which yields /=0 inside the bag. The exact step-function
shape for g(r ) indicated by this argument is smoothed out
by the p kinetic term in (7). In fact, increasing the value of
the parameter a sufficiently will make the bag very shallow.
From (5) this is seen to correspond to a very light glueball.

It is useful to have a criterion from (10) for the existence
of a bag. Consider a fixed small value of r. Figure 1(a)
shows a sketch of V(p) in the case when no bag is formed
while Fig. 1(b) shows the case when a bag does exist. The
critical point is achieved when the second dip reaches the
V(p) = 0 axis. In terms of our parameters this occurs when

2AG(.)—
F e

where the prime stands for a derivative with respect to r.
Note that a term A /4e is included in (7) in order to mea-
sure the soliton static energy with respect to the vacuum.

It is necessary to relate the parameters of the Lagrangian
to the properties of the nucleon and its excitations. The
nucleon-4 mass splitting, expected to be due to rotational
effects, is usually estimated with the aid of the collective-
coordinate Lagrangian W. Substituting U A (r) UpA (t),

A ' into (6) gives6& = X Tr(A A ') —M with
P

f+ OO e1/2y 2 24m, 2 . 2Fd e e 0 + 2 Fi2+ stn Fr sin r
0 A es
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While there has been some criticism'6 of the validity of this
approach we may, in any case, regard (8) as a convenient
measure of the soliton's "moment of inertia" and so as a
quantity which should be at least roughly reproduced in a
numerical fit. In the simplest interpretation

Notice that the right-hand side (RHS) behaves as N, for
W, ~ while the left-hand side behaves as N, . Thus no
bag should form for N, ~, ~here, however, the nucleon
mass ~. Physically this is due to the dominance of the
second term in (6) for large N, . For a finite nucleon mass
(physical values of the parameters), the present model sug-

gests the possibility of a bag forming in the gluon conden-
sate. In the N, ~ limit we recover the usual Skyrme soli-
ton whose size scales as (e,F„) ' —N, . Using an approxi-
mate analytic form'7 for F(r) we may evaluate G(r) and,
by taking the equality sign in (ll), find a rough expression
for the bag size 8:

1R
e, F„

ice,F„'e'i4

A
(12)

The RHS must clearly be positive; this shows that there ex-
ists a maximal value of A for bag formation.

We next discuss the results of our numerical analysis.
We first assume that F„ is fixed at its experimental value.
The correct values of e, and a are not known while the
value of A is variously estimated as

A = 0.26 GeV [bag model (Ref. 9)],
A = 0.44 GeV [QCD sum rules (Ref. 10) ]

(13)

V(lp) (8) V(tlat)

FIG. 1. Sketch of V(ItI) vs @ for the case of (a} no bag forrna-
tion and (b) bag formation.

With the requirement that the values of M and A given by
(9) be reproduced, we have been able to find fits only when
A is less than about 0.26 GeV. A typical solution occurs for
A 0.22 GeV, e, 4.5, and a =7X10 (glueball mass
= 3.2 GeV). The corresponding F(r ) is plotted as curve 1

in Fig. 2(a) while g(r) is curve 1 in Fig. 2(b). The radius
of the bag is about 1 fm in agreement with the estimate in
(12). To see the effects of the P kinetic term we have
varied a keeping A and e, fixed. Curves 2 correspond to a
glueball mass of 0.86 GeV (a -0.01) yielding M=1.06
GeV, ) 4.6 GeV ' while curves 3 correspond to a glueball
mass of 0.38 GeV (a =0.05) giving M = 1.24 GeV, h. =5.0
GeV. Note that as the glueball mass decreases, the "vacu-
um energy density" within the bag (i.e., P (0) In[&(0)/A] ]
becomes less negative. Although the shape of the bag
depends sensitively on the glueball mass, the chiral field U0
remains roughly the same. Ho~ever, compared to the origi-
'nal Skyrme Lagrangian with parameters chosen as in Ref. 6
[see dotted curve in Fig. 2(a)], the present fit does have a
significantly smaller tail.

The above fit nicely illustrates the mechanism of bag for-
mation. Ho~ever, it is also interesting to investigate the sit-
uation when one chooses A =0.44 GeV to agree with the
QCD sum-rule determination. '0 For definiteness we choose
e, -5.45 and F =0.091 GeV =0.69 (F ),„,& as in Ref. 6.



H. GOMM, P. JAIN, R. JOHNSON, AND J. SCHECHT'PR 33

(a) difference of inside and outside energy densities, i.e.,
A 4/A'~8 & 4e &inside &outside

In our notation this yields

&/4

As = A" —4e g (0) ln
(P)
A

(14)

r(fm) 1.2

~(r)
~(oo)

r (fm) 0.6 1.2
t

1.8
FIG. 2. (a} The soliton shape function F(r) and {b) the bag

shape function p(r) obtained by minimizing (7). The solid curves
correspond to F -0.132 GeV, A -0.22 GeV, e, 4.5, and
a 7X10 4 (curves 1), 0.01 (curves 2), 0.05 (curves 3). The
dashed curves correspond to F„O091 GeV, A 0 44 GeV,
e, 5.45, and a 0.01,

Then Etl. (12) shows that one is just on the verge of bag
formation. This is borne out by the numerical analysis lead-
ing to the dotted curve for P in Fig. 2(b) (normalized to the
appropriate outside value). In this situation the soliton
parameters M and A. are very slightly changed from their
previous values. One has a very shallo~ bag. Interestingly
enough, it permits one to implement the idea of Ref. 10 to
reconcile the sum-rule and bag determinations of A by in-
terpreting the bag value (now As) as corresponding to the

~here for simplicity we have approximated the inside energy
density by its value at the origin. The shallo~ bag shown in

Fig. 2(b) corresponds to a glueball mass of 1.7 GeV
(a 0.01) and P(0) =0.31 GeV. From (14) this gives an
expected bag model Ag=0. 21 GeV with a "true" outside
value A =0.44 GeV.

To sum up, we have presented a fairly simple "toy"
model which provides a mechanism for bag formation in the
effective Lagrangian approach to QCD. It has the amusing
feature that the pion is treated as a Goldstone boson with
no need for a bag while the bag develops automatically in
the case of the nucleon, ~here the bag model is on a
stronger footing. Although a good fit to the soliton parame-
ters is obtained only for the "deep" bag, we should imagine
that making the model more complete (especially taking
mixing in the scalar-singlet channel into account") would

push the favored solution more in the direction of the
"shallow bag. " Finally, we remark that the present model
seems to share some conceptual features with the "non-
topological bag &8 the "cloudy bag

.i9 the Skyrmion-quark
mixing model, and the one-loop Lagrangian approaches '

to similar problems. In particular, we may note that the ra-
dius of the bag in the fit corresponding to curve 1 is similar
to that of the MIT bag model, but the conceptual founda-
tion is, because of conservation of the chiral current, more
similar to the cloudy bag.
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