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It was shown recently by Fishbane, Kaus, and Gasiorowicz that the residues at the poles of
quantum-mechanical two-point functions for arbitrary angular momenta I have an incorrect I
dependence when calculated by the sum-rule method used for the analogous problem in QCD.
Knowledge of the residues is of interest since they are directly related to particle couplings and de-

cay widths. %e develop reliable expressions for the energy and Regge residues using semiclassical
methods.

I. INTRODUCTION

Sum rules for two-point functions in QCD have been
used extensively in recent years to relate such low-energy,
nonperturbative quantities as bound-state energies and de-

cay widths in hadronic systems to quantities calculated in
perturbative QCD (Refs. 1 and 2). The results of these
analyses have bsen remarkably good. The sum rules give
a specific way of implementing the older idea of the duali-

ty between bound-state cross sections, e.g., the resonant
cross section for e+e ~qq bound states, and the cross
sections calculated for free quarks in perturbative QCD
(Ref. 3).

A number of authors have investigated the theoretical
background of the duality relations and QCD sum rules

by looking at the analogous sum rules in nonrelativistic
quantum mechanics or solvable model field theories. '
For example, the quantum-mechanical energy-moment
sum rules for e+e annihilation into heavy confined qq
states are easily derived starting with the observation that
the nonrelativistic photon vacuum-polarization function
II(E) is a multiple of the qq energy Green's function
evaluated at the origin:
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where Ret(r) is the radial wave function for angular
momentum /. The total e+e annihilation cross section
at a total center-of-mass energy W =2m +E is

Wzg + (E)=24sr a es mq ImG(OO, E)

G (0 0 E)=— dE'
Qi dE ' ' ~ p (E~ E)tt+1

2
PPlq CO

24n. ae 2

W' tJ, +, (E')

(E~ E)N+1

I Rn, p(0) I'
4m „~, (E„p E)N+' (3)

~R„p(0)
~

e
4 @=1

The sum rules can be used in either form to estimate
the ground-state energy of the (nonrelativistic) qq systein
by following the procedures used in the QCD calculations.
For example, if we choose E =0 in Eq. (3), E, p is given
exactly by the limit

lim M„/M„+, =E, p,N~ ce

where

These relate weighted integrals of o + [or equivalently,

integrals of ImG(O, O,E)] to the sum of residues and
energy denominators. The exponential or "Borel-
transformed" sum rules used in many calculations can be
obtained by calculating the inverse Laplace transform of
G(0,0, E):—
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Differentiating Eq. (1) with respect to E and using the re-
lation in Eq. (2), we obtain the moment sum rules:

+e can calculate the left-hand side of Eq. (4) approxi-
mately by calculating o- + or ImG and the M's in low-

order perturbation theory, and then estimate Ei p by find-
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ing the range of N for which the ratio is "most stable. "
This technique is easily extended to higher values of 1

(Ref. 6).
The limitations on sum-rule calculation and the

reasons for their success in correlating data —have been
discussed elsewhere. It has been emphasized in particular
in Refs. 6 and 7 that it is necessary to know the long-
range part of the qq interaction explicitly before reliable
results can be obtained for the energies. It does not suf-
fice ta know only a few terms in the perturbation series
for MN, as is usual in QCD calculations.

The problem of calculating the residues at the poles of
G(O, O,E} using sum rules was also investigated recently
by Fishbane, Gasiorowicz, and Kaus, who concluded that
such plausible methods as using the exact Hmit

IR, ,o(O) I'= lim Ei,o"+'Mw, Ei,o&0
4m N~ co

with low-arder approximations for the M's are inade-

quate, especially when applied to large values of I. Since
these residues are directly proportional to decay widths of
the states, it is clearly desirable to have alternative
methods to calculate them, even if the methods go beyond
the sum-rule approach. One possibility is provided by the
Fermi-Segre formulas generahzed to arbitrary I (Ref. 10)
which gives the wave function at the origin in terms of
the energy spectrum:

II. CALCULATION OF ENERGY
AND REGGE RESIDUES

GI(r', r, E)= g R„i(r')Rs, i(r)i(En, l
—E) i

where the sum runs over the totally discrete spectrum.
The quantity which enters naturally in sum-rule calcula-
tions is a two-point function which we will write in the
notation of Fishbane, Gasiorowicz, and Kaus7 as

Il(v, E)= lim (r'r) (21 +1)Gi(r', r,E)
r~O

2v[a„(v)]i
„~, E„(v) E'— (10}

where

a„(v)= lim r R„I(0), v= 1+—,
r~O

Alternatively, as shown in Ref. 7, II may be written in

terms of the "Smatrix" S(v,E) for the confined system,

A. Formulation of the problem

The radial part of the energy Green's function for a
problem with a confining interaction can be written for
arbitrary 1 as

lim Ir 'R„,(r) I'-
r~O

2m
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where

u ( —v, E,r)
u(v, E,r)

(12)

(13)

In investigating this approach, we found that Eq. (8) is
quite inaccurate for large 1 for confining potentials; e.g.,
the errors grow exponentially with 1 for the usually in-
nocuous oscillator potential (see Table I). This observa-
tion prompted us to develop several more accurate ver-
sions of the arbitrary-/ Fermi-Segre farmula which have
been reported elsewhere. "'~ We apply our methods here
to the calculation of the energy and Regge residues for
confined systems. The results on the latter, and the ap-
proach used, are new.

d2
+2mE —2m V(r)—

dr 2
(14)

which are, respectively, regular and irregular for r~o,
with the normalization

and we have omitted terms in Eq. (12) which have fixed
singularities in v, but no maving or E-dependent singulari-
ties. ' In the last expression, u(v, E,r) and u ( v, E,r) are-
the solutions of the Schrodinger equation (t)1= 1):

TABLE I. Results for
I
r 'R~l

I
2(0) for the radial harmonic oscillator calculated using the Fermi-

Segre formula in Eq. (g). The fractional error diverges exponentially for 1~ ao:
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0.9772
0.9951
0.9980
0.9989

1.0513
1.0155
1.0074
1.0043

1.2190
1.0782
1.0405
1.0249

1.4689
1.1823
1.0994
1.0631

1.8119
1.3302
1.1858
1.1206

2.2706
1.5276
1.3023
1.1992
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u(+v, E,») —» +"+-'/, v&0 .
r-+0

(15) u (v E») c v(—dg/d»)
i—/2(v+ l/2e m—Eg /2&

The Wronskian of u(+v, E,») is therefore II/(u, u+)
=2v.

One can construct a solution of the Schrodinger equa-
tion which vanishes at a large radius 8 by combining the
solutions above:

u ( v,E—,R)
u(v, E,»)=u( v,E—,») — ' ' u(v, E,»)

u (v,E,R)

u ( v, E,—») S(v,—E)u (v,E,») .
R ~co

(16)

When S is infinite, the first term in u can be dropped, and
u (v,E,») is itself a function regular both for»~0 and for
»~ oo and, hence, is an eigenfunction of the Schrodinger
equation.

The energies at which S(v,E) is infinite for v=l + —, or
I =integer are the usual bound-state energies, and give the
poles of GI(»', »,E) or II(l+ —,',E), Eqs. (9) and (10). The

poles of S as a function of v which move with changing E
are the Regge poles of the system. In the next section, we
will calculate the residues 2v[a„(v)] at the energy poles
of II(v, E), and the residues P„(v) at the Regge poles of
S(v,E)

B. Exact results for the residues

In Ref. 11 we developed a modified WKB method far
the calculation af radial wave functions which is directly
relevant to the residue problem. The method uses basis
functions which have the correct behavior for»~0 in-
stead of the us~~A WKB exponentials. We will use the ra-
dial oscillator wave functions as our basis functions in the
following discussion since the oscillator potential gives a
familiar example af a confining interaction. However, for
more realistic qq potentials with an attractive Coulomb
singularity at the origin, an approximation based on
Caulomb wave functions is more appropriate. We will
simply state the final results in the Coulomb case.

It is shown in Ref. 11 that the regular radial wave func-
tions for problems with confining potentials and two turn-
ing points can be written exactly as

X4 +—+—,v+1,mEg /e
2 2 2' (17)

where 4 is the confluent hypergeometric function regular
for $~0 (Ref. 14) and g(») is a solution of the equation

xo (g) (c—(»)=df 1 1 dg
df 4»i 4(2 d»

dg d2 dg
d»z d»

' —1/2

such that g(»)~0 for»~0 and g(»)~oo for»~oo.
Here
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r
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with Eo a parameter which we will choose for simplicity
to equal E. The function on the right-hand side of Eq.
(17) with the factor (d(/d») '/ omitted, is then a solu-
tion of the radial oscillator equation in the variable ( for
energy E, angular momentum I =v ——,', and spring con-
stant —,maP= —,(E/e)2. The parameter e=e(v, E) is re-

lated to v and E through the requirement that g(») be a
smooth function with the limiting behavior given above
[see Eq. (29)]. The constant c =c(v,E) in Eq. (17) is de-
fined as

c(v,E)= lim [g(»)/»],r~0
(21)

and is included so that u(v, E,») has the v and E--
independent normalization specified in Eq. (15}.

The "Smatrix" S(v,E) is determined by the asymptotic
form of u(+v, E,») for»~00.

(d g/d») (/2g e i/2( mE—/&)
—(e+—v+ i )/2e ™EI'—/2e r(v+1)

—e v 1r + +
2 2 2

(22)

Thus, from Eq. (13),

»nE I ( —v+1)I ( —p, +1)
r(v+1)l(I-( -v) '

S(v,E) —c "
p~n

mE vt'(v+ n) 1

2n+v —1 [I (v+ I)]~1 (n) ((( n—
(25)

where we have introduced a function p(v, E) defined by

(p(v, E)= ,' [e(v,E) v+ I] . ——
S clearly has poles at the points at which p(v, E)=n,

n =1,2, . . . :

These may be looked at in different ways. If we fix v at a
physical value v=1+ —,', 1=0,1, . . . , the poles in the se-
quence p(l + ,',E}=n=1,2, . .—. are just the energy poles
of II(v,E) at E =E„i. The residues in Eq. (10) are deter-
mined by Eqs. (10), (12), and (25):
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2v[an(V)]
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)
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(26)

Alternatively, if we keep n fixed the poles lie on Regge trajectories p(v, E)=li or v=v„(E) in the v, E plane. The Regge
residues are

mEn (v)
Pn(v)=Resp(v, E) ~q „——c2"

2ll +V—1

vt'(v+ n ) Bp,

[I'(v+1)] I'(n) Bv
p, =n

S(v,E) also has fixed poles at v=1,2, . . . . These are not
of interest here, but introduce sign changes in S which
guarantee that the residues in Eq. (26) are all positive.
(The Regge residues are negative for a completely confin-
ing potential, Bp /Bv&0. )

Bp

v p=n, v=i+1/2

(l+ —,
' )'

r 2mEnl —2mV r —
2r

(31)
C. Approximate results for the residues

The results in Eqs. (26) and (27) are exact, but require
knowledge of the function g(r) determined by Eq (18).. In
Ref. 11 we studied the approximation for g(r) [hence for
u (+ ,vEr)] which results from setting the right-hand side
of Eq. (18) to zero and solving the remaining equation, E =n

' —1/2
V &dr &n

2mE —2m V(r)—
7T r r

where E„l is the value of E which satisfies Eq. (30) for
the given values of n and l. Similarly, for n fixed and
general v,

r '2
dg +X2(r)

+«0 (r)
(28)

(32)

where v„=v„(E) lies on the Regge trajectory determined
by the condition

subject to the regularity condition that the zeros of the
numerator and denominator match. With this constraint,
the function g(r) is always finite and continues smoothly
through both turning points in a two-turning-point prob-
lem. The errors in g are formally of order fP. For the
choice «0 in Eq. (20), corresponding to the representation
of u(v, E,r) in terms of an oscillator wave function as
given in Eq. (17), the regularity condition is"

T

r 2mE —2mV r—
1/2

&n

2 (33)

It is useful to note that Bp/BE and Bp, /Bv can be relat-
ed directly (if approximately) to experimental data. If we
regard p, (V,E) as a continuous version of the quantum
number n, we can identify Bp/BE with the observable
density of states for a given I:

7r[p(v, E)—p )= (E—v) = f' dp «(1'), (29) BP, dli

BE l dE
(34)

where r& and r & are the zeros of «(r), defined in Eq.
(19). As expected, the wave function in Eq. (17) vanishes
for r~oo as well as for r~OwhenIJ, (v,E)=n =1,2, . . . ,
that is, when S has a pole. The condition p(v, E)=n for
v=l+ —, is of course just the usual WKB quantization
condition:

I/2
(I + —, )I dr 2mE 2rnV(r) —2—

r

(30)

We can use Eq. (29) to calculate the derivatives which
appear in the exact expressions for the residues derived
above. Thus, in the present approximation,

The quantity Bp /Bv can be expressed in a similar fashion

Bp
Bv

Bp dE
BE „ dv „

dll dVn

dE dE
(35)

where dv„/dE is the slope of the nth Regge trajectory at
the given value of E.

In contrast with the foregoing, the calculation of the
function c(v,E)=lim„o(g/r) which appears in S, Eq.
(23), requires the explicit solution of Eq. (28) in the classi-
cally forbidden region r & r &. By integrating inward
from r using the matching condition g& ——g(r & ) for the
zeros of «02 and «, one can show rather easily that, in the
present approximation, "
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I

[e(rE)]x"= lim exp —2 f 'dr[ xe—(r)]'rey2 f dr[ xee(r—)['r'
p~O T

(36a)

= lim exp —2 r —+2mV r —2mE
r~O F r'

' 1/2 T

v mEr+2 dr
P r E'

'2 * 1/2

The right-hand side of this expression is just the ratio of the ordinary WKB barrier penetration factor for the full prob-
lem with the confining potential V(r), to the penetration factor for the oscillator problem for an oscillator with the
prescribed energy E and @=2',(v,E)+v—1.

our final results for the residues are obtained by combining the approximate expressions above with the exact formu-
las in Eqs. (26) and (27). We find after some manipulation that the energy residues are given by the generalized Fermi-
Segre formula:

(21+1)[a„(l+ —,
' )]2=(21+1)

n+ ———
2 4

'+»i 1.(n+l+ ,') -2']
(n —1)! (2l + 1)!

B]u

BE I E=E„[

P

&(lim exp —2 r —z r ' +2 dr —zo r
r-+0 r

(37)

vt'(v+ n ) Bp

[I (v+1)] (n —I )! Bv E v=v„[s]

in agreement with the results of Ref. 12. The Regge residues are given by a similar expression:
2 ' —1

mE(v)
2n +v—1

C

X lim exp —2 f 'dr[ xe(r)]'r—e+2 f 'dr[ —xee(r)]'r
r~O r

(38)

where v„(E) lies on the trajectory determined by Eq. (33), and Bj[d, /Bv is given by Eq. (32). This result is new.

D. Alternative results for problems mth Coulomb interactions

As noted earlier, it is actually more appropriate in q22arkonium problems to use Coulomb wave functions instead of os-
cillator functions in the approximation of u (+v,E,r), at least for low energies and small v, since the Coulomb singularity
in the qq potential is then treated exactly. We will only sketch the main points in this alternative approach, and present
the final results. More details may be found elsewhere. "'2

We will suppose that the potential V(r) is of the form

2

V(r)= — + V, (r), (39)

where V, (r) is a confining potential, for example, the linear potential V, =br used in many studies of the ec and bb sys-
tems. We will also assume for simplicity that V, (r) is finite for r ~0, and that the energy scale has been adjusted so that
V, (0)=0. (These assumptions are not necessary. ) Then for E & 0, or more generally, for E —V, (r) & 0 for r~0, we can
write u (v,E,r) for r inside the outer turning point as

u(v, E,r)=c "(dg/dr) '~~@+' e ' ' ~dZp(v+ —,+i', 2v+1, 2i(2mE)'~ g)

where 2() =e (m /2E)'~, while for E & 0 we can write u for all r as

u (v,E,R)=e"(dg/dr)' ~@+' e '' ! ~'4(v+
z
—

~
21 ~, 2v+1,2(2m

(
E

(
)' g') (41)

In these expressions, 4 is the confiuent hypergeometric
function regular for $~0, and e =c(v,E) is the constant
defined in Eq. (21). The function g(r) is the solution of
Eq. (18) with a as defined in Eq. (19),and

ao (r) =2mE+ 2me v

r r2 (42)

With this definition of ~0, the most divergent terms in ~
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and ~0 are identical for r ~0 (Ref. 15). The procedure is
now to approximate g(r) and u (v, E,r) by solving Eq. (18)
with the right-hand side set to zero.

The approximate wave function constructed for E &0
using Eqs. (18) and (41) continues smoothly through both
turning points provided

r
p' Ic f' =~ p v, E (43)

S(v, E)= [2c (2m
I
E

I
)
'/ ] "X,E~o.I ( —2v+ 1)I (1—p)

I (2v+ 1)I (1—p —2v)
'

S has poles for p(v, E)=n =1,2, . . . :

S(v,E) —[2 (2m
I
E

I

)'/2P"

(45)

} (v E}=
I n I

—v+-,'

is the WKB phase function introducai earlier. Using the
asymptotic form of u(+v, E,r) for rico, (~00, we find

that S is given for E & 0 by

2vt (n +2v) 1

[I (2v+ 1)]21 (n) p, n—E &0 . (46)

The energy residues for n =1,2, . . . and physical values
of v are'2

(21+1)[a„(l+—,
' )]'=2m [2c(2m

I
E

I

)'/ ] '+'
[(21+ 1)!]'(n—1)!

where c "is given by the expression in Eq. (36a) with so as given in Eq. (42). The Regge residues are

(47)

P„(v}=t2c[2m IE(v)
I

]' ~j "
[I (2v+ I)] I (n) Bv E ~=~„(E)

(48)

where v„(E) lies on the trajectory determined by Eq. (33).
The case E & 0 is slightly more complicated The. function in Eq. (40) gives a solution of the Schrodinger equation in-

side the outer turning point. To construct S, we need to continue the solution through the turning point using Airy func-
tions, and match the result to a solution in terms of Bessel functions in the outer region. " The result is

2
I (v+ —,

'
)

S(v,E)= —,
' [2c(2mE}'/ ] " e~

I'(2v+ 1)

I"(v+ —,
' ir1)—

1(v+ —,
'

)

cos277v +ecotmp-
sin2&v

Ego, (49)

where p(v, E) is defined by Eq. (43). The energy residues given for v=1+ —,
' and p =n = 1,2, . . . by'

(21+1)[a„(l+—,')] =(21+1) c '+'(2mE) +'/

while the Regge residues are given by

'2 2'
2'1! ~ I (1+1 i') Bp, —

(21+1)! I (1+1) BE
n,

1 I
I'(v+ —,

' —ir1) IP„(v}= [2c (2mE}l/2]2veeg2' [I (2v+1)]
(51)

where c(v,E) is defined by the expression in Eq. (36a)
with the form for ao given in Eq. (42).

III. COMMENTS

The semiclassical expressions derived above provide
useful and accurate' approximations for the energy or
Regge residues of the quantum-mechanical two-point
function II(v, E) or S(v,E) for confined systems. For ex-
ample, the results for the residues given in Eqs. (37) and
(38) are exact for the oscillator potential, in marked con-
trast with the usual Fermi-Segre formula for the energy
residues, Eq. (8}. The error in the latter increases ex-
ponentially with 1 (see Table I). More generally, the errors

in our formulas decrease rapidly with increasing 1 and n,
as would be expected from their WKB-like derivation.

The factors Bp jBE and Bp/Bv in the residues can be
identified through Eqs. (34) and (35) with the density of
states of the system, or the density of states divided by the
slope of the Regge trajectory, so depend only on local
properties of the spectrum. Just this identification has
been used in the past to derive duality relations for qq an-
nihilation. Analogous formulas have been shown to hold
in the relativistic context. ' It is therefore not necessary,
though it would still be interesting, to extract the residues
directly from the quantum mechanical or QCD sum rules.
It is not clear how this could be done for large 1, given the
problems noted by Fishbane, Gasiorowicz, and Kaus. 7

The origin of those problems is clear from our results.
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First, our expressions for S(v,E) contain nontrivial v-

dependent factors which are necessary for the residues to
maintain the proper signs from pole to pole, see, e.g., Eqs.
(23) and (45). These factors do not appear in perturbative
calculations of S or II. Second, the barrier penetration
factor [c(v,E)] " which appears in all of our results de-
pends on the behavior of the potential V(r) in the classi-
cally forbidden region near the origin. Information on
V(r) in this region is not available locally, but is only at-
tained for a given v and E by using spectral information
from higher energies. This information is also not given

by perturbation theory if only a few moments Mz are
known. It is therefore important that one have indepen-
dent information about the short- and long-distance
behavior of the potential, as has been emphasized by Fish-
bane, Gasiorowicz, and Kaus.

If we suppose that the long-distance behavior of the po-
tential is known, and separate V{r) into the known con-
fining piece V, (r) and a short-range pime V, (r), we can
treat the effects of the latter on the high Regge residues as
follows. We write the barrier-penetration factor c ", Eq.
(36a), as

P

[c(v,E)] "= lim exp —2 f 'dr[ —ai (r)j' +2 f dr[ —zo (r)j'

Xexp —2 f dr[ —x (r)]' +2 f dr[ —zi (r}]'~ (52)

where N is defined for the full potential V= V, + V, using Eq. (19), ~,2 is defined using only V„and ~o is defined for
the comparison potential Vo. The first factor in Eq. (52) is just ci ", the barrier-penetration factor for confining poten-
tial alone, which we assume is known.

For v large enough that r & (the inner turning point for the full potential) is greater than the range of V„ the Regge
trajectories determined by Eq. (33) depend only on V„and not on V„and t)p/t)v, Eq. (32), is unchanged. We can also
expand ( —v )'~ in the exponent of the second factor in Eq. (52) in this regime (large v, E, small n), and find that

[c(v,E)] "=[c&(v,E)] "exp 2m —f dr V, (r)[ —a~ (r)]

[ci(v,E)] exp
v large
E fixed

f dr rV, (r)

The last expression involves the first radial moment of V„
but is not directly expressible in terms of the energy mo-
ments calculated from a perturbative expansion of
II(v,E}. Extra information is clearly needed for the cal-
culation of the last factor in Eq. (53), hence of the Regge
residues.

We remark finally that it would be interesting to see if
semiclassical methods could be used directly in QCD to
calculate 11(v,E) or the residues nonperturbatively.
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