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%e study„ in the framework of two-particle relativistic quantum mechanics, spin- 2
—spin-0 sys-

tems with general classes of interaction having the following properties: they preserve chiral sym-

metry, confine the two particles into bound states, and possess the short-distance behavior of vector
interactions. The resulting spectrum displays as ground states an infinite number of light fermions
with increasing spins, the masses of which vanish with the vanishing of the constituent-particle
masses. In the absence of short-range interactions these fermions have the quantum numbers

j= l + 2, l =0, 1, . . . , n =0. A secondary interaction, here taken illustratively of the I.S coupling

type, is needed to give masses to the light high-spin fermions. This problem is relevant for the study
of the dynamics of preonic systems.

I. INTRODUCTION

This paper is devoted to the construction of a general
quantum-mechanical model of two-particle systeins, com-
posed of interacting one spin- —, fermion and one spin-0
boson and where the interaction is confining and chiral in-
variant. This problem might be relevant for the study of
the dynamics of preonic systems. It is then expected that
the ground state of the bound-state spectrum represents a
light fermion, in the sense that it becomes massless when
the masses of the constituent particles vanish, while the
other particles of the spectrum remain massive.

The formalism used here is that of covariant relativistic
quantum mechanics of two interacting particles and was
presented by the author in a preceding article. ' In this
formalism the fermion-boson wave function satisfies two
independent wave equations which are generalizations of
the Dirac and IGein-Gordon equations, respectively.
They are of the form

Hi+=(y pi —mi —V)4=0,

Hi)p=[p2 —mz —(y pi+mi)VI+=0,

(l.la)

(1.1b)

where the wave function (II is a four-component spinor
function:

%=% (xi,x2) (a=1, . . . , 4) . (1.2)

V=V( 'pi pz r»
1 1p=p)+p~ U=T(pi —p2}, X=—,(xi+x2},

T—x =x i
—x2, r„=x&——xz —(p.x)p&,

x~ =(p'x )pp, XL = (p'x),

p„=p„/(p )' (p )0) .

The potential V is a Poincare-invariant function of the
coordinates, momenta, and Dirac matrices. The compati-
bility condition of the two wave equations requires that V
depend on the relative coordinates x through the trans-
verse components x, with respect to the total momentum

i(m)~——m&2)p xl(2p2)
(1.6)

The dynamics of the relative motion is therefore three di-
mensional through the coordinates x T.

The wave function )Il and the potential V are connected
by definite relations to the wave function and the kernel
of the Bethe-Salpeter equation. ' This feature permits the
classification of the potential V according to its tensor
structure in the moments and the Dirac matrices in a
parallel way with that of an interaction Lagrangian.

The physical Hilbert space is defined by the subspace of
solutions of Eqs. (1.1}which correspond to positive eigen-
values of both p pi and p p2, the latter being also related
by Eq. (1.5).

In the present work we consider potentials V which are
local functions of x (not involving integral operators).

We shall exhibit in this work the general class of con-
fining and chiral-invariant potentials which might govern
the dynamics of the fermion-boson system under con-
sideration. We show that the ground states of the system
are represented by an infinite number of light fermions
with degenerate masses. In the classification scheme of
quantum numbers j, I,n, these fermions have the quantum
numbers n =O,j =I+—,',1=0,1, . . . . For the massive
particles the spectrum displays parity doublets.

The inclusion in the above potentials of short-range
vector interactions removes the mass degeneracies but
leaves unchanged the qualitative feature of the existence
of an infinite number of light fermions with increasing
splns.

We also show that the inclusion of additional secondary
interactions of the axial-vector type, acting as an I.S cou-
pling, can give masses to the high-spin light fermions,
provided they exhibit a specific energy dependence.

Equations (1.1} completely determine the longitudinal-
relative-coordinate (xL ) dependence of the wave function
through the equation

(pi —p2 ))p=(m) —m2 ))p,

which is a consequence of Eqs. (1.1), and the solution of
which is, for eigenfunctions of the total momentum p,
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It might also be that because of the singular behavior of
the high-spin light-particle states near the massless hmit,
radiative corrections in the underlying quantum field
theory destabilize their spectrum and provide in a natural
way large mass values to these high-spin light fermions,
leaving only the spin- —,

' fermion light.
The appearance of an infinite number of light fermion

bound states semns to be a general feature of relativistic
quantum mechanics with local functions for the interac-
tion potentials.

II. CONFIMNG POTENTIALS
AND LIGHT FERMION SOUND STATES

Since the confining interaction must be ehiral-
symmetry preserving, then we have to choose the interac-
tion potential among the vector interactions, the corre-
sponding wave equations being explicitly invariant under
chiral transformations, except for the mass term m i.

The zero-mass limit of the light bound states being ob-
tained by taking both the masses mi and m2 of the can-
stituent particles close to zero, then the reason of the
smallness of the boson mass m2 should also be justified.

V =y„[p „,C""(r,p) J (2.1)

where [,]+ represents the anticommutator.
Among the three types of tensor functions C„„con-

sidered in Ref. 1 (Sec. VIII), the third one [case (c)] seems
to be the only type which leads to confining systems. C&„
has then the structure

C„„=[r(g„„—p~„)—r„r„]C(r,p2)

and the wave equations become

(2.2)

In the presift problem the boson itself might represent an
effective light bound state of two other light fermions and
its small mass could then be related to the chiral-
symmetry-breaking parameters. Therefore, we might
view the present problem as a simplified version of a
three-fermion bound-state problem. Another possibility is
that the fermion and the boson are supersymmetric
partners.

The vector interactions correspond to the case where
the potential V represents a vector propagator (in its rela-
tivistic instantaneous approximation ) coupled to the fer-
mion with the y matrix and to the boson with the
momentum pq of the latter:

H, e=[y p, m, +2y„—C(r'ur& r&r u i—e&)]e'=0, (2.3a)

2 2 4H2%= p~ m~ —+2k (3C+2r C+2r C )— C(1+r C)WL 2WL, —Wi, (3C+2r C+2r C ) 4=0, (2.3b)

where

(2.4)

weakly equal to H2.

H=Hi(Hi+2mi)=Hp . (2.6)

and ur is defined like xr in Eq. (1.4). WL, and Wis are
the internal orbital angular mamentum and spin opera-
tors, respectively:

WL„e& &p
"r u—— (eoi23 +1),v a P

v eP
1$jtk ~pcvcxj6tP 0

4 HI=0, y pl=g . (2.7)

The particular feature of Eq. (2.3b) is that the operator
H2 (or equivalently H) commutes with the matrix y p.
This permits the resolution of the wave equations in the
Foldy-Vfouthuysen representation (see also Ref. 1, Sec.
VII C).

I.et 4 be a solution of Eq. (2.3b) with eigenvalue + 1

of y p corresponding to the positive values of p p i ..

Wi, ————,'fop

1
~ay= fya y p—]. @'g.= WL, i, + Wisi. .

2l

(2.5) The solution of Eq. (2.3a) is given by

e=(H, +2m, )q /(2m, ) . (2.8)

Because of Eq. (1.5), the square" of the operator H is
Defining the internal wave function P(r) as in (1.6), Eq.

(2.3b) becomes, in terms of the latter,

PB —Pl
—,'p ——,'(mi +m2 )+ +u +2iri (3C+2r C+2r C )— C(l+r C)WL

q WL ~ Wis(3C+2r C+2r C ) P(r)=0. (2.9)p'

The solutions of this equation are eigenfunctions of the operators W&s, WL, W, W.p/
~ p ~, defined in Eqs. (2.5), with

eigenvalues —~Pip; —Ap /(1+1), I =0 1, . . .; Rp j(j+1),j=f+ —~; A'(p )' m, m = —j,—j+1, . . . ,j. Wedesig-
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m 2 m+
i/))l(}/2}j Frtlj(r )P l(1/2}j (n 0~ 1~ ' ' ) ~

V P~ I(&/2, )j ~ I(ll2)j

Equation (2.9) becomes, in terms of the radial wave function F,
2 22(mi —m2 )

4p ——,(mi +m2 )+
gp

2
—A' 6 +4r' +Pi' +2}}i'(3C+2r'C+2r'C')d / /+1

dr (dr ) r2

2
-m+

nate the corresponding ( r -independent} eigenfunctions by 9'l(}/2}j. Then the wave function i/) can be written as

(2.10)

(2.11)

+4})(}/(/+1)C(l +r C)+2' [j (j +1)—/(/+1) ——,'](3C+2r C+2r C ) F ll(r )=0. (2.12)

2 2

—/' ~no2
(2.13)

We now show that Eq. (2.12) possesses among its solu-
tions an infinite number of light fermions with the quan-
tum numbers n =0 (no nodes}, j=/+ —,', /=0, 1. . . . It
can be checked that the functions

Fo,v+in=~oe( —' ) 'e*P (J+—, ) f &d~', (2.14)

For confining interactions it is the term C2r2 which
dominates at large spacelike distances in the potential of
Eq. (2.12) [its coefficient is proportional to (j+—, ) ] and
the condition on C is that

the sector (n, /j =/+ —,
' ). Then one compares the masses

of the states with quantum numbers n', /' =/+ 1,j=/' ——,
'

to that of the previous state. The positivity of the addi-
tional potential terms ensure that these states are heavier
than the former one. [For this a sufficient condition is
that C+2r C &0, with C satisfying (2.13).]

The solutions }p of Eqs. (2.6)—(2.12) can be written in
the Dirac representation by means of the inverse Foldy-
Wouthuysen transformation (2.8). It turns out that the
ground-state wave functions are still eigenfunctions of the
matrix y p in the Dirac representation and have the same
expressions (2.10), (2.11), and (2.14) as in the Foldy-
Wouthuysen representation. This can be checked directly
on Eq. (2.3a) by using the relation

where aclj are constants and the asymptotic sign of C has
been chosen positive, are solutions of Eq. (2.12) with the
mass eigenvalue

2lr y v =y r r v+ g z $V~s2
(2.16)

(p')'"=m, +m, , (2.15)
III. PARITY DOUBLING

which goes to zero when m i and m2 vanish.
One can also see that these states are the ground states

of the spectruin. First one notices that the state with
quantum numbers n =0,/,j=/+ —,

' is the ground state of

The spectrum of p can be exactly calculated in the
particular case where C is a constant A, . Equation (2.12)
becomes

(mi —m2 )2 22 2

~p ——,(m, +m2 )+ —iri 6 +4 +})1 +4% A, r (j+—, )
/(/ + 1)

p2 dr2 (dr2)2 r2

+2fiA[3(j+ —,
'

) —/(/+1)] F,ij(r ) =0, (3.1)

which corresponds to the harmonic-oscillator case. The spectrum is

p = (mi +m2 )+4A'A. [(j+-,' )(2/+4n 3j+ ,
' )+/(/+1—)]-

+(t(mi +m2 )+4i}i/t[(j+ —,
' ){2/+4n —3j+—', )+/(/+1)]) —( i

—
2 ) )'

On replacing j by its two possible values j= /+ —,, one also gets

p =(mi +m2 )+16''A(/+1)n+I[(mi +rn2 )+164k(/+1}n] —(mi2 —m2 ) I'/2 (j=/+ —,,/&0);

p ={m} +m2 )+16faU(n+1)+([(m} +rn2 )+164k/(n+1}] —(mi —m2 ) J'/ (j =/ ——,', /&1) .

(3.2)

(3.3}

The spectruxn displays the parity-doubling phenomenon
for the massive states. The state with quantum numbers
(n+1, /,j=/+ —,

'
) is degenerate with the state with the

quantum numbers (n'=n, /'=/+1j '=/' —,=j). This—

phenomenon has occurred in spite of the fact that chiral
symmetry is explicitly broken by the mass term m &.

It turns out that this feature is not peculiar to the har-
monic osciHator but is a general phenomenon valid for



3438 H. SAZDJIAN 33

the solutions of Eq. (2.9) for any kind of potential C. The
reason for this is that, because of the particular structure
of the vector interaction (2.2) we are considering
(magnetic-type forces), there is still a chiral operator
vrhich commutes with the total energy operator or the
equations of motion. In the Foldy-Wouthuysen represen-
tation it is

Coulomb-type interactions. The corresponding tensor
function C„„(2.1) has the form

C»„g—»—~(r,p ) . (4.1)

After adding the two contributions (2.2) and (4.1) the
wave equation for the spin- —,

'
particle becomes

~IS P I (P )Qs=y P = —III 7'Pi,
P'P~ P'Pi

where we have defined

(3.4)
2lHI%= y pi —mi —2y» Dpg — r"

1 —2D

+2y»C(r v " r"—r U ihr») —4=0. (4.2)

(3.5)p I» ~p I»+2C(r Ij» —r»r'0 lAP»),—

and y is defined like x in Eq. (1.4), with y»
——y»y5.

Notice that Hi in Eq. (2.3a) can be written with p'I as

0t =p 'p ) —1' ) (3.6)

The commutation of Qs with the "square" operator H
in Eq. (2.5) can be checked by observing that

H=(y pi)' —mi' (3.7)

P'Pi =P'Pi . (3.8)

In the Dirac representation the chiral operator (3.4) is

ypQ5= —
y5 1™I

PPj
(3.9)

and it commutes weakly with the constraint operator HI
(3.6).

Under the action of this charge the ground states
behave as singlets.

IV. INCI.USION OF SHORT-DISTANCE
VECTOR INTERACTIONS

We next study the effect on the preceding results of the
presence of short-range vector interactions. The proto-
type of this kind of interaction is provided by case (a) of
Sec. VIII of Ref. 1, which possesses the structure of

I

[D is defined as in (2.4).] The coefficient of the D term
has been fixed in such a way as to have the total energy
operator Hermitian in the norm (in the c.m. frame):

(44)=f d'xA (4.3)

Furthermore the wave equation of the spin-0 particle, or
equivalently the square of the operator HI in Eq. (2.6)
does not provide us with more results than what is con-
tained in Hi and the constraint (1.5). The total interac-
tion contained in the wave equation (4.2) still remains
confining provided the potential C satisfies condition
(2.13) as before.

Contrary to the purely confining case of Sec. II, the
square (2.6) of the operator Hi does no longer commute
with the matrix y p and therefore the passage to the
Foldy-Wouthuysen representation is less in order here.
Furthermore Eq. (4.2) cannot be solved explicitly for the
ground states for arbitrary potentials D. However, we can
expand this equation in the masses mi and m2 (with
respect to its explicit dependences on these parameters,
but not for the kinematic term p2 present in r„) and cal-
culate the ground-state solutions to lowest order in m and
the corresponding masses to first order in m. Because of
the dissymmetry between the properties of the fermion
and boson terms in the wave equations (1.1) it is more in-
dicated to procaxl here via two steps: first by considering
the equal-mass case m I ——m2 ——m and then by introducing
the mass difference as a new perturbation.

In the equal-mass case the ground-state solutions are

m 2 eg+ 1

4l(1/2)j =Folj(r ) I I/2j =I+I/2+0(m)i J =I + 2
' 1/2

Foil =&oil( r)—2ln
1+2D exp (j+—, )2

(4.3a)

(4.3b)

[(P )O, l, l+ I/2]

( —r ) Fo I I+I/2 d x2 l

1 —2D

) Fo, l l+ I/2 d x2 l 2 3 T +0(m ), (4.3c)

where 9' has been defined in Sec. II [Eq. (2.11) and the
paragraph before] and aoij are constants.

We again find an infinite number of light fermions, the
masses of which vanish with m. The main modification
with respect to the preceding result is that the short-

distance vector interaction, which is essentially of the
electric type, removes the mass degeneracies of the light
fermions. It will also remove, in the presence of the mass
parameters m, the parity-doubling degeneracies of the
massive states.
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Notice also that in order to have normalizable solu-

tions, it is necessary that the vcetor potential D remain
bounded by —,. A similar condition was also met in the
case of fermion-antifermion systems. '

As a second step one can introduce the mass difference
( m 1 r—n2) as a new perturbation, by keeping, for instance,
m, +m2 2m——fixed. It can be easily seen that the new
toms which appear in the wave equation (4.2) are all of
first order in (m, —m2). Therefore the masses (4.3c}still
remain globally of first order in the mass parameters m 1

and p?22.

In case one replaces the potential D by a constant mean
value D =Do then the ground-state solutions can be cal-
culated exactly. The wave function f~& is given by the
first term of the right-hand side of Eq. (4.3a) [without the
0 (m } term], Eol& is defined by (4.3b) and the masses are

m(+[m22+4D0 (m 1
—m22)]'/

[(P )O, l, l+1/2]
0

(4 4)

which are now degenerate.
In conclusion, the introduction of short-distance vector

interactions in the confining vector potential does not
modify the qualitative result about the existence of an in-
finite number of light fermions with increasing spins.

V. AXIAL-VECTOR- TYPE INTERACTIONS

The persistence in the spectrum of an infinite number
of light fermions with increasing spins appears to be a
drawback on both phenomenological and theoretical
grounds.

Phenomenologically, quarks and leptons, considered as
bound states of preons, do not seem to exhibit such a
feature. Although quarks, which are themselves confined
and are "observed" only through their bound states, might
escape the phenomenological difficulty if the bound states
made of light high-spin quarks appear, for some dynami-
cal reason, at high-mass scales, the same is not true for
leptons which are directly observed.

Theoretically it is known that massless high-spin parti-
cles do not interact at zero frequencies with the elec-
tromagnetic and gravitational fields by means of
Lorentz-covariant conserved currents. 2 This feature
means that the zero mass (or light mass) limit of a mas-

sive high-spin particle-field theory has rather physically
unstable properties.

It is therefore desirable to search in the present frame-
work for an appropriate mechanism giving masses to the
high-spin light fermions. Such a mechanism should
respect the chiral-invariance properties of the interaction
and act selectively on the light fermions by maintaining
the spin- —,

' fermion light.
It appears that axial-vector-type interactions, con-

sidered in Ref. 1 [Eq. (8.18)], which act as an I.S cou-

phng, possess the required properties, if some additional
conditions are satisfied. These potentials cannot arise in
the ladder approximation of parity-conserving interac-
tions. However, they can arise from a local approxima-
tion of fourth-order irreducible diagrams in vector in-
teractions in the Bethe-Salpeter kernel. ' The correspond-
ing potential has the form

V= —))iy WL/1(r, p )=—
2

y.pWI ~ WisA(r, p ),

(5.1)

where O'L and 8'~~ are the internal orbital angular
momentum and the fermion spin operators, respectively,
defined in Eqs. (2.5) and y„=y„yi.

We now study the effect on the spectrum of the pres-
ence of this type of interaction. For simplicity we shall

ignore the short-range vector interactions. The wave
equation of the fermion becomes

H)%'—= y pi m)+2y C—(r v " r"r v —iver")—2 T

2+ y pWL W]gA '0=0. (5.2)

The new interaction does not affect the ground-state
spin- —,

' fermion. Its wave function and mass are given by
the same expressions as in the initial case:

l'

WOO(1/2)(1/2) I200(1/2) + 0(1/2)(1/2) e p

(5.3)
[(p )0(1/2)(1/2)] m 1 +m22 1/2

The high-spin light fermions are now affected by this
interaction. %e consider the particular case in which A is
constant in r, A =30(p }. Then the solutions are

F2

$01((/2)J (201/I+ l()/2)j( —«')' 'exp (j + —,
'

) I C«' (j =I + —,
'

)

[(p ) ]' =m +()I (p )' A I+[m +2m 1)i (p )' A 1+Ay /I I ]'
(5.4)

A0
0 2 1/2(p )

where Ao is finite (different from zero in the above limit).

(5.5)

In order that the masses remain different from zero
when m~ and m2 go to zero, it is necessary that the po-
tential Aobehaveas(p )

'/ when p ~0:

The spectrum of the light fermions becomes, for A0 in-
dependent of p,

[(P ')o, i,1+1/21'"= m (++~OI

+(m22+2m(X2~01+a'~02I2)'/2 .

(5.6)
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If the order of magnitude of the potential Ao is smaller
than that of the scale of the confining potential C, then
the mass of the spin- —', fimnion (I = I,n =0) will still lie

below the masses of the heavy spin- —,
' fermions

(1=0,n &1; l =l,n)0).
The above mechanism is an illustration of the possibili-

ty of giving masses to the light-high-spin fermions in the
present framework of relativistic quantum mechanics.
There remains to see whether the p dependence of the
potential A as given by Eq. (5.5) can be theoretically justi-
fied. This demands, however, a detailed analysis of the
local approximation of the fourth-order diagram which
led to formula (5.1) (Ref. 1). We shall not examine this
aspect of the question here.

A second type of mechanism giving masses to the
light-high-spin fermions might also exist outside the
present simple framework of relativistic quantum
mechanics. It is possible that nonlocal effects of radiative
corrections of the corresponding quantum field theory
destabilize the spectrum of these particles and provide
them in a natural way with large mass values, leaving
only the spin- —,

' fermion light.

VI. CONCLUDING REMARKS

The present work was devoted, in the framework of
manifestly covariant two-particle relativistic quantum
mechanics, to the study of fermionic bound states pro-
duced by chiral-symmetry-preserving confining interac-
tions. A general property of this class of interactions is
the appearance, in the spectrum, of light fermion bound
states. This result matches the main qualitative feature of
preonic dynamics, as far as the light spin- —,

' fermion
bound state is concerned.

Except for the harmonic-oscillator case, we did not in-
vestigate throughout this work the detailed aspect of the
resulting bound-state spectrum. It requires a particular
choice for the forms of the interaction potentials belong-
ing to the general class of interactions relevant for the
present problem. This would lead to a more quantitative
study of preonic or supersymmetric bound states. This
problem is left for future work.
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