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Relativistic wave equations for the dynamics of two interacting particles
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%'e construct relativistic wave equations describing the dynamics of two interacting particle sys-

tems involving spin-0 bosons and/or spin- 2 fermions. The method consists in quantizing the mani-

festly covariant formalism with constraints of classical relativistic Hamiltonian mechanics. In this

formalism the two-particle wave function satisfies two independent wave equations, which thus

determine in a definite way its relative time evolution. We solve the compatibility condition of the
two wave equations and classify the general classes of interaction potentials according to their tensor
structure. %'e outline the relationship of this framework of relativistic quantum mechanics with the

Bethe-Salpeter equation and its sector of normal solutions.

I. INTRODUCTION

The use of the manifestly covariant formalism with
constraints' in classical relativistic Hamiltonian
mechanics5 "has led to substantial progress in the Ham-
iltonian formulation of relativistic quantum mechan-
ics. ' ' One of the main features of the Hamiltonian
formalism is that it avoids the appearance of unphysical
degrees of freedom. In particular the time component of
the coordinate four-vector of a particle is assigned to play
the role of a parameter and not that of a dynamical vari-
able. On the other hand, the advantage of the constraint
formalism is its property of eliminating the redundant
variables of the theory without breaking, to some extent,
its manifest covariance.

It is then natural to extend this way of constructing rel-

ativistic mechanics to the quantum level. Here a system
of N spin-0 and/or spin- —, particles will be described by

means of a wave function satisfying N independent wave

equations. Each equation is a generalization of the
Klein-Gordon or the Dirac equation, according to the
spin of the constituent particle of the system to which it
refers. These equations are the quantized versions of the
N first-class mass-shell constraints of classical mechanics.
The interaction appears through potentials, which are
functions of the variables of the system. The potentials
have to be chosen so as to satisfy the compatibility condi-
tions of the N wave equations. In general these conditions
also guarantee the realization of the Poincare invariance
of the theory in its Hamiltonian form.

One consequence of the fact that the dynamics of the
N-particle system is described by means of N independent
wave equations is the absence of relative time excitations
from the energy spectrum of the system.

The purpose of the present work is to study, within the
framework of the manifestly covariant formalism with
constraints, the structure of the wave equations describing
the dynamics of relativistic two-particle systems involving
interacting spin-0 and/or spin- —, particles. This is mainly

achieved by solving the compatibility conditions of these
equations and exhibiting the corresponding general classes

of interaction potentials. We also classify the latter ac-
cording to their tensor structure, such as scalar, pseudo-
scalar, vector, etc.

The generality of the results allows one to use these
wave equations, by appropriate choices of the interaction
potentials, for the phenomenological study of a very wide
variety of relativistic two-body problems which can be
met in particle physics. In this respect we present in
separate papers two applications concerning confining
interactions in fermion-antifermion and fermion-boson
systems, having straightforward connections with meson
and quark phenomenology.

The determination of the wave equations describing the
dynamics of relativistic systems represents one part only
of the general attempt to construct a relativistic quantum
mechanics of interacting particles. The formulation of
relativistic quantum mechanics has also to be completed
by the construction of the scalar product of physical
states. Some features of this problem were examined in
Ref. 21 and we intend to present a general analysis of this
question in a separate work. (See also the Appendix. )

A particular drawback of the Hamiltonian approach to
relativistic quantum mechanics has been consisting for a
long time in the lack of explicit connection with field
theory. In this respect the quasipotential approach~i
provides a first basis for such a relationship, by starting
from the Bethe-Salpeter equation and reducing it,
with appropriate hypothesis, to a three-dimensional equa-
tion. Here one uses the Bethe-Salpeter equation in its in-

tegral form for off-mass-shell scattering amplitudes. This
approach, however, seems to be more suitable for scatter-
ing problems, where the basic ingredients are scattering
amplitudes, and where the direct connection with the local
fields of the underlying field theory becomes less transpar-
ent. Wave functions, as well as potentials, are defined
after appropriate analytic continuations are utilized and
Lippmann-Schwinger-type equations introduced.

In this connection a recent result was obtained by the
author, by directly working in configuration space. It
was shown, in the case of two equal-mass spinless parti-
cles, that the inanifestly covariant wave equations of
Hamiltonian relativistic quantum mechanics can be de-
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rived from the Bethe-Salpeter (BS) equation. This is
achieved by transforming the BS equation by algebraic
manipulations so as to separate it into two independent
equations which have the same structure as the wave
equations of relativistic quantum mechanics. The first
equation determines the relative time evolution of the sys-
tem, while the second one yields a three-dimensional
eigenvalue equation. The interaction potential and the
wave function of relativistic quantum mechanics are thus
related in a definite way to the kernel and the wave func-
tion of the BS equation, when the "normal" solutions of
the latter are considered. (The result is actually generaliz-
able to the unequal-mass c;ise, as well as to fermions. }
The relations involve integral operators which can be
evaluated, in principle, in perturbation theory. This result
establishes the necessary link between Hamiltonian rela-
tivistic quantum mechanics and quantum field theory.
We shall present a detailed account of the derivation of
these relations for the cases of fermions and unequal
masses in a separate work.

Because the starting point is the Bethe-Salpeter equa-
tion and the transformations which are introduced are of
algebraic nature, we think that the latter approach and the
quasipotential approach are equivalent, when considered
in their general forms. The advantages of each approach
depend, however, on the framework or the type of prob-
lem which is considered. The connection which we
developed in Ref. 33 seems to us more suitable for the
quantum-mechanical framework, while the quasipotential
approach seems to be more adequate for an S-matrix-type
framework.

When a relativistic instantaneous approximation ' is
made for the {effective) Bethe-Salpeter kernel, taken in its
ladder approximation, then the relationships obtained in
Ref. 33 considerably simplify. In particular one can then
reduce, in an explicit way, the four-dimensional normali-
zation condition of the Bethe-Salpeter wave function to a
three-dimensional one and thus fix the normalization con-
dition of the quantum-mechanical wave function.
Throughout this work we shall mainly present these rela-
tionships with the above approximation, which is suffi-
cient to cover with enough accuracy the physical prob-
lems met at the quantum level.

Finally, the formalism which is presented in this paper
concerns systems of particles the total momentum of
which is assumed to be timelike. The case of massless
bound states necessitates a separate treatment and will be
dMt with elsewhere.

The plan of the paper is as follows. In Sec. II we re-
view the main features of classical relativistic Hamiltoni-
an mechanics, as formulated by the manifestly covariant
formalism with constraints. Section III presents the
method of quantizing a theory of N-particle systems. In
Sec. IV we consider two spin-0 particle systems and also
outline the relationships with field-theoretic quantities. In
Sec. V we display the scalar- and vector-type interactions.
Sections VI and VII deal with spin- —,

' fermion-
antifermion systems and with the classification of the cor-
responding interactions according to their tensor struc-
ture. In Sec. VIII we consider spin- —,

' —spin-0 particle sys-
tems. A summary and concluding remarks follow in Sec.

In the manifestly covariant formalism of classical rela-
tivistic Hamiltonian mechanics, describing an N-spinless-
particle system, one introduces SN canonical coordinates
and momenta x,&,p,& [a =1, . . . ,¹p=0,1,2, 3; we are
using the time-li~ke metric (g„„}=diag(1,—1,—1,—1)]
satisfying the Poisson-brackets relations:

I x,„,xb„J =
Ip,„,pb„I =0 (a, b = 1, . . . , N),

I Pap&XbvI =&~abgpv
(2.1)

( c is the velocity of light; henceforth we shall set c =1).
The set of canonical variables (x,p} define an 8N-

dimensional phase space I'N. Poincare algebra generators
in I"~ are constructed as the sum of the individual parti-
cle contributions:

(2.2)

a=1

The N redundant energy variables p, o are eliminated by
means of N generalized mass-shell constraints, which also
introduce the interaction potentials:

H, =p, —m, —V, =O (a —= 1, . . . ,N), (2.3)

where m, is the free mass of particle a and V, is an in-
teraction potential which is a Poincare-invariant function
in I'~ of the canonical variables. The weak equality sign
= means that the constraints (2.3) should be used only
after the evaluation of the Poisson brackets.

The time parameters of the theory are fixed by impos-
ing the N time constraints:

X, =i), (x,p) —t, =0 (a =1, . . . , N), (2.4)

where the ri's are functions of the canonical variables. In
order that they yield acceptable definitions of time param-
eters, it is necessary that ri, defines a spacelike hypersur-
face in the time-position space of particle a and that its
Poisson brackets with its "conjugate" mass-shell con-
straint H, of {2.3}does not vanish:

IH„X,)+0 (a =1, . . . ,N), {25)

so that the N -dimensional matrix IP,PI (P=H or X) of
the mutual Poisson brackets of the 2N constraints is non-
singular {the time constraints must be independent from
each other}. In the terminology of the constraint formal-
ism the 2N constraints H, of (2.3) and X, of {2.4) form a
set of second-class constraints [because of (2.5) and the
nonsingularity of the matrix I P,P I ].

The 2N constraints (2.3} and (2.4) reduce the SN-

IX. In the &ppendix we briefiy sketch the construction of
the scalar product of the theory.

This paper is a completed version of Orsay Report No.
IP&O/TH 84-46, 1984 (unpublished). The contents of
Secs. 9 and 10 of that report appear as completed ver-
sions, in the following two papers (Ref. 22).

II. CLASSICAL RELATIVISTIC
HAMILTONIAN MECHANICS
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dimensional phase space I ~ to a 6N-dimensional phase

space I z, which constitutes the physical phase space; the

dynamics of the system is described within this phase
space. The Poincare invariance of the theory is formulat-
ed and realized in I ~, that is by taking into account the
constraints. This is usually done by means of the Dirac
brackets, ' ' which are modified Poisson brackets
preserving the constraints. It can be shown' that the
necessary and sufficient condition to realize the Poincare
algebra with the Dirac brackets is that the mass-shall con-
straints (2.3} be first class among themselves, that is, that
their Poisson brackets vanish:

[H„Hs ] =0 (a,b = 1, . . . , &) . (2 6)

These equations impose restrictions on the potentials
V, which must be solutions of them. Furthermore the
first-class nature of the mass-shell constraints H, is an in-
dication that the time constraints (2.4} can be chosen arbi-
trarily' '6' 5 [within the general conditions outlined after
Eq. (2.4)]. The physical properties of the system should
not depend upon this choice. This freedom in the choice
of the time parameters of the theory is usually called
"time gauge invariance. "

In the two-particle case the problem simplifies consid-
erably, because Eqs. (2.6) reduce to a single one:

[Hi,H2I =0 . (2.7)

H) —=p) —m) —V=O,2 2

H2=—p2 ™2—V=O,2 2
(2.9}

which also means that (pi —p2 ) is not modified by the
interaction:

p) —p2 -ltd) —m22 2 2 2 (2.10)

It is therefore sufficient, to find the general expressions of
the interaction potentials Vi and V2, to solve Eq. (2.7) for
the cases (2.8) and (2.9) and then to apply on the mass-

shell constraints (2.9) arbitrary I 2 Poincare-invariant
canonical transformations. Configuration (2.9) is however

the simplest one and in the following we shall always use

potentials satisfying condition (2.10).
We now search for solutions of Eq. (2.7). [General

classes of solutions of Eqs. (2.6) in the N-particle case,
satisfying furthermore the separability or the cluster
decomposition condition, have been given in Ref. 13.] We

shall consider this equation in the strong form, the right-
hand side being exactly zero and not involving linear com-
binations of H, . (This restriction arises in classical
mechanics when searching for the position variables of

One of the two potentials Vi and V2 will then remain
completely arbitrary (but Poincare invariant). One can
however simplify the problem a little more. It can be
shown (see Ref. 13, Appendix A) that by I'i Poincare-
invariant canonical transformations the two mass-shell
constraints (2.3) can be brought into a form where the two
potentials V~ and V2 are equal:

(2.8)

The constraints H, then become

the particles: each mass-shell constraint H, plays the role
of the generator of an independent time displacement—
usually a generalized proper time. See Ref. 13, Sec. 3.1.1.)

Equation (2.7) can be written as

I pi' —p2' VI =o

We introduce the following (vector) notations:

1

p =pi+p2 u =T(pi —pi), I=mi+m2
1X=—,(xi+xi}, x =xi —xz,
T—r~ =—x~ =x~ —(p'x)p~,

x =r =x —(p.x)

x~ =(p x)pp, XL =p'x

p„p„/(p )'~' (p'») .

(2.11}

(2.12)

Yp Yq ———( Y p)pq, Yq ——( Y p)p~,

Fg ——'Y p.
Equation (2.11) becomes

[p u, VI =0.

(2.13)

(2.14)

Since V is Poincare invariant (hence independent of X),
this means that it can only depend upon the transverse
component r of x and eventually upon p and u:

V= V(r, r u,p, u,p u) . (2.15)

It is a general feature of relativistic mechanics that the
potentials do not appear as functions of only the relative
coordinates x and the relative momenta U. Ignoring expli-
cit dependences of V on the total and relative momenta,
one is still left with an implicit dependence upon p
through the vector r. It is only in the c.m. frame that r
reduces to the momentum-independent vector (O,x). For
stationary systems, which have a given value of total
momentum p, the latter will be a constant of the motion
and its appearance in r will have a kinematic role only. In
general one can work covariantly by decomposing all vec-
tors along transverse and longitudinal components as in

Eqs. (2.13).
The potential V can also exhibit, as shown in Eq. (2.15),

an explicit dependence on p . This can arise either from a
dependence of the coupling constants on p, or from
dimensional requirements. The dependence of V upon p. u

can be ignored altogether, since the latter can be elim-
inated by means of the constraint (2.10)
[p.u=(m, —mz }/2]. Finally the dependences upon r u

and u2 arise when nonlocal effects are ignored or suitably
approximated by local functions, from the tensor struc-
ture of the interaction (vector, tensor, etc.) and appear
through polynomials.

In order that V yield a finite contribution in the nonre-
lativistic limit, it must have a maximal c dependence (c
is the velocity of light} of degree one. In the limit c~ ao,
the Poincare invariance of the system reduces to the
Galileli invariance.

For a vector Y we shall often introduce its transverse and

longitudinal parts with respect to the total momentum p:
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[pap, xbv] =i Ac5a gpv (3.1)

(Henceforth we shall set c = l. }
One then introduces a covariant wave function

%(xi, . . . , x~} on which the operators x, act multiplica-
tively and p, as t'A'8/Bx, . Under the action of the Poin-
care group, generated by the operators (2.2), the wave
function 4 transforms covariantly:

e(x„.. . ,x„)~e(A-'x, —a, . . . , A-'x„—a} . (3.2)

According to Dirac's approach to the quantization
problem, ' the first-class constraints of the classical theory
are transformed into wave equations. Equations (2.3}then
become

H, %= ( fr 8, —m—, V,—)%'=0—(a =1, . . . , N) . (33)

(We shall often use in place of the derivation operators

ikey,

the corresponding momentum operators p, . ) The
potentials V, must of course be appropriately sym-
metrized or ordered with respect to their momentum and
coordinate dependences. On the other hand, time-reversal
invariance demands that every odd expression of the coor-
dinates x in H, be accompanied by an i factor.

Equations (2.6), which characterize the first-class na-
ture of the constraints H„are now transformed into com-
patibility (or integrability) conditions of the wave equa-
tions (3.3):

[H„Hb]4=0 (a, b =1, . . . , N), (3.4)

where the weak equality sign means that the commutator
of two H's may yield linear combinations of the H's
themselves (appearing on the right of the corresponding
expressions), which, on account of Eqs. (3.3), give zero.

The N time parameters of the theory are introduced by
constraints of the type (2.4):

g, —=g, (x, ) t, =0 (a =1, . . . , N), — {3.5)

where rl, defines a spacelike hypersurface in the four-
dimensional space of x, . Notice that the definition of g,
here is more restricted than in classical mechanics —Eq.
(2.4)—where iI, may also depend on the momenta and de-
fine generalized proper times. The fact that the momenta

p, are noir derivatives excludes such choices in quantum
mechanics, where proper times cannot be defined in a

The study of classical mechanics is pursued with the
construction of the observables of the system which are
essentially the position variables of the particles. Howev-
er this aspect of the problem is less relevant for the quant-
ization of the theory, where world lines do not play any
fundamental role, and we shall therefore not insist on this
point any longer. (The position variables are constructed
in Refs. 7, 13, and 37.)

III. QUANTIZATION

In order to quantize the classical S-particle system con-
sidered in Sec. II in a manifestly covariant form, one be-
gins by replacing the dynamical variables with operators
and the Poisson brackets with commutators divided by iR.
For instance, the third Poisson brackets in Eq. (2.1) be-
comes

(a fixed) . (3.6)

The global evolution of 4 with respect to a common
time t is studied by taking the surfaces rl„. . . , rtz of the
same form rl, and t». . . , tN equal:

i)i(z) =i)z(z) = =i)~(z}=rl(z},
(3.7)

N ax,i' ql= g— p %.
Bt i Br/

(3 &)

The simplest choice for rl in this case would correspond
to hyperplanes defined by a constant timelike unit vector

rl, =n.x, {a=1, . . . , E), n =1 . (3.9)

In quantum mechanics the physical phase space I' of
classical mechanics is replaced by a physical Hilbert space

, spanned by those wave functions which (i) satisfy the
constraints (3.3) and (3.5), (ii) have a positive finite norm
(also extended to Dirac's distributional sense), and (iii)
have a positive mean value for the total energy operator
Po and, in the two-particle case, positive eigenvalues for
each of the longitudinal moinenta p.p, (a =1,2); in the
N-particle case (N & 2) the last condition is substituted by
the positivity of the eigenvalues of generalized longitudi-
nal momenta p.p,

' (a =1, . . . , Ã), to be specified below.
Condition (iii) is a consequence of the individual nature

of each constituent of the N-particle system and is a co-
variant generalization of a similar condition adopted in
one-particle relativistic quantum mechanics. %e should
emphasize at this point that, in the presence of interac-
tions, the individual momenta p, do not transform as
four-vectors under Lorentz transformations. This can be
checked even at the classical level with the Dirac brackets.
This means that the operators p, do not define Lorentz-
invariant quantities and cannot be assigned, in general, de-

kinematic way as parameters.
As in classical mechanics the physical properties of the

quantized system should not depend on the particular
choices of the time parameters (3.5) of the theory. This
would be ensured by the existence in the Hilbert space of
states of Poincare-invariant scalar products constructed
from tensor currents of rank N satisfying N conservation

laws under the action of the operators 8, ', . . . , g~",
respectively. ' [We shall show in a separate work that the
realization of the compatibility conditions (3.4) ensures at
the same time the existence of such currents. ]

In order to give a probabilistic meaning to the wave
function one has to interpret t, in (3.5) as the "observa-
tion" time of particle a at the "position" x, (the terms
"observation, " "particle, " and "position" being used here
in a heuristic sense). The partial derivative of the wave
function with respect to t, is given by the action of the
operator [(Bx,)/(Brl, )] p„where (Bx, )/(Brt, ) is obtained
after expressing x," with respect to t, and three other
variables parametrizing the surface rl, :

Bxgi' %(xi, . . . ,x~)= p, %(xi, . . . , x~)
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i lL lL &2L 2L
q( r)

Equations (3.3) can then be written as

(P,L
—m, +u —V)f =0,2 2 T2

T2
(pzL —mi2+u —V)/=0 .

(3.10)

(3.11a)

(3.11b)

Let us suppose for simplicity that the potential V does
not depend, in the c.m. frame, upon the momentum
operators pir, pzL, P . Then if for an appropriate choice
of the shape of V, the operator —( u

r —V) has a positive
eigenvalue A, , Eqs. (3.11) lead to the eigenvalues of pir
and p2L

piL =mi +A,2

piL =m2 +A,2

(3.12a)

(3.12b)

which in turn lead to four kinds of eigenvalues for the set
(piL, pzL, ):

pii ——+(mi +A, )

p2I ——+(mi +A, )'i (3.13)

The physical Hilbert space A ' is chosen as correspond-
ing to the positive solutions of each p, i and P2L. This
also ensures the positivity of (p )' and contributes, in
the spin-0 case, to the positivity of the norm. (See the
Appendix. )

If V depends on P,L, and P2L, , then Eqs. (3.12) take the
form

p 11.™i +~ (p 1L P2L )
2 2 2

S»i =m2'+~'(pii P2L) .2

(3.14a)

(3.14b)

We assume that the physically acceptable potentials are
those which again lead to two real solutions with opposite
signs in each p&L and p2L.

piI. =+
I
~i+

I
P2c=+ I ~2+ I * (3.15)

with the physical Hilbert space A corresponding to the
subspace of solutions with positive signs. [Notice that the
eigenvalues (3.15) are related by the relation

2 2 2 2 1
P&I. —P2I. =~] —~2 -3

We can generalize these features to the X-particle ease
(N & 2). Here, it may happen that the X-particle system
is composed of several noninteracting subsystems. In this
case we have to treat each subsystem independently from
the others. Therefore, without loss of generality, we can

finite signs. In order to remedy this difficulty we have to
define or construct individual Lorentz-invariant "energy"
operators, the signs of the mean values of which could
classify the space of solutions of Eqs. (3.3) into definite
subsp aces.

In the two-particle case these operators are manifestly
provided by the longitudinal momentum operators
p.p~=p, L (a =1,2). Since in this case the potential V
[see (2.15)] is independent of the longitudinal coordinate
variables, then piL, and pzL commute with the wave equa-
tion operators Hi and Hz and hence are Lorentz invari-
ant quantities. Furthermore the wave function can be
considered as an eigenfunction of both piL and pzL

..

consider the case where the N-particle system does not
contain noninteracting subsystems and is characterized by
a total momentum p. Here, however, the problem is more
complicated, because in general the potentials exhibit
dependences on the longitudinal relative coordinates,
mostly when cluster decomposition requirements are im-
posed. ' In this case the p p, 's no longer commute with
the first-class constraints Hs and are not Lorentz-
invariant quantities (in the sense of the Dirac-brackets
formalism or the "star" formalism, see below), neither can
they be treated as eigenvalues.

To solve this difficulty we have to construct generalized
longitudinal momentum operators p p,

' (a =1, . . . , X),
which commute with the H's and among themselves, i.e.,
satisfy the equations

[p p,',Hb]=0 (a, b =I, . . . , N), (3.16)

[p p.' p ps] =0 (a,b = I, . . . ,&), (3.17)

and thus define Lorentz-invariant quantities. Equations
(3.16) and (3.17) define quasihnear partial differential
equations, which have solutions, because they are compa-
tible among themselves. The latter fact can be verified by
taking the commutators of Eqs. (3.16) and (3.17) with H,
and p p,

' (e = 1, . . . , N), using Jacobi identity and also as-
suming Eqs. (3.4) and of course (3.16) and (3.17). p p,

'

can be searched for in the form

p p.'=p p. +p p. (a =1, . . . , X), (3.18)

where p, & are functions of the relative coordinates and of
the momenta of the particles of the system appearing
through terms depending on the interaction potentials.
The Cauchy conditions of the differential equations (3.16)
and (3.17) should be chosen such that when the total in-
teraction is removed then each p p,

' reduces to p p, . (The
latter condition could even be refined by imposing cluster
decomposition requirements. '

) p p,
' should also satisfy

the obvious relation

N

g p pa=p (3.19)

which could be trivially realized by considering it as the
defining relation of one of the p pi", s.

One consequence of Eqs. (3.16) and (3.17) is that the
wave function 4 can be simultaneously considered as an
eigenfunction of each p p,

' and that the latter ean be
treated as an eigenvalue, as in the two-particle case for
P p i and O'p2 ~

%e assume that the physically acceptable potentials are
those which lead for each p.p,

' to two real eigenvalues
with opposite signs, thus splitting the space of solutions of
Eqs. (3.3) into 2 subspaces. The physical Hilbert space~ will correspond to the subspace where a11 eigenvalues
p-p have positive signs.

Notice that, as in the two-particle case of Eqs. (3.14),
the eigenvalues of p.p,

' will not be independent from each
other, and actually will be characterized by a single eigen-
value, essentially determining the eigenvalue of p . This
is a consequence of the compatibility conditions that Eqs.
(3.3) have to satisfy. In other words, if the eigenvalue
equation of p is solved, then all the eigenvalues of the in-
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dividual "energy" operators p.p,
' (a =1, . . . , N) will be

fixed through Eqs. (3.3). These do not leave any freedom
for relative energy excitations.

The Poincare invariance of the theory in presence of the
constraints is realized by means of the "star" operators,
the classical analo~s of which were introduced by Berg-
mann and Komar. A star operator A is a redefinition
of an operator A by means of appropriate Lagrange mul-

tiphers such that it preserves the constraints when gen-
erating canonical transformations with commutators. In
classical mechanics a star variable has the following ex-

pression:

A'=A —g (A, P„JC P, ,
r, s

(3.20)

I
A', P, ) =0. (3.22)

In classical mechanics the use of a star variable acting
with Poisson brackets is equivalent to that of an ordinary
variable acting with Dirac brackets. ' ' ' In quantum
mechanics, however, the quantized version of the Dirac
brackets with arbitrary operators (in order to preserve
manifest covariance) does not satisfy the product law and
therefore the use of star operators acting with ordinary
commutators seems to be necessary. The quantized ver-
sion of an arbitrary star operator is more complicated
than its classical analog (3.20), because one has to ensure
that products and commutators of star operators are also
starred and that products of second-class constraints are
unambiguously defined. In general it will involve an in-
finite series of products of the constraints. We shall re-
turn to this general question in a separate work, but we
note here that for our present purpose, that is for the
canonical realization of the Poincare algebra, these com-
plications do not arise, as we show below.

In the present case the constraints P are composed of N
mass-shell constraints H„of the type (3.3), and of N time
constraints X„of the type (3.5). The (2N} -dimensional
operator matrix [P,P] reduces to its off-diagonal subma-
trices [H,X] and [X,H], because [H„Hb] =0 and

[X„Xs]=0 (the X's are independent of the momenta).
Furthermore since the H s are manifestly Poincare invari-
ant, then [P„,H)=[M„„,H]=0 and the star Poincare
group generators take the form

A,' =A, —Q [A„,X,]C,st (r =1, . . . , 10), (3.23)
a, b =1

where A, designates one of the operators I'& and M&„
[given by Eqs. (2.2)] and C is the inverse of the operator
inatrix [H,g) (we are assuming that the difficulties of the

where the P's form a set of an even number of second-
class constraints, such as (2.3) and (2.4), and C is the in-

verse of the matrix IP,PI. The starred version of a con-
straint P, is identically zero:

(3.21)

This means that the physical degrees of freedom of the
theory are correctly accounted for. The Poisson brackets
of a star variable A' with any of the constraints P, is
weakly zero:

and under the action of the star Poincare group genera-
tors, ql still transforms eovariantly [as in (3.2)].

The physical interpretation of these results is the fol-
lowing. Let

~

4'(t&, . . . , tz)) be a state belonging to A
considered at the observation times (ti, . . . , rz) of parti-
cles {1,. . . , N), respectively, in a reference frame S. In
the relativistic Schrodinger picture the star operators P&
and Mp. generate canonicd transfo~ations (unitary if m
appropriate scdar pr~uct is constmct~), ms~iat~ with
changes of reference frames, which transform

~
%{ti, . . . , tN}} into

I
+ (ti, . . . , tz)} representing the

state in the transformed reference frame S' at times
(r„.. . , rz) therein. The observation times are the same
in both reference frames because by construction the
canonical transformations generated by star operators
leave invariant the time constraints (this is necessary to
give a unified physical interpretation to canonical realiza-
tions of relativity groups). Also notice that time evolu-
tions are taken into account as changes of reference
frames (global time displacements of the latter). (See Ref.
6, Chap. 16.)

The procedure developed above for constructing quan-
tized systems of interacting spinless particles is also appl-
icable to systems involving spin- —, particles. The modifi-
cations concern the expressions of the various quantities
we have met, but not the method itself. Thus the wave
function qI becomes now a spinor, the Lorentz group gen-
erators M„„of(2.2} contain in addition spin matrices, and
some of the mass-shell constraints H, represent generali-
zations of the Dirac equation rather than that of the
Klein-Gordon equation.

In the remaining part of this work we shall concentrate
on two-particle systems and examine more explicitly the
corresponding wave equations.

IV. TWO SPIN-0 BOSON SYSTEMS:
CONNECTION VGTH FIELD THEORY

For two spinless particle systems, the wave equations
(3.3) become, after taking into account the particular
choice of (2.8) and (2.9)

H, +=(p, m, V}4=0 (a—=1,2—) . (4.1)

The potential V is, as in Eq. (2.15), a Poincare-invariant
function of r, U, and p, defined in Eqs. (2.12). Since p and
x commute, the operator r is well defined. (If 4 is an
eigenfunction of the operator p, one simply replaces the
latter in r by its eigenvalue. Unless specified otherwise,
we shall not distinguish between both notations. ) If V de-
pends on the relative momentum U, one has to symmetrize
or order its expression with respect to r and u in such a
way that the eigenvalues of p2 come out to be real, if no

evaluation of C have been overcome).
It can easily be checked that the star operators (3.23)

satisfy (weakly) the Poincare algebra in the physical Hil-
bert space A (i.e., when applied on wave functions satis-
fying the constraint equations). If %(x&, . . . ,x~) is a
wave function belonging to 4 then also

(3.24)
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other reason forbids this result. On the other hand, time-

reversal invariance demands that every odd expression of
r in V be accompanied by a factor i

One can check that the compatibility condition (3.4} is
satisfied in its quantized version, with V given by Eq.
(2.15), in the strong sense:

[H),H2]=[p U, Vj=0. (4.2)

We now examine the implications of the two equations
(4.1} on the wave functions. Specializing to the case of
eigenfunctions of the total momentum p and taking the
difference of the two equations (4.1},we get

p UV= —'(mi —mz ))II (4.3)

This equation determines the dependence of the wave
function on the longitudinal component xL, of x (which is
essentially the relative time variable). The solution is

q ( )
(p.X —l(m)i —Nlyi)p Z/(2@i)

(
7 (4.4)

+()r —V f(x )=0, (4.5)

which is a three-dimensional Schrodinger-type equation.
For V chosen of first order in c (c is the velocity of
»ght), Eq. (4.5) reduces, in the nonrelativistic limit, to a
Galilei-invariant Schrodinger equation.

The wave equations (4.1) can also be generalized to in-
clude nonlocal potentials (in x r) without altering any of
the results obtained so far. Such equations have the form

and P(x ) defines an "internal" wave function.
Taking the sum of the two equations (4.1), one gets the

"eigenvalue" equation:

—,p ——,(m, +m2 )+ 2 (mi —mg )
1 2 22

4p 2

(p, —m, )%(X,x)= I V(x,x',p)%(X,xr, x'T)

Xd x' (a =1,2), (4.6)

where Vis a Poincare-invariant function of its arguments,
may depend on p and also act as a derivative operator in
the relative (transverse) coordinates, and x' is defined as
the transverse part of x' with respect to p, with xL ——xL.
The function (I( has the same dependence on the longitudi-
nal variable xL as in Eq. (4.4) and one ends up with a
three-dimensional nonlocal Schrodinger-type equation.

The potential V appearing in Eqs. (4.1) or (4.6) is arbi-
trary in form and has to be chosen according to the physi-
cal problem which is dealt with.

Equations (4.6} are the most general Poincare-invariant
wave equations satisfying the compatibility condition (4.2)
(up to Poincare-invariant canonical transformations).
Therefore one has to expect that any other Poincare-
invariant description of a two spin-0 particle system, hav-
ing a nonrelativistic Galilei-invariant limit, is equivalent,
by means of some nonsingular transformation, to that ob-
tained with Eqs. (4.6). It appears that this is actually the
case for the Bethe-Salpeter equation. It was shown in
Ref. 33 that by algebraic transformations the BS equation
can be brought into the form of Eqs. (4.6) for the sector of
solutions of the former which have nonrelativistic limits
(the so-called "normal" solutions), thus establishing a de-
finite connection between the present framework of rela-
tivistic quantum mechanics and quantum field theory.

The relationships between the quantum-mechanical
wave function )p and potential V on the one hand and the
BS wave function 4 and kernel D on the other involve an
iteration series in terms of the latter through integral
operators. If specific approximations are utilized the
above relations may still be simplified. In particular, in
the ladder approximation they reduce to the following two
coupled equations (for the equal-mass case m) ——m2 ——m):

—1 (b —0) I ZL —Zi I
I (b +a) I ZL, -Zi

(I((X,x)=4(X,x)+ 2, /2 dxLD(xL, ,x,p),p2) (e +e
4(~2))/2 &+a

i(b —a) IzL —zL I
—

1} @(X, T}
($2 u 2)

(4.7)

T'2

4
+1) —m %(X,x)=— T

2(p )
I dxr D (xrytx ypi ypi ,)4 (Xyxi &xT) (4.8)

where

1 {p2)1/2 I ( 2 UT2)1/2 {4.9)

tegral in Eq. (4.8), thus giving, by comparison with Eqs.
(4.6), the relationship between V and D To lowest ord. er
in perturbation theory one has

and (II satisfies, by construction, Eq. (4.3) for mi ——m2.
The momentum dependences of the kernel D here may
arise either from the couplings of the mediating field with
the external particles or from an effective dependence of
the coupling constants on p .

In perturbation theory relation {4.7) can be inverted and
@ expressed in terms of %' and then replaced in the in-

(4.10a)

V(x,p),p2)=—,dxL D(xr,x,p(,p2),T
2(+2)1/2

(4.10b)

which is nothing but the covariant form of the usual in-
stantaneous approximation of the kernel D.
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The contributions of the higher-order terms in the in-

tegral relations (4.7) and (4.8) can be taken into account in
an approximate but compact form if one uses an ap-
propriate approximation for the action of the kernel D.
This consists in replacing the kernel D in both integrals
(4.7) and (4.8) by its relativistic instantenous approxima-
tion concentrated on the hyperplane xL ——0; that is, by
making the following replacement:

D(XL, ,x,pi,p2)~5(XL, ) f dxl D(xl,x,pi,p2) . (4.11)

The relativistic instantaneous approximation (4.11) is
also close in spirit to the method introduced by Blanken-
becler and Sugar2~ in the framework of the quasipotential
approach to reduce the BS equation to a three-
dimensional one. Here one subtracts from and adds to the
kernel E of the BS equation, written in its integral form,
another kernel E, appropriately chosen, such that E, rath-
er than E, serves as the starting point to the physical cal-
culations and reduces at the same time the integral equa-
tion to a three-dimensional one. [Although, in our case, 3

the three-dimensional reduction has been obtained in-
dependently of approximation (4.11).] The rest of the ker-
nel, E-rt. , is then treated as a perturbation in an iteration
series. (See also a discussion on this matter in Ref. 29.)

When approximation (4.11) is used, then Eqs. (4.7) and
(4.8) can be completely solved for 4 and V in terms of ip

and D, respectively. One gets

4(X,X)=e '&' P(x) . (4.12b)

Equation (4.13) shows that the potential V is still non-
local in x . Similarly Eq. (4.12) yields, on the hyperplane
xl ——0,

(p2)1/2
P(XL ——Ox )= P(x ),

2(m' —u T')'" (4.14)

(
2 uT2) —1/2 (m ( T ))—/

One thus gets the approximate relations

T l

4(m —(u ) )'/2

(4.15)

X XLD XI,X,p),p2 (4.16)

(p 2)1/2
P(XL ——O,x )= f(x r) .

2( 2 („T ))1/2
(4.17}

which is also a nonlocal relation in x .
In order to get a local expression for the potential V in

the variables x, it is necessary to approximate the opera-
T —1/2tor (m —v )

'
by some local function. The simplest

choice is to replace the operator v by its mean value in
the state ql or even by a common constant value for all
the states 1p:

P(x) = [(b +a)e
2b

V= — xLD xL ~g,p)~p2
(m 2

u
T2)1/2

(4.12a)

(4.13)

Relation (4.12) may also be used to fix the normaliza-
tion condition of the wave function P, given that of the
BS wave function P. It is known that the latter is normal-
ized through a four-dimensional integration. 22 The use of
relations (4.11) and (4.12) permits us to evaluate the XL,

integration and to transform the four-dimensional integral
into a three-dimensional one. The result in the c.m. frame
ls

f d x id("(x},p(x )+if'(XT)
4(m —u )'/2

p
2

4(m —vT }

' 1/2

dp 4(m —u )

1/2

P(x ) =1, (4.18)

where

D(x,pi,p2)= f dxl D(xl, x ppiyp2) ~ (4.19)

If the BS kernel D d~ not explicitly depend on p2 then
the second term in (4.18) will be absent.

Relations of the type (4.7)—(4.18) may also be obtained
in the unequal-mass case. We shall present a detailed
derivation of the general results in a separate work.

To conclude, we summarize the three successive ap-
proximations which lead from the BS kernel to a local po-
tential (in x ) in quantum mechanics. These are (i) the
ladder approximation of the BS kernel, (ii) the relativistic
instantaneous approximation (4.11) of the kernel, and (iii)

the mean value approximation (4.15) (or an equivalent
T2 —1/2one) of the nonlocal operator (m —u )

V= V(r,p2) . (5.1)

For vector interactions p& and pz appear linearly at the
vertices and to lowest order of the coupling constants we
have

V. SCALAR AND VECTOR INTERACTIONS

The connection established for the potential V with
field-theoretic quantities allows us to examine its tensor
structure in more detail. We shall concentrate here on the
local approximation of V, where the latter is not an in-
tegral operator in x r. In this case the dependence of V on
the relative momentum u can only arise from the vertices
of the mediating field with particles 1 and 2. (We assume
that the coupling constants g, as well as effective approxi-
mations of the kernel could exhibit complicated p2 depen-
dences. )

For scalar interactions the momenta p~ and p2 do not
appear at the vertices and therefore we have
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V=[pi [pz, C,.(r p)l+l+ (5.2)

([, ]+ is the anticommutator), where C&„represents the
relativistic instantaneous approximation (4.11}of a (effec-
tive) propagator of a vector field, and satisfies the proper-
ties

A&p=[pz Cp ]++[pi»p l+
=

p [u iApvl++ zp Bpv i

Azl =[pi C„.l++[pz»„.l+
z [u ~Apvl++ pp Bpv ~

(5.5)

C„„(r,p)=C„p(r,p)=Cp ( —r,p) . (5.3)

To first order in C, the term (S.2) could also arise from
a minimal substitution, in the free equations, of the type

pii ~pIp=pii —Ai„—=pi„—[pz, C„]p,
p'zi pzi pzi —Azi =—pz„[p i, C—„.l+ (5.4}

This observation allows us to generalize the form of the
interaction (5.2) by including higher-order terms in such a
way that the total interaction stiB arises by minimal sub-
stitutions of the type (5.4}, but with more general expres-
sions, and that the compatibility condition (4.2) and (4.3)
still be satisfied.

To this aim we take, for A,„,

and demanding that the constraint (4.3) be satisfied, that
is, that

(pi —pz')4=(pi' —pzz)4=(m, ' —mzz)e, (S.7)

which guarantees the validity of the compatibility condi-
tion (4.2), one gets the condition

(A~„+B~„—A~8~~)p&=0 . (5.8)

Equations (5.6) then become

where the function D does not contain first-order effects
in the coupling constant g when Coo&0 and in the last
expressions we have expressed pi and pz in terms of u and
p [Eq. (2.12)], and C and D by linear combinations of A
and 8.

Replacing now p ) =—p] —A ) and p2 =—p2 —A2 in

(p,
' —m, }4=0 (a =1,2), (5.6)

(p& —mi )4=(pz —mz )ql

m —m
—,'pz ——,'(mi +mz )+ z +u —,'B„„p"p—" 2A&„u—"u"+ ,'B~ 8"~p p~—

+ A~A
"~u u~ ,' (g„„——A„„)[—u",[u,A" ]] [u, (2—g& A„)A""]u—

+ ,' [u",A„„][—u,A" ] 4=0 . (5.9)

We can analyze more explicitly Eqs. (5.8) and (5.9) by specifying the tensor structure of the propagator functions A
and B. We shall consider three different cases.

Case a:

Aq„g~„A(r,p ), ——8»„gal+(r,p ——)
2 2 2 2

(analogous to the Feynman gauge).
Condition (5.8) and Eq. (5.9) become, respectively,

(5.10)

(5.11)

m —m

4p
2

—,(1—8) p —z(m& +mz )+(1—A) +(1—A) u + (1—A)(6A+4r A)

4iiri(1 A—)Ar u Ar A —4=0, —(5.12)

where we have used the notation

~ 9V
(5.13)

Case 1:

Ap„=(gq„p~p„)A (r—,p ), B~„(gp„p~p„)B(r zp z——)—
(analogous to the temporal gauge).

In this case condition (5.8} is identically satisfied, and Eq. (5.9) becomes

(5.14)
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2 22(mi m2 )
—,p ——,(m, +m, )+

4p
2

Case c:

+(1—A) u + (1—A)(6A+4r A) —4iR(1 A—)Ar. u —fear A q1=0 .
2

(5.15)

pr r
2 2 A

Apv= gag» Pppv 2
A (r tP )~ Bflv= gpv Pypv

I

I'~I"~P» B(r2p2)
2

(5.16)

(analogous to the temporal gauge with the additional condition r"A„„=r"B&„0.——
Condition (5.8) is identically satisfied and Eq. (5.9) becomes

(pn 2 m 2~2 2
2 & 2 2 ' ' T

—,p ——,(m, +m2 )+ +u —(2A —A ) (r u r—r~u uff 2Ã—r u) — (A —A )—2& A2 & 2T& n TT 2 2'
4p 2 2 f 2

(S.17}

On introducing the internal angular momentum of the system by means of the Pauli-Lubanski vector

W~
——,'eq~—pP"M ~ (eoi22 ——+1),

which reduces in the two spin-0 particle case to the relative orbital angular momentum

W„=Wf,„=e„~ffp "r u
v a P

Wf —— p(r u —rr~u u—If 2ikr u)—,

Eq. (5.17) takes the form

(5.18)

(5.19)

2 22(mi —m2 )
—,p ——,(mi +m2 )+

4~ 2

2

+u +(2A —A 2) —— (A —A 2) —2R A 0'=0 .
2p2 f2

(5.20)

p2

~pv gpv~ P ~ lPv
( 2)2

(analogous to the Landau gauge) and

A~» = g~v + B~B» A
1

m2 ""

(5.21)

(analogous to the propagator of a vector particle with
mass m).

YI. SPIN- —' FERMION-ANTIFERMION SYSTEMS

In this section and the following one we study two-
particle systems involving spin- —,

' particles. %e shall con-
centrate on fermion-antifermion systems, but two-fermion
systems can also be treated in an analogous way.

Fermiomc systems do not have simple classical analogs
and therefore we have to construct from the start quan-

In all the above equations the relative-time (xL ) depen-
dence of the wave function ql is given by (4.4) because of
the "relative" wave equations (4.3) and (5.7). Equations
(5.9), (5.12}, (5.15), and (5.20) represent the eigenvalue
equation (4.5) where the potential V has been replaced by
a more detailed expression taking into account its relative
momentum dependence in the vector interaction case.
They are most useful when one uses effective expressions
for the interaction but maintains its definite tensor prop-
erties.

Other interesting expressions for the propagator func-
tions A (B) are

I

tized systems and wave equations. In this respect, within
the quantization framework defined in Sec. III, the results
already obtained for two spin-0 boson systems may serve
as a guideline for our investigation.

Let us consider a system composed of a fermion with
mass m i and an antifermion with mass m2. The covari-
ant wave function of the system is now a 16-component
spinor of rank two:

O'='P«(xi, x2) (ai, a2 ——1, . . . , 4), (6.1)

where ai (a2) refers to the spinor index of particle 1 (2).
In the fro: case the wave function can be expressed in
terms of the individual wave functions

%.',".,(x, ,x2) =%,
,
(x, )0 ~,(x2),

and satisfies the two free wave equations

ill free
(

~

g )@free 0
@(free qlfree(i y .g +m )

(6.2)

(6.3a}

(6.3b)

which are the analogs, in the free case, of Eqs. (3.3). The
y, matrix acts on the left-side index ai and y2 acts on the
right-side index a2, and thus they commute.

The wave function ip can be covariantly decomposed on
the basis of the Dirac y matrices:

O'= Sl+ V„y"+T„„a""+A„y"y+I'y (6.4)

where S, V, T, A, P are functions. It can also be represented
in terms of (2X2) matrices involving (2X2) subinatrices.
To this end we use the following representation of the y
matrices:



REI.ATIVISTIC WAVE EqUATIONS FOR THE DYNAMICS OF. . . 3411

1 0
YO —0 1 —g; 0

(6.5)
(6.12)

0 1

ys=, 0, rs= ~, pr r r r (e0123p v a P
4f

The wave function can then be represented in the form

r

++- +++
4+ (6.6)

%(xl,xz)~'K(x l,xz) =C%'(xz, x 1 )C

CHIC '= —rI'

( t is the transpose}. The parity operation gives

4'(xl, xz)~% (xl,xz}

ylOP(x 1& xl~xz» xz)3 20 '0 0

(6.7)

(6.8)

In order to simplify the notation, we shall adopt the fol-
lowing convention. The matrices yl&, ol& y», which act
on %' from the left (on the left-side index) will be written
without the index 1:

y~+ =y l~+, Cr—q„+=O 1q„%',

1
rs+ —rlsp rp rays ap — . [3 p r ]

2l

(6.9)

The matrices yz„,az„yzs which act on lp from the right
(on the right-side index) will be represented by matrices

r}„,g„r}5written on the left of llr:

rir q'= 'przr —riprI 'p= q'rz. rzr—

0„,q'=—+az~ rlsp='przs

rI„q'=

ri„esp�=�'pr

—zsr 21

1

2l

(6.10)

The matrices g commute with the previous y matrices
(6.9) and they satisfy the same algebra as the latter. With
these notations, Eqs. (6.3) become

H 4"'=(y.p rn )4' =0-

H +r"'—=(g.p +rn pP
' =0

(6.11a)

(6.11b}

The generators of the Poincare group in the space of
the covariant wave functions are given by formulas analo-

gous to (2.2), with the spin operators being incorporated in

Mp„.

where each lIr (r,s =+ or —} inside the matrix is itself a
(2X2} matrix. The indices, +,—refer to the kind of
behavior in the nonrelativistic limit. In this limit it is the
component 'P++ which survives, while 4+, lP +, and

behave as c ', c ', and c, respectively.
We shall need below to know the behavior of the wave

function under charge conjugation. For charge symmetric
systems ( rn 1

——rn2), we have

H1%'=(y pl —m 1
—Vl )4=0,

Hz+—:(2}pz+rnz+ Vz)4=0 .

(6.14a)

(6.14b)

The potentials Vl and Vz which are manifestly Poincare
invariant (including time reversal and parity) contain now

y and rl matrices (according to the tensor structure of the
interaction) and may therefore involve several scalar, vec-
tor, or tensor functions.

A first condition ean be imposed on the potentials Vl
and V2 by demanding that the interaction be charge-
conjugation invariant (including the mass exchange
rn l~rnz). In this case Eq. (6.14b} must be obtained from
Eq. (6.14a) by charge conjugation (and mass exchange
rn l~mz). If the potential Vl is represented in the form

Vl ——Vl(1,2;y, z}) (6.15)

(the indices 1 and 2 inside the parentheses representing
particle indices in the coordinates, momenta, and masses),
then by using transformation (6.7) we get the relation be-
tween V2 and V&.

Vz ——Vl(2, 1;—2},—y) . (6.16)

The second condition on the potentials comes from the
compatibility (or integrability) condition (3.4) of the two
equations (6.14):

[H, ,H2]% =0. (6.17)

As in the spin-0 case this condition also guarantees the
Poincare invariance of the theory in presence of the con-
straints [wave equations (6.14) and time constraints (3.5);
s~ S~. III].

Equation (6.17) which is a quasilinear equation for the
potentials is still too general. This is related to the fact
that one can always apply to Eqs. (6.14) Poincare- and
charge-conjugation-invariant canonical transformations
and modify rather arbitrarily the potentials. Therefore

M»„——g (x,„p,„—x„p,„) ——(a„,+g„„).
u=1 2

In the physical Hilbert space P, where the wave func-
tions are solutions of the wave equations and satisfy the
time constraints (3.5), the operators (6.12) have to be re-
placed by their starred version, as in (3.23). But as far as
they act on wave functions belonging to A ', their action
will be equivalent to that of their ordinary counterparts
[Eq. (3.24)]. Therefore under the action of the Poincare
group in 4 the wave functions 4 still transform covari-
ant1y:

qr(xl, xz)~S(A)4'(A 'xl —a, A 'xz —a)S '(A) .

(6.13)

We turn now to the determination of the structure of
the interaction potentials appearing in the mass-shell con-
straints. By analogy with the spin-0 case, we can intro-
duce the interaction by adding potentials in Eqs. (6.11):
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[pi —mi —(y pi+mi }Vi]%'=0,

[p2' —m2'+(~ p2 —m2}V2]q'=0.

(6.19a)

(6.191)

Comparison of these equations with Eq. (6.18) shows that
we must have

—(y pi+mi ) Vi+=(71 p2 —m2) V2+ . (6.20)

A general class of solutions to Eq. (6.20) is given by the
following type of potentials:

Vi ——( —7}p2+ m 2 }V,

V2 ——{ypi+mi}V,
(6.21)

where V is a symmetric function under the exchanges
1~2 and y~ —7} [Eqs. (6.15) and (6.16}]:

V(1,2;y, 7I)= V(2, 1;—7},—y) . (6.22)

Replacing Vi and V2 by their expressions (6.21) in Eqs.
(6.19) and taking the commutator of the two operators
acting on 4 in Eqs. (6.19a) and (6.191)we find the compa-
tibility condition

[pi' —p2', V]=—[p u V]=0 (6.23)

which shows that the potential V depends on the coordi-
nate variables through the transverse relative coordinates
x r as in the spin-0 case:

(6.24)

( V is a Poincare-invariant function of its arguments. )
We now replace the potentials Vi and V2 by their ex-

pressions (6.21) in the wave equations (6.14); we get

among the general solutions of Eq. (6.17) we have to select
a class corresponding to a particular configuration in the
space of canonical transformations mentioned above. As
in Eq. (4.3) we select among the solutions of Eq. {6.17)
those potentials which lead through Eqs. (6.14) to the
equation

(pi2 —p2 )+=(mi —m2 )4, (6.18)

thus fixing in a defmite way the relative time dependence
of 4 [Eq. (4.4)].

To see the additional restrictions imposed by condition
(6.18) on the potentials Vi and V2, we multiply Eqs.
(6.14a) and (6.141) by (y.pi +m i ) and (71 p2 —m2),
respectively; we get

Hi%'=[y pi —mi —( —71.p2/m2)V]4=0, (62Sa)

H2+=—[71.p2+m2+(y. pi+m, }V]4=0. (6.2Sb)

In order to check the compatibility (integrability) condi-
tion (6.17) we can use the following method. Instead of
Hi and H2, we may consider (y pi —m i ) and
{7}p2+m2) as the independent operators. Then using
(rl p2+ m2 }on Eq. (6.25a) and (y pi —m i }on Eq. (6.251)
and taking the difference of the two equations we get

[(pi —p2 )—(mi —m22)]Vip=0, (6.26)

which is satisfied on account of Eqs. (6.23} and (6.18).
(The direct calculation of [Hi,H2] with the use of Eqs.
(6.18) and (6.23) gives [Hi,H2]= —[y p„V]H,
+ [71.p2, V]H2-0, which also establishes the above result,
the commutators [y pi, V] and [7}p2 V] no longer con
taining the constraints. }

To summarize, the wave equations (6.25) where V satis-
fies Eqs. (6.22) and (6.23) and is Polllcafe invariant,
represent a compatible set of equations for 4 and lead to a
Poincare-invariant formulation of the theory.

Equations (6.25) may also be rewritten differently by
bringing the operator 71 p2 of Eq. (6.25a) on the right of V
and then using Eq. (6.251) to eliminate the quantity
rl p2%, and similarly for y p, in Eq. (6.25b). This pro-
cedure "diagonalizes" Eqs. (6.25) with respect to the
operators (y pi —m i ) and (rl p2+m2). We shall use it in
Sec. VII when dealing with specific types of potentials.

As in the spin-0 case, Eq. (4.6), the potential V in Eqs.
(6.25) may also be replaced by a nonlocal function in x r,
without any modification of the results so far obtained.
In this case one gets the most general form of the poten-
tial V. Then it can be shown, along similar lines as in
Ref. 26, that the wave function ql and the potential V are
connected in a precise way with the wave function and the
kernel of the Bethe-Salpeter equation, for the sector of
"normal" solutions of the latter. We shall present these
relationships in their general forms in a separate work; we
present here their simplified expressions when one consid-
ers the BS kernel in its ladder approximation and then re-
places it in the integral equations by its relativistic instan-
taneous approximation (4.11). One then gets the follow-
ing relations {for the equal-mass case m i ——m2 ——m):

P(x) = [(b+a)e (b —a)e '— ]g(x )
2b

1 7 7 —i j xL j (b —a) —i j xL j (b+a)e(xi ) y.p y. +u —m —7} p 71 —u +m (e —e )g(x )2b 2 2
J

+—[(b —a)e L (b+a)e —] 2 i I dxI D(xi,x,pi,p2, y, 7})p(xL, O,x ), ——
4(p 2)i /2 (6.27)

(6.28)Vg(x )=— 2, /2 I dx7.D(xL,x )4(0, )x,
2(p 2)1/2

where P and D are the BS wave function and kernel, respectively, and a and b are defined in (4.9). Equations (6.27) and
(6.28) are the analogs of Eqs. (4.12) and (4.13) of the spin-0 case. [The origin of the momentum dependence of the kernel
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D is explained after Eq. (4.9).]
Equation (6.27) becomes, at xL ——0,

) =—g(x )— y.prl. pD(x T)P(O,x T),
b 4b

where we have defined

D(x )= I dxLD(xl, x,pi,pi, y, 7J) .

It gives

(6.29)

(6.30)

((}(O,x )= 1+ y pr} pD(x )
4b

—g(x ),
b

(6.31)

V= ——D(x ) 1+ y.pr) pD(x )
4 4b

(6.32)

the last equation being also equivalent to

1+ y.pr) pD(x ) (1+—y fm pV)b (6.33)

Equation (6.32) shows that V is still nonlocal in x (mainly because of the operator 1/b; for the usual types of interac-
tion, D will not depend on the relative momentum U). In order to get for the potential a local expression in x, it is

2 /2necessary to approximate the operator ( m —U )
'~ by some local function, for instance as in (4.15).

As in the spin-0 case, relations (6.27)—(6.33) and approximation (4.11) may be used to reduce the normalization condi-
tion of the BS wave function to a three-dimensional integral. The result is in the c.m. frame:

d'x Tr p(x ) y prl pp(x ) f(x )V —y pr) pVQ(xT)
4b

i J d x —Tr p(x )(1+Vy Pi} p) — —(1+y pr} pV)p(x ) —1 (634)
b gp'b

where g=(ypr}01/l)t and V=yo'1)OV yoi)0 (a dagger denotes
Hermitian conjugation).

We end this section by observing that two-fermion sys-
tems can be studied in a way very similar to that of the
fermion-antifermion case. Now the rl matrices act on the
wave function from the left (on the right-side index} and
the charge-conjugation symmetry of the interaction has to
be replaced by the exchange symmetry with respect to the
two-fermion variables.

VII. SCALAR, PSEUDOSCALAR,
AND VECTOR INTERACTIONS

The relationship (6.32) of the interaction potential V
with the kernel of the BS equation in its ladder and rela-
tivistic instantaneous approximations fixes its expression
in terms of field-theoretic quantities. Even if one uses for
V an effective form, the above equation may still be used
to understand the tensor structure of V in terms of the
tensor structure of an effective interaction Lagrangian. In
this respect we shall study in this section three types of in-
teraction potential, which are local in x [i.e., after ap-
proximation (4.15) is made], scalar, pseudoscalar, and vec-
tor.

However, before proceeding to this study, we would like

t

to introduce an appropriate transformation for the wave
function in order to bring the total energy operator into a
form which is manifestly Hermitian in the free norm in
the c.m. frame. The fact that the wave function 4 of Eqs.
(6.25} does not satisfy this property is evident from the
normalization condition (6.34), where the presence of the
potential V in the first large parentheses means that it
does not correspond to the free norm [even after the ap-
proximation (4.15) is made]. The advantage of the free
norm (in the c.m. frame) is that the normalizability prop-
erties of the solutions there are more transparent.

It is also evident from Eq. (6.34) that the transforma-
tion which we have to use is the following [in the local ap-
proximation (4.15}and for Hermitian potentials V not de-
pending explicitly on p ]:

(7.1)

but we shall derive it, independently, from the structure of
Eqs. (6.25) without using any connection with field
theory.

A. Hermiticity property of the total energy operator

For simplicity we shall work in the local approximation
T2(4.15) where (U ) is now replaced by a common constant
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for all the states and V is assumed to be Hermitian (more
precisely V yes)0

——yorIOV) and p independent. In this
case, in the c.m. frame, the only p -dependent pieces in

Eqs. (6.25) are the kinematic factors y p, and rl.pz and
thus we can isolate the total energy (or mass) operator.
[In the c.m. frame x reduces to the vector (O,x).]

Equations (6.25) yield

p ». iq'=l —y fm pp p2V+miy p

y—py u. +y p(g u +m2)V]%,

p.p2'P=[ y—.pn p p» i V m—2n. p

+rl pg u rl.—p(y. u +mi)V]% .

The sum of these two equations gives

(7.2a)

(7.2b)

p.pq =(p ) % =(1+y.pn pv) '(miy. p —m2n. p —y py u'+~ pn. u }(1—y. Pn. PV)q'.

In the c.m. frame, the terms in the brackets are Hermitian in the scalar product

(X,f)= J d'xTr(Xtp),

(7.3)

(7.4)

but the pron~ of the two factors on the extreme left md right spoils this prope~y for the total energy operator.
It is evident that transformation (7.1) symmetrizes the expression of (p2)'~2 which becomes Hermitian in the scalar

product (7.4) with the new functions g' and 1(':

1/2 1/2

(p ) %' = (m y.p —m rl.p —y py. u +i) pal u )

. ~+~~~.r V . l+r p~ pv.
(7.5)

According to the relationship with the BS wave function,
one has to introduce the constant ,' (m (u —)) —' (for
the equal-mass case) in the integral (7.4) in order to nor-
malize the integral over the internal wave functions to un-

ity [Eq. (6.34}].
In the subsequent calculations we shall always use

transformation (7.1) but shall omit the prime from the no-
tation of the new wave functions. Then if relationships
(6.27)—(6.33) are used to relate the wave function to the
BS wave function one has to remember the additional
transformation (7.1).

As a last remark, we notice that in order for transfor-
mation (7.1) to be finite for finite values of x it is neces-
sary that

I

structure of the potential V. The relationship (6.32) be-
tween V and the BS kernel D shows however that the ten-
sor structures of the two quantities are not identical, ex-
cept ~hen one neglects second- and higher-order terms in
D. Our purpose being rather illustrative here, we prefer
to deal with simple expressions for V; therefore we shall
directly discuss the structure of V without worrying about
the corresponding structure of the kernel D, which in this
case will be more complicated than that of V; it is ob-
tained by inverting formula (6.32} or (6.33). Nevertheless,
as we pointed out above, both of them coincide to lowest
order of the interaction.

In this subsection ave consider scalar-type interactions
which correspond to potentials V which are independent
of the Dirac matrices:

—,
' Tr(y pi) pV) &1, (7.6)

which shows that the potential V must be appropriately
bounded and in particular regularized at finite values of
x. Confining interactions may occur when the upper
bound 1 of (7.6) is reached for some particular value of

~

x
~

(in general when
(
x

~

~00) in which case the
wave function 4 ' in (7.1} also vanishes in that region and
the two phenomena are balanced to yield a finite value of
4' which is then generally sufficient for its normalizabili-

ty, according to formula (6.34).
If condition (7.6} is not satisfied for all values of x

one could still work with the BS norm (6.34). In this ease,
1l0%vcvcx, lt 18 Ilcccssary to 1IHposc appropriate condltlons
on the coupling constants and on the form of the poten-
tials in order to guarantee the positivity of the norm and

of the energy eigenvalues.

V=V(r,p ) . (7.7)

2Hi%'—:y.pi —m i
—

2 (m2 V+m i V
(I —V )

[As we pointed out in the spin-0 case, after Eq. (4.9) and
at the beginning of Sec. V, in local approximations in x,
the dependence on the relative momentum U can only
arise from the couplings of the mediating field to particles
1 and 2.]

Using this expression of V in Eqs. (6.25), we now bring
the operators i) p2 of Eq. (6.25a} on the right of V and use
again the equations of motion to diagonalize the wave
equations with respect to y pi and il.p2. After using
transformation (7.1) we find

8. Scalar interactions

In this and the following two subsections, mc shall

study in more detail Eqs. (6.25) for given types of tensor
+i AVg r) i'd=0, (7.8a)
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2Hz+—= ri pz+mz+ z
(m i V+mz V'

(1—V )

+iAVy r) 0=0

[V defined by Eq. (5.13)]. As can be checked explicitly,
the operators H& and Hz in (7.8) satisfy the compatibility
condition (6.17) in a weak form.

Taking the "square" of these equations we find the gen-
eralized Klein-Gordon-type equation:

H'P=—(H&+2m, )H, % =(H, —2m, )H,e
2 22(mi —mz )

gP + 2 +U
4p 2

'2
2(mi —mz) 1 V

l —V 4 1+V

2

+4/2 2

(1—V )

(7.9)

V . V+4%
z

y.rri r 2i—AM (y r+ri r)
(1—V ) (1—V)z

+2ifi(mi —mz) (y r —ri.r)+2iii yr rir 4=04 V V

(1+V)' (1—V )
(7.10)

[y, ri defined by Eq. (2.13)].

C. Pseudoscalar interactions

Pseudoscalar-type interactions correspond to potentials
V which are proportional to the matrices y&ri&.

V =y sos IV(r',p') (7.11)

Hi+=(y pi —mi+iRAysri r)4=0,
Hz+=(il Pz+mz —iRAy ri)q)4=0,

28'A=—
1 —8'

(7.12a)

(7.12b)

(7.13)

Proceeding as for the scalar interaction case and using
transformation (7.1), the wave equations can be rewritten
in the form

~ capp+ + (&0123 +1)p pv

fi
IVz, ————e p„+~@',

4

Wi, ——8'2, ———4$P2 3 2 2

8', = 8'), + 8'2, ,

(7.16)

which commute with all longitudinal variables and ma-
trices, we get

(7.17)

The matrices y
r and il r can be expressed in terms of

the spin operators. Introducing the Pauli-Lubanski opera-
tors

[Hi,Hz]=0 . (7.14)

[ IV is defined as in Eq. (5.13), and y and i) in Eqs. (6.9)
and (6.10).] Notice that the pseudoscalar interaction acts
in Eqs. (7.12) as a purely quantum effect and that the ef-
fective potential A determines IV up to an arbitrary in-

tegration constant.
The operators H& and Hz of (7.12) satisfy the coinpati-

bility condition (6.17) in the strong sense:

and Eq. (7.15) takes the form

2 22
H%= —,P ——,(m

&
z+mzz)+z, z z (m& —mz )

4p
2

+nA r — Aypgpg&22
p

T2
+V

The "square" of Eqs. (7.12) is

2 22(mi —mz )H4: —,p —T(m& +—mz )+
4p

2

+Ur +Pi Azr fiAy—
—2' Ay re.r 0'=0 (7.15)

[H defined by Eq. (7.9) and y, i) by Eqs. (69), (6 10),
and (2.13)]

8
, Ay. pg-pS'„rW2, r 4=0.

p
(7.18)

A particular feature of this equation is that the operator
H above commutes with the longitudinal matrices y.p
and g p, and therefore its solutions can be classified ac-
cording to the eigenvalues of these matrices; the positive-
energy solutions (both in p& p and pz.p) will correspond
to the eigenvalues +1 of y p and —1 of i) p, that is to
the submatrix 4++ of the decomposition (6.6) in the c.m.
frame.

Knowing the solution %' of Eq. (7.18) one can then
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develop an inverse Foldy-Wouthuysen transformation to
get the solutions 4 of Eqs. (7.12). In the present case the
Foldy-Wouthuysen transformation operator can be con-
structed in a compact form (we shall show this elsewhere).
For our present purpose it suffices to observe that if 4' is
an eigenfunction of p&, y p, and i).p, and is a solution of
Eq. (7.18), then the solution 4 of Eqs. (7.12) is given by

V =y„g.C(o"(r,p)+y„q„Cg"(r,p),
Cp ——O(Cp3) .

(7.22)

(7.23)

As in the spinless case, we shall consider three different
"gauges" for Cp„„.

Case a:

%=(H&+2m
& )(Hz —2mi)%/( —4mimi),

(7.19)

Coi. =go~Co(r p»2 2

2 2Col„g„——„Co(r,p ) .

y p%'= —g p%'=+4 .

This is a direct consequence of the fact that the operators
H& and Hi of (7.12) commute strongly [Eq. (7.14] and of
the definition of H in (7.9) and (7.18).

The pseudoscalar-type interactions seem to play an im-
portant role in the representation of confining interactions
and spontaneous breakdown of chiral symmetry, and are
further analyzed in Ref. 22 (first paper).

D. Vector interactions

V =y„ri„C""(r,p),
C„„(r,p) =C„„( r,p) . —

(7.20)

(7.21)

[The latter equation is a consequence of Eq. (6.22).]
The "diagonalization" procedure of Eqs. (6.25), as used

for the scalar and pseudoscalar interactions, and transfor-
mation (7.1) lead however to rather complicated expres-
sions for the wave equation operators Hi and Hi. Some
of the complicated terms, which contain momentum-
dependent tensor functions, are however of third order in
C. It can be shown that by adding to the potential V in
(7.20) axial vector-type interactions which are of third or-
der in C and appropriately fixed, the resulting expressions
of the operators H& and Hi can be considerably simpli-
fied. This third-order axial-vector-type interaction can be
thought of as representing some effective local approxi-
mation of high-order diagrams of the BS kernel. We
therefore choose the following expression for V:

Vector-type interactions correspond to potentials V
which are proportional to the matrices y&g„:

2«o —Co)'«o+ Co) = —Co

which means that

Cp ———2Cp +O(Cp ) .

The corresponding wave equations are

Hi+=[y pi mi y„(—,'—Bpi'+—Ku"+AKP"r„

+i AKrI')]4=0,

Hill= [ri

pi+mal

ri„( ,
' Bp"—Ku"——AK—oi'"r„

—ifiKr"))4'=0,

where

2C 2C
1 —C' 1+C '

C=Cp+O(Cp ) .

Because of condition (7.6),
~

C
~

is bounded by —,':

(7.25)

(7.26)

(7.27a)

(7.27b)

(7.28)

(7.29)

Equations (7.27) satisfy the compatibility condition
(6.17) in its strong form (7.14).

The "square" of these equations is

(Notice that because of the factor g„„and the physical de-
grees of freedom of the vector field of the underlying field
theory Cp represents minus the scalar propagator; this re-
mark applies to all vector propagator functions met in
Secs. V, VII, and VIII.)

Cp satisfies the equation

PPl —Pl
H%= —,(1—B)'p' ———,(m, '+m, ')+, (1—K)'+(1 —K)'u T

4p 2

+2'(a'~„+g~„)K(1 K)r~u "—fi (1—K)(3—K+2Kr )+6fPK ri —fi o' ~K2(rig&v 2r&rv)

do&~P—(1 K')[2Kr"r"+K(g"—" pl p ")] fg(o&„g—&„)(1 K)Bp—l'r" —(m
&

——m & )(cr&—„+g&„)(1 K)Kp"r"—
[4ifiK(1 K)r.u —2' (1—K)(3K+2—r K)+48 r K—] 0'=0. (7.30)

In this equation the o and g matrices can be expressed in terms of the spin operators Wi, and W& of (7.16) and even-
tually of y5 and ri5. The internal orbital and total angular momenta 8'L and IV were already introduced in Eqs. (5.18)
and (5.19). We list here several useful relations which serve to reexpress Eq. (7.30) in terms of these operators:
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fi p T'v
WL Wg ———p (o„„+g„„)r"v

2

W , W p z~TTgTTJlv1$2$8
r W» Wz, (W—i, .r)(Wz, r)= — p o&~g "~r re,

l iA
W»i ys= —~i Z" Wz*i i}s= —p ki Z"

2 2

(7.31)

[u,A (r )]=4iAAr u —2sri(3A+2Arz),

[8 A (r )]=6A+4r zA;

H= —,'(1—8) p ——,(mi +mz )+ z (m& —mz ) (1 K) +—(1 K) v —+ z Wz W,K(1 K)—
4p 2 p'

fi (—1 —K)(3K+2r K)+6k K rz+ K rzWi 'Wz (I+ysris) — K r W»'Wz
p

2
p

2

8 8 2+ zK (Wi, r)(Wz, r)(1 —ysris)+ zK(l K)r W».—Wz,p' p'
8 4,

K(1—K)(Wi, r)(Wz, r)(1—ysris)+ z
K(1—K)W~, Wz, (2+ysi}s)

p p'

+2i8(1—K)(W~, rys —Wz, .rris)+ —

z (mi —mz )E(1—K)(W)g rys+ Wp ri}s)2 2

p'

[4iA—K(1 K)r u——2iri (I —K)(3K+2r K)+4% r K ] .

Case b:

C~„=(g„„pl,p„)Co(r—,p ), C&„(g„„p„—p„)Co(—r,p ),
H& ——y p&

—m& y„(2Cu~"+2i—ACr"+2fiCg~"'r ),
Hz ri pz+mz——+ri&(2Cv "+2iACrl'+2ACo~i~r },

with C and Co related to Co by relations (7.28) and (7.23) and
~
C

~

bounded by —,':
C

(7.33)

(7.34a)

(7.34b)

(7.35)

These operators satisfy the compatibility condition (6.17) in its strong form (7.14). The "square" operator H {7.9) is
given by

ill —ltdH= —'p ——'(mi +mz )+ +(1—2C) u —8iiiiC(1 2C)r u-
p

+i)i (1—2C)(6C+4r C)+4k C r + C(1—2C)WL W + C(1—2C)W, g Wz,

16 "
2 32 2C(l —2C)[r Wi, -Wz, —(W» r)(Wz, r)]+ C (W».r)(Wz, r) . .

p p
(7.36)

It commutes with y.p and ri p and therefore the solu-
tions of the equation H+=0 can be classified according
to the eigenvalues of the latter. As in the pseudoscalar in-
teraction case, the inverse Foldy-Wouthuysen transforma-
tion (7.19) can be applied to get the solutions of the equa-
tions H, C =H2% =O.

Case c:

Hi =y.pi —mi y„[2C(r—u " r"r u —if—!re').

+ABg~""r„],

Hz ='g p+zmz+pr[ i2(Cvr—r r v Eflux )—(7.38a)

Cop =[r (Ãp ppp ) rpr ]Co—(" p )—

Cope=[r (gpv pypv) rprv]—Co(r ~p—) &

2 ~ ~ 2 2
{7.37)

+RBo~""r„], (7.38b}
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3C+2Cr2 —2r C
(1 2—Cr )

(7.39)

(7.40)

C and Cu being related to Co by relations (7.28) and
(7.23). Hi and H2 satisfy the compatibility condition
(6.17) in the strong sense of (7.14}.

The "square" operator H of (7.9) is given by

—Pl
H ——p2 —(mi +m2 )+ +u + C(1 C—r )WL 2R—(2Cr +3C —2C r —B r )

gp
2

W& ~ W, (2Cr2+3C —2C2r2)+ Wi, W2,B(l 2Cr—+Br )

[r Wi W2, —( Wi, r)( W& r)](B+BC—B ) .8 2 (7.41)

As in case b above, H commutes with the matrices y p
and ri p. The angular momentum operators Wi, , W~, W,
are defined in formulas (5.18},(5.19},(6.12), and (7.16).

VIII. SPIN- 2
—SPIN-0 PARTICLE SYSTEMS

4=% (xi,x2) (a= 1, . . . , 4) . (8.1)

In this section we consider systems composed of one
spin- —,

'
fermion (particle 1) and one spin-0 boson (particle

2). The construction of Poincare-invariant compatible
wave equations parallels, in a simpler way, that of the two
spin- —, particle case, considered in the two preceding sec-
tions.

The wave function is now a four-component spinor:

The relationships between the wave function 4 and the
potential V on the one hand and the BS wave function 4
and kernel D on the other can be obtained as in the two
spin-0 or two spin- —,

' particle cases. In the ladder approx-
imation of the kernel and with the relativistic instantane-
ous approximation (4.11), they read (for the equal-mass
case m i =m2 =m):

P(x) = [(b +a)e
2b

e(xL )y p y +u —m
1 A

2b 2

The Lorentz group generators are

M„„=g (x,„pg„x,„p,„) —o„„. ——
s=) 2

(8.2)

The first wave equation is a generalized Dirac equation,
the second one is a generalized Klein-Gordon equation.
They have the form

X(e
-i jxL j(b-u) —i jxL j(a+b)—e )it(x ),

( 2)1/2
P(xL =O,x )=, tP(xT),

2(m —u )' '

V= —— dxl D(xr,x,pi,p2, y)T 1

(m2 uT2)i/2

(8A)

(8.5)

(8.6)

H, % =(y p, —m, —V)% =0,
H2q'=[p2 —m2 —(y pi+mi)V]4=0.

(8.3a)

(8.3b)

The wave function and the potential V satisfy Eqs. (6.18)
and (6.23), respectively, and the constraint operators Hi
and H2 satisfy the compatibility condition (6.17).

[a and b defined in (4.9)]. The potential V takes a local
T2 -1/2form in x only when the operator (m —u )

' is re-
placed by a local function, as in (4.15).

Using relation (8A} and approximation (4.11) in the
normalization condition of the 8$ wave function, one
finds that of the wave function P (in the c.m. frame):

d x x f'p—3 T— )/2

P(x )+i/(x )
p

2

4(m —u )

' i/2 )/2

f(x ) =1,
dp 4(m —u )

(8.7)

D being defined as in (4.19) or (6.30}.
~e now analyze the tensor structure of the interaction,

as we did in Secs. V and VII, in its local approximation
(4.15).

ScaIar interactions. They correspond to the case in
which V does not depend on the y matrices and the rela-
tive momentum U:

V= V(r,p ) .

[

After bringing the operator y-p, of Eq. (8.3b) on the right
of V and using again Eq. (8.3a), the two constraint opera-
tors become

0) ——y.p) —m) —V, (8.9a)

(8.9b}

The "square" of the operator Hi defined by

H2 =p2 —m2 2m i V 2ifiy. rV V—— —2 2 ~
'

2
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H =(H, +2m ( )H i

is weakly equal to Hz.

(H —Hi)'0=[(pi —m)') —(pi' —mi')

(8.10) Vector interactions. They correspond to the case in
which V is proportional to the y matrix and the momen-
tum pi, representing the couplings of the mediating vec-
tor field to the fermion and the boson, respectively:

—2vH, ]q =0,
2 22(mi mp)

H%= —,p ——,(m& +mz )+ +u

—2m& V 2i—ky rV V—4=0

(8.1 1)

(8.12)

V =y, [p .,C""(r,p)],
([, ]+ is the anticommutator),

H& =y p& ™&—y„[2C""pi„—i iir( a, C" )],
Hi=pi —mi —(y p&+m, ) ty„[2Ci'"p„

(8.13)

(8.13a)

(8.13b)

[V defined by (5.13)].
Bringing in Eq. (8.13b) y pi on the right of C and us-

ing Eqs. (8.13a) and (6.18) we get for H in (8.10):

H%= ~p ——,(m&~+mz )+
(mi —mi )

+u 4C—""pi„pz„2iA—(a„c"")p&„+2i R(a„ci'")p,„

+4C~C„,p,~,' O(a„—a„c~") 4iaC~—"(a„c„,)pi' 4i fi(a—„c"")c„~pi'

—2R C" (a a~c„p)—A' (a„c"")(a~c„ti)—iiio„[2(a C"')p „ih(a a—„C"")

4C~"(—a„c ii)p„+2ixc~"(ay~ t')] q =0 . (8.14)

We consider for C„„the three cases studied in boson-boson and fermion-antifermion systems.
Case a:

Cpv=gpvc(r, p ),2 2

H, =y pi m& y&—(2Cp—g 2ikcr—"),
Hp-H= —,p (1—2C) ——,(m) +mi )+ i (mi —mi ) (1+2C) +(1+2C) u

4~ 2

+SiRC(1+2C)r u fr(1+2C)(a C)—4A r C — WLW—, C(1+2C)

(8.15)

(8.16a)

4i y5 W» rC(1+2—C) —2(m i —mi ) C —
z

W„.ryic(1+2C)2 2 2 (8.16b)

The angular momentum operators were defined in Eqs. (5.18), (5.19), and (7.16) and some of their properties presented in
formulas (7.31).

Case b:

Cp~ = (gp~ —p~p~)C (r,p ),
Hi ——y pi —mi+2y„(Cv "+incr"),

Pl —PnHi-H= —,p ——,(mi +mi )+ +(1+2C) v +Sile(1+2C)r u
4~ 2

(8.17)

(8.18a)

—iri (1+2C)(a C) 4A r C i —WL ~ W'i, C(—1+2C) . (8.18b)

Case c:

C„„=[r(g&„p&p„) rzr„]c(r,p )—, —

H, =y p, rni+2y„C(r—u " r"r u —iirir"), —

(8.19)

(8.20a)
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2 22
'p2,'(in, '+in2')+, +U +2iri (3C+2r C+2r C )

(mi —mi ) 2 2 2

p

C(1+&'C)g ~', W~. W„(3C+2r'C+2r'C') .
p p

(8.20b)

Notice that the operator H in cases b and c above com-
mutes with the matrix y p, and therefore, as in the
fermion-antifermion case, the Foldy-Wouthuysen
transformation can be applied to solve the equation
Hi%'=0. If ql is a solution of the equation H+=0, being
at the same time an eigenvector of y p, then the solution
4 of the equation H i 4=0 will be given by

4= ( H i +2m i )4 I(2m i ),
HI=0, @p%=+%.

(8.21}

Also notice that since particles 1 and 2 are of different na-

ture, then in the expressions of H their contributions do
not always appear in a symmetric way concerning the
terms proportional to the masses [Eqs. (8.12) and (8.16b}].

A further remark concerns the Hermiticity property of
the energy operator. In some expressions of H—Eq.
(8.16b) as well as Eq. (7.32}—the latter does not appear in
a manifestly Hermitian form in the free norm in the c.m.
frame. This feature does not infirm the Hermiticity prop-
erty of Po, sillce lt can be established directly from the
Dirac-type equations of Hi (and eventually of H2 if par-
ticle 2 is also a fermion; see for this Sec. VII A). The Her-

miticity of H becomes manifest in norms usually used for
spin-0 particles. This phenomenon also exists for the case
of a single fermion interacting with an external vector po-
tential.

Axial-uector interactions. They correspond to potentials
of the type

V= —+ %LA(r,p2)

2
2 y pWL 8'i, A (r,p ) . (8.22)

p
Such potentials cannot arise in the ladder approximation
of parity-conserving interactions in renormalizable field
theories. However they can arise from a local approxima-
tion of fourth-order irreducible diagrams in vector in-
teractions in the Bethe-Salpeter kernel. They correspond
to the exchange, between the fermion and the boson, of
two vector particles. The vector particles couple to the
fermion line at two different vertices with matrices y& and

y respectively. Furthermore the fermion propagator
joining the two vertices is proportional to (y p'i +m i } and
one finds, among other terms, the product of three y ma-
trices which involve the term is„ Iiy ~pj . On the boson
line the vertices of the vector particle involve the momen-
ts p2„and p2'„. In a local approximation, by contracting
the two vertices on each line to a single point and then re-
placing the kernel by an effective function D(r,p ), the
above term becomes ie„~Iiy [pi,p~zDpz j+, the nonvan-
ishing contribution of which will be proportional to
Ae&~g &p "r u~D, which is of the form (8.22).

The wave equations are defined by the operators

2
H) ——y p) —m)+ y p8'L ~ W),A,

p
2

(8.23a)

H2-H= —„p —T(mi +mq )+2 & 2 2 (mi —mg ) p (m, —m2)2 2 2 2 2

+ '+2A 1+, 8; 8„
4p

2
p

—iii A (W~ —2' Wi, ) 4iyqWi, ~—[A(r U+ih)U Ar u +ifiA—(r U rr U)] . —(8.23b)

IX. SUMMARY AND CONCLUDING REMARKS

We have applied the manifestly covariant formalism
with constraints of classical relativistic Hamiltonian
mechanics to the construction of relativistic wave equa-
tions describing the dynamics of two interacting particle
systems. In this formalism the wave function satisfies
two independent manifestly covariant wave equations,
each of them being, according to the spin value of the cor-
responding particle, a generalization of the Klein-Gordon
or the Dirac equation. The interaction between the two
particles is represented by potentials depending on the
particle variables alone.

The compatibility condition of the two wave equations
sets certain restrictions on the structure of the interaction

I

potentials, guarantees the Poincare invariance of the
theory in the physical Hilbert space and ensures freedom
in the choice of the time parameters. The fact that the
two-particle wave function satisfies two independent
equations determines in a definite way the relative time
evolution of the system, thus eliminating from the energy
spectrum the possible occurrence of relative energy excita-
tions. The number of degrees of freedom of the system is
therefore the same as in nonrelativistic mechanics and in
that limit one obtains a Galilei-invariant dynamics, if the
interaction potentials have been chosen to have the ap-
propriate behavior in c .

The interaction potentials depend on the relative coor-
dinates through their projections on three spacelike axes
orthogonal to the total momentum of the system. The po-
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tentials may appear either in local or nonlocal forms (i.e.,
as integral operators with respect to these three spacelike
components), the foriner being a particular case of the
latter.

We outlined that the present framework of relativistic
quantum mechanics is in direct connection with the
Bethe-Salpeter equation and its sector of "normal" solu-
tions. This means that the quantum-mechanical potential
and wave function can be expressed, in perturbation
theory, in terms of the Bethe-Salpeter kernel and wave
function. In particular the normalization condition of
the quantum-mo:hanical wave function can be determined
from that of the Beth-Salpeter wave function. When a
relativistic instantaneous approximation is made for the
Bethe-Salpeter kernel, taken in its ladder approximation,
then the above relationships considerably simplify and one
may even formally extend them to nonperturbative in-
teractions and effective kernels.

In this respect, the "local" approximation of the in-
teraction, which yields potentials that are local functions
of the transverse relative coordinate variables and which
was extensively used throughout this paper, may provide a
kind of zeroth-order approximation for nonlocal quanti-
ties inherent to field theory.

The generality of the results about the interaction po-
tentials makes it possible to apply the above wave equa-
tions to the study of a very wide variety of phenomenolog-
ical problems concerning relativistic two-body systems.
We present in separate papers two such applications re-
lated to confining interactions in fermion-antifermion and
fermion-boson systems.

The formalism used for the construction of two-body
wave equations can also be applied to the N-particle
(N &2) case. Here, however, the technical problems are
more difficult to solve than in the two-particle case. This
is already evident at the classical level. ' The requirement
of separability (cluster decomposition) imposes severe con-
ditions on the structure of the interaction potentials;
furthermore one has to satisfy here N(N —1)/2 compati-
bility conditions of iV-independent wave equations. This
problem necessitates therefore a separate treatment.

Relativistic quantum mechanics of interacting particle
systems provides a simplified relativistic framework to the
study of those physical problems, where, to a good ap-
proximation, a finite number of degrees of freedom suf-
fices to describe some particular aspects of the dynamics
of the system. In this respect, it seems now possible to
formulate and construct the theory in a consistent way,
being at the same time in close connection with quantum
field theory.
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APPENDIX: THE SCALAR PRODUCT

present some details for the spin-0 case, but shall simply
quote the results in the spin- —,

' case. We shall devote a
separate paper to a detailed presentation of this subject.

The main property which we demand from the scalar
product is its Poincare invariance, which then guarantees,
with the covariance of its kernel, the Hermiticity property
of the Poincare group generators and permits a unitary
realization of the Poincare group. Of course, one also has
to ensure the positivity of the norm of physical states.

Generalizing a well-known procedure in the one-
particle case, we construct the scalar product in the two-
particle case from a tensor current of rank two,
j„„(xi,xz), built up from two wave functions, satisfying
two conservation laws:

Pjl~~(x ),xi) =0, Bzjp~(xi, xp ) =0 . (Al)

V = V(x,p, . . . ), V'= V(x,p', . . .), (A3)

where the transverse variables x r of (2.12) are calculated
with respect to p and p'.

We write j&„ in the form

~ ~ (0) ~ (1)Jpv=J pv +Jpv (A4)

where jz„' has the expression of the current obtained in
the free theory'9'2'

J py(x i 7X2 ) =l up'(x i ~X2 )B]pap/ pp(x ] ~ x t2)
.(0)

(A5)

and j&'„) is a remainder. In general j„'' does not satisfy
current conservation (Al) in the presence of an interaction
alone. We therefore search for the expression of j„"„' to
ensure the current conservation (A1) ofj

The current j„„in (A5), satisfies the two equations
~ (0) . pv'

The scalar product is then constructed as a double
three-dimensional integral of this current over two spaee-
like hypersurfaces X& and Xi:

(%,4)= I j„„(x„x2)dali(xi)do2(xi) . (A2)
1~ 2

The two conservation laws (Al) guarantee the indepen-
dence of the integral (A2) of the types of surface X, and
X2, and more particularly ensure the Poincare invariance
of the scalar product defined by Eq. (A2).

The case of two spin-0 boson systems was presented in
Sec. IV. The wave function satisfies Eqs. (4.1) and (4.5)
and we concentrate here on the case of local potentials
(2.15). The potential V will be assumed to be superfically
Hermitian, in the sense that when p& are replaced by real
eigenvalues, then Vis Hermitian in the usual 1.3 norm.

In order to construct the tensor current j„„in (Al), we
first consider the case of the two different eigenvalues p„
and p„' (p &p' ) of the total moinentum operator with
corresponding eigenfunctions %z and %z, respectively;
they can be decomposed as in Eq. (4.4). The expression of
the norm will be obtained as a limit, with p' ~p . For
simplicity we shall also use the notations

In this appendix we briefly sketch the method of con-
structing the scalar product of the theory. We shall + [B,„(V'+ V)]1% (A6a)
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ag„"„~=F~=e,'.I
—{V —V)a,„+a,„(V —V)

+ [8,„(V'+ V)]1%, . (A6b)

This means that j„"„'in (A4) must be a solution of the
equations

@J„".'(xi, x2)=—F,„(x„x,),
82J„'„'(, ) = —F

(A7a)

(A7b)

These two equations are integrable, since Fi and Fz satis-
fy the compatibility equation

BzFi„——@F2„=F(xi,xi)

=e,' I2a.{a V)+2{a.V)a +(V' —V)(-,'~' —a') —(-,'p' —a '}(V—V}+[a'{V+ V)]~+, ,

where 8= —,
'

(Bi—82).
The solution of Eqs. (A7},which vanishes when the interaction is switched off, is

;a,„f G„(, ;)E—,„(x', )d *, , a, 'f—G„„(*, *,)F—„(*',*;)d'*, ;
—Qi&82„f G„(xi —x', )G„(x2—xz)F(x'i, x'i)d xid x'i,

(AS)

(A9)

where Gz is the advanced Green's function satisfying the
equation

8 G„(x)= —i5 (x) .

n xi ——ti, n xi ti, n——={1,0) .

Then the scalar product is

(Al 1)

It can be checked that the kernel of the current j„"„',and
hence that of j„„in (A4) is translation invariant and is a
pure Lorentz tensor of rank two, as a consequence of the
Poincarh-invariance property of the potential V in (2.15).
These two features, together with the current conservation
(Al), ensure the Hermiticity properties of the Poincare
group generators and therefore the unitary realization of
the whole group.

In order to construct the scalar product, we choose, for
the surfaces Xi and Xz of formula {A2), two parallel hy-
perplanes perpendicular to a unit constant timelike vector
n, which we take, as usual, parallel to the x 0 axis:

(imp, imp)= fj oo(Xx)diXd3x

= f [jg(X,x)+Jm'i'(X, x)]d Xdix . (A12)

&y using the expressions of j~~' in (A5) and jo'~0' in (A9),
the formula

o ax x= —~ (A13)

and integrating by parts the tertns of F in (AS), containing
d~vativm of the pot~tial V, md finely using therm
tions of motion md some dgebrMC idmtitiM, we md up
with the formula

+p(X,x)

=(2~)'&'(p' —p) exp[+i 4 o —S 0)X']

V xp', . . . —V xp, . . .
Po —Po

f~(x), (A14)

where we have used the notation

yp(x) =exp[ —i(m, '—m, ')p x/(2p')]1{p(x r)

[cf. Eq. (4.4)].
To calculate the norm, we take the limit po~po, after using an appropriate e-hmiting procelure, where —i e is an in-

finitesimal imaginary part which we introduce in the eigenvalues po and po. We obtain

(+p', a~+p, b) I p z pa=(2~) & {p'—p) f d x P,'(x) i &ipBio —4po 2 pb(x)
P

=«2~)'2S 0&'(p'-p+~f. V '}, {A16)
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where the labels a, b distinguish different eigenfunctions
with the same mass squared p . The origin and the mean-

ing of the additional normalization factor f,(p ) in the
right-hand side of (A16) will be explained below.

The expressions of the scalar product and of the norm

simphfy in the c.m. frame, where the operators id, p and

iB2o become identical to the operators p.pi and p p2
which have well-defined eigenvalues (3.13)—(3.15), with

positive signs, or, equivalently,

( 2)1 j2 m& —mz
2 2

$+

p «~mi m2—
~

. (A17)

Furthermore in this frame the transverse vector x
reduces to (O,x) which is independent of p2. Therefore
the only p dependence of the potential V arises froin its
explicit dependence on this variable in the c.m. frame and
no longer from its implicit kinematic dependence through
X

We now turn to the interpretation of the normalization
factor f in Eq. (A16). If the Hilbert space of physical
states is identified with the physical Hilbert space of two-

particle relativistic quantum mechanics, then the com-
pleteness relation implies that f=1. However if the phys-
ical states

~ p) are supposed to belong to a larger space
than that of two-particle mechanics, such as in quantum
field theory, then the two-particle Hilbert space is only a
subspace of the total physical Hilbert space. For this
reason it is the global normalization condition of the
quantum field theory state

~ p ) which should fix the nor-
malization factor of the two-particle quantum-mechanical
wave function. Upon comparing formula (A16), in the
c.m. frame, with the normalization condition obtained
from the Bethe-Salpeter equation Eq. (4.18) and using the

local appmximation (4.15) and (4.16) we get for f the ex-

pression, in the general unequal-mass case,

PP~ PP2

2(m —(u ) )' 2(m —(u ) )'

where p p, and p.p2 are given by Eqs. (A17) and the

mean value (u ) is calculated in the c.m. frame, in the
L &

norm for instance. (It is an approximate value. )

The knowledge of the factor f in (A18) is crucial when

relating the quantum-mechanical wave function to physi-
cal quantities, typical of field theory, such as decay cou-

pling constants.
Finally, we examine the question of the positivity of the

norm. Since the norm is Poincare invariant, it is suffi-
cient to examine this question in the c.m. frame. If, there,
the potential V is independent of p, then the kernels of
the scalar product and of the norm become identical, in

the c.m. frame, to those of the free expressions of two-

particle relativistic quantum mechanics. In particular, if
the eigenvalues of p.p& and p.p2 have been chosen posi-
tive, as in Eqs. (A17), then the norm is positive. This con-
dition was actually imposed as one of the defining condi-
tions of the two-particle physical Hilbert space (cf. item
iii} of Sec. III).

If V depends on p in the c.m. frame, then the norm is
no longer straightforwardly positive. One must impose
additional restrictions on the shape, coupling constant and

p dependence of V in order to maintain the positivity of
the norm of physical states, characterized by positive
eigenvalues of each p pi and p p2.

We now simply quote the results obtained for the
norms in the fermionic case. For a fermion-antifermion
system we get

(+~,„+~,b) ~p 2~F2 (22r) 5 (p' —p) d x Tr it.(» yorip Vyo2)oV—+4po 2 Pb(x)3 3 ~ 3 , av

=(22r) 2po5 (p —p)5 bf. (p ) (A19)

with f, having the same expression as in (A18); g is defined after Eq. (6.34} and V has been assumed to be superficially
Hermitian (ypripV yprip ——V, for p& real, in the Li norm). If Vis independent of p in the c.m. frame, then the positivity
of the norm requires the inequality (7.6) to be satisfied. In this case the transformation (7.1) brings the norm to its free
expression (7.4},were its positivity is obvious.

For a fermion-boson system we get

(4'~ „%~b)~,2 2=(22r) 5 (p' —p) J d'x f, (x) yo282o —4po gb(x)

=(22r) 2po5 (p' —p)5,bf, (p ) (A20)

with f, given by (A18), g=f yo and V superficially Hermitian (yoV yo ——V, for p& real, in the L3 norm). If V is in-
dependent of p in the c.in. frame, then, there, the norm takes its "free" expression. Furthermore in the c.m. frame the
operator i 82p becomes identical to p.p2. The positivity of the latter then ensures the positivity of the norm.

If V depends on p in the c.m. frame, then the comments made at the end of the case of two spin-0 particle systems
hold also in the fermion-antifermion and fermion-boson cases.
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