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We present another mechanism to generate the baryon asymmetry of the Universe within super-

symmetric inflationary cosmologies. The gravitational coupling of the infiaton to the heavy fields in

the theory is used to generate the baryon excess. We find that, in models with an inflaton field and

some heavy fields, there is a generation of baryon number due to the transfer of energy from the in-

flaton to the heavy sector. W'e study this general mechanism for two simple model —one in which

the inflaton does not break supersymmetry and one for which it does. We find that we can get the
observed value of the baryon to entropy ratio in these models. The thermal constraint (stabilization

of the inflaton in the plateau region at high temperatures) is violated in both these models. W'e dis-

cuss the possibility of the introduction of direct couplings to satisfy this constraint.

The new inflationary universe scenario provides an
elegant solution to many cosmological problems of the hot
big-bang model. ' Supersymmetry, on the other hand, has
been used to solve many serious problems in particle phys-
ics in a beautiful way. In fact, inflationary scenarios em-

ploying local supersymmetry seem to be very attractive
for providing "natural" solutions to many cosmological
conundrums. 3 The success of these models is somewhat
marred by one potentially serious problem —a low reheat-
ing temperature after the exit from the inflationary era.
A low reheating temperature is undesirable because it is a
potential blow to one of the most important achievements
of the application of grand unified theories (GUT's) to
cosmology —the generation of baryon-antibaryon asym-
metry from symmetric initial conditions. ~ This is so be-
cause in the standard scenario, in order to generate a
baryon asymmetry after the de Sitter expansion has dilut-
ed any primordial asymmetry, one needs to reheat the
Universe to at least a temperature of order 109—10'o GeV
(Ref. 5). It could be argued that the standard out-of-
equilibrium decay of the color-triplet Higgs field is not
the mechanism responsible for the generation of the asym-
metry, but alternative mechanisms: decay of coherent
Hig~s-field oscillations which are very far from equilibri-
um, low-temperature baryon generation scenarios, etc.,
could be operative. While this may be reasonable, it still
seems fruitful to us to investigate alternative origins for
baryon-number generation, since this feature is potentially
the most restrictive on model building.

In this paper we will investigate the possibility of gen-
erating a satisfactory baryon excess within the framework
of locally supersymmetric inflationary models. More
specifically we will use the hidden-sector models, since
they seem to be the most attractive phenomenologically.
("No-scale" models will not be considered here. )

These models have a very weakly coupled scalar field,
the inflaton which is responsible for the de Sitter expan-
sion and the subsequent reheating. The very weak interac-
tions of the inflaton imply the reheating temperature is
low because the lifetime is large and there is a significant
red-shifting of energy. ' " This causes problems for
baryogenesis.

I. GENERAL FRAME%ORK

Consider a set of scalar fields P; in a locally supersym-
metric theory with a superpotential W(P; ). Then the cor-
responding scalar potential is given by (assuming a flat
Kahler metric) '

V(gt)=exp g ~ P; ~

/~ y ~D, W(y, ) ~'

where D~ W(P; ) is the Kahler covariant derivative

aW

We investigate the possibility of remedying this situa-
tion by using other heavy fields in the theory [e.g., the ad-
joint Higgs field in SU(5)]. Because of the gravitational
couplings between these heavy fields and the hidden sec-
tor, energy is transferred from the inflaton to these fields.
Since these fields have gauge interactions and hence a
short lifetime, their decays occur before any significant
red-shifting has taken place, giving rise to a significant
baryon excess.

After establishing a general framework in Sec. I, we in-
vestigate two representative models in Secs. II and III.
Supersymmetry is unbroken in the first model, which is
simpler to analyze, while in the second model it is broken.
We compute the baryon to entropy ratio in both these
models and show that with reasonable values of various
model-dependent parameters we obtain a satisfactory
baryon excess. Both the models, in spite of giving a satis-
factory cosmology, do not, however, satisfy the thermal
constraint. We find that even with the incorporation of
heavy fields, the situation does not change. Finally, we
comment on the finite-temperature corrections and the
use of direct couplings between the heavy fields and the
inflaton in solving the thermal constraint and its effect on
our results.
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and M =Mp/~8~=2. 4X 10' GeV is the reduced Planck
mass.

We consider the superpotential W to be a function of
two fields P and X. P is the field which causes inflation,
the inflaton, and X is some heavy field in the theory.
Throughout we assume that (() is a gauge singlet while X
can have nontrivial transformation properties under the
gauge group. We will for our purposes take X to be the
adjoint Higgs field of SU(5) but most of the results will be
independent of this choice.

As a first step, we assume that the superpotential
W(P, X) be written as the sum of two superpotentials

f(P) and g(X). This implies that the two fields only in-
teract gravitationally (we will comment on the effect of
direct coupling later). Then,

W(P, X)=f(P)+g(X) .

(9b)

(9d)

and

W(x,y) =f(x)+g (y)

z2+y2
V(x,y) = aW BW+xW + +y,b W

Bx yes

implies

bo ———5h

b) ——hb2 .

%'ith the choice b~ ——1, we have

g(y)= Tr(y )+ Tr(y )—5hLM 2 M
2 3

For our case

Next we demand that at the true minimum, Pp, Xp, the
cosmological constant is zero and supersymmetry is un-

broken. It is easy to show that these conditions imply

—38 (10)

=0,
ay&,

= '

f (tI)p)+g (Xp)= =0 .
BX

(4a)

(4b)

assuming x and y to be real.
From this expression, it is straightforward but tedious

to compute the derivatives of the potential in the two
directions. We only display BV/Bx since the others are
messy and not particularly illuminating:

Z +y
=2xV+ [(f'+xW)(f"+ W+xf')

The most general gauge-invariant and renormalizable su-
perpotential for X is given by

g(X)= TrX + TrX +bp,
bi

(5)

Furthermore, we want the true minimum in the X direc-
tion to break SU(5)~SU(3) XSU(2) XU(1) which implies
that

where the constants bp, bi, b2 will be fixed by condition
(4b). It is convenient to work with dimensionless variables
x and y defined as

x=P/M, y—=X/M .

Then

b)M b2M
g(y)= Try + Try +bp .

+Wf'Try +5M f'Try

+M f'Try 3Wf'], —(l l)

where primes denote B/Bx. Using these expressions, one
can determine what the value of the X field is when P =0,
i.e., at the beginning of inflation.

In the Appendix we show that it is impossible to simul-
taneously satisfy BV/Bx=B V/Bx =BV/By=0, V&0,
and V-0(p ) at /=0 if the X field is sitting at its true
minimum, i.e., in the 3-2-1 phase. Since all the above
conditions are necessary for a successful inflationary
model, the X field must start its evolution away from the
true minimum. If the X field is at its true minimum
when /=0 then it will be less likely that X oscillations
will be generated as P evolves from / =0 to P =Pp.

%e now estimate the baryon to entropy ratio in two
representative models.

&o
Po= ~ =~

—3
—3

II. MODEL I

The superpotential for the inflaton field is"

f(x) =IJ. M(x —1), x =P!M, (12)

15b)h —10b26 +bo ——0

4kb y =yo
=0 (with the constraint Try =0)

where 6 is a scale characteristic of X (typically MoUT).
Now the condition g (yp) =0 implies where the scale }M is fixed at (10 —10 )M by demand-

ing that the model gives the correct order of magnitude of
density fluctuations which lead to galaxy formation. "'3

This superpotential leads to an absolute minimum at
x =1 with zero cosmological constant and unbroken su-
persymmetry.

The evolution equations for x and y can be solved nu-
merically and the energy stored in the X field can be
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determined. However, this is not particularly illuminat-

ing. We find that a more physically transparent strategy
is to solve the evolution equations analytically using vari-
ous physically reasonable approximations. This is the ap-
proach we choose in the following analysis.

There are two natural scales in this model: the scale p
associated with the inflation sector (p/M- 10 —10 )

and the scale b associated with the X sector which has a
typical value —10 M (Ref. 14). Thus a reasonable pa-
rameter to use is plh. We will throughout keep only the
lowest-order terms in p/b, .

At /=0, we need to determine the value of the X field.
Assuming that the value at /=0 is a small perturbation
from the true minimum, we write

2+ay, /6

—3 ——,ay. /53

Using the derivatives BV/By we can solve for a to get

which confirms our expectations of keeping only the lowest-order terms in p, /h.
Next we need to trace the evolution of the P and X system in the P-X plane as P evolves from 4 =0 to P=gp=M.

Once again we need to solve the evolution equations numerically, but we can simplify matters. Since the position of (y )
at / =0 is not very different from that at /=$0, it is reasonable to assume that the evolution of P is unaltered.

With these assumptions, we now obtain the position of the X field at the end of inflation. The inflationary epoch is
characterized by a slow rollover in the P direction and, in terms of the potential, this implies

V"(P)&,
~

V(P) ~,
M

(14a)

V'(P)&
( V(P)

~

.

For the potential we consider, the first equation breaks down first at a value

x, -0.2425 .

(14b)

Using this value of x„we once again solve BV/By to get the value of X at this point (to lowest order in p/b, ). Assum-

ing the form of y to be as in (13) we get

2

2+~. j.5 "
2+ 1.15

y(x =x, )=
M

2+1.15 P

p 2—3—l.725

—3—1.725

The evolution of the P and X fields is governed by the
evolution equations which are

I Vx+3Hx+ I xx M~ Bx

yas+38yab+ 1 yyab =
M y~b

H =
z [V(P,X)+—,'P + —,'X +p„] .

Here I „and l„are the decay rates of the P and X
fields, respectively, and pr is the energy density in radia-
tion. The equation for y can be rewritten as an equation
for a using (13)
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1 Va+3Ha+I „a=—
pM y

We can get a sensible approximation scheme for these
quantities by comparing the order of magnitude. Since
the P field has only gravitational couplings, its decay rate
ls

(20)

On the other hand, X is a gauge nonsinglet and its de-

cay rate is

with the oscillations in the P direction is O(p ) and that
in the X oscillations is O(p b, /M ). Since 6-10 M,
we can safely ignore the contribution of px to the evolu-
tion of the scale factors.

We assume that the dominant mechanism for the pro-
duction of baryon asymmetry is the decay of color-triplet
Higgs field which is produced in the decay of X. This
will give us a lower limit on the magnitude of nz/S.

Let nH be the number density of the Higgs triplets of
mass mtt produced by the decay of the X's. Then the en-

ergy density pH is given by, since the Higgs fields are non-
relativistic,

I x-amx-ah (assuming mx-h), (21) (26)

where a is the GUT gauge coupling constant.
At the origin in the P direction, the value of the Hubble

parameter H is -}ui/M. Assuming m~-}u~/M (Ref. 11)
and a- —,', (Ref. 15), we obtain

I ~ &&3H &&ab, .

Furthermore, the time taken for slow rollover, t„ is
given by"

t, — )&I"IM
(23)

p
The physical picture which emerges from this is as fol-

lows: at t =0, the P field is at its origin while the X field
is displaced from its true minimum at a value given by
(13). From t =0 to t =t„ the P field evolves slowly from
/=0 to P=g„giving rise to the de Sitter expansion of
the scale factor. Since this time is much longer than the
lifetime of the X's, all the primordial X's decay and the
density of the decay products is exponentially diluted.
However, at t =t„X is not at its true minimum but is
displaced to a value given by (16).

Taking into account the inequalities given by (22), we
can approximately solve the evolution equations for P and
X. These equations give us essentially the same result as
if the X field were moving in a pure quadratic potential
around the true minimum. Thus for our purposes, we
take the motion in the X direction to be governed by

Further let a fraction f of the X energy before decay go
into the triplets and for simplicity the rest into photons.
Then

ptt =fpx
and the reheat temperature is

' 1t4

(1 f)PE—30

ge
TRH

(1)

(27)

(28)

R(t =t&)
ptt(t =ty)=pH(t =t ) R(t =t, )

(30)

where R is the cosmic scale factor. But

where g, is the effective relativistic degrees of freedom.
The potential in the P direction is given by

V=e' p (x —4x~+7x —4x —x +1) (2

and near x =xo by

V=}u e [4(x —xo) +12(x —xo) + ' ' ' ] .

Thus near x =xo, the dominant term is the quadratic
term and the expansion is matter dominated. 'o The ener-

gies at t =t, and t =t~ arerelatedby

V= —,'M mx (y —yo)2= —,'M b, a ~ . (24)
=[1+ ,' H, , (tt, t,-}]'", -

R t,
(31)

At time t =t„ the value of X is given by (16) and the
total energy in the X direction is at least

4

p&(t =t, )-h'
M

(25)

where H, , is the Hubble parameter at t = t, .
e

From (22) and (23) we obtain

(32)

The field is oscillating in a pure quadratic potential
with a frequency given by its mass. Since this frequency
is comparable to the decay rate of X, this energy rapidly
goes into decay products before red-shifting decreases it
significantly. On the other hand, the P field has a very
long hfetime and it continues to oscillate near $=4o for a
long time, with its energy red-shifting significantly before
decay into radiation. So we need to study the evolution of
the energies associated with the P and X directions from
time t =t, to t =t~ =I

~
' and compute the ratio n&IS

at t =ty.
To study the evolution, note that the energy associated

Also from (18) and the fact that pt, (t, )-p we get
8

PH(t~ )= , PH (t,)—4 p (33)

Using (33) and px(t, )-(h /M )p we obtain the num-
ber density of the triplets at the time of P decay as

nH(ty}=PHD f iu"
M' (34)

Assuming that ez is the baryon excess produced per
triplet decay we obtain the number density of excess
baryons as
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12

n — ' a'" (35)~10
From Ref. 11, we know the reheat temperature for this

model,

TRH —QMI p
—p /M (36)

Note that this is the final reheat temperature, produced by
the decay of the inflaton. There might be some intermedi-
ate reheating associated with the decay of other particles,
e.g., TRH associated with the decay of X's. This produces
a negligible amount of entropy because the small amount
of energy gets red-shifted significantly between r, and t~
Thus the baryon to entropy ratio at t = t~ is given by

&a 45 &af hp,
(37)

2ir g, iii~ M
Using Eq. (37) we can estimate the numerical value of

ns/S and compare it to the observed value of —10
There are however, ambiguities in the values of the pa-
rameters entering Eq. (37). The values of p/M and LL/M
can be fixed, as already indicated at 10 —10 and 10
respectively. "' g, can be assumed to be -2X10 at
these scales. ez, f, and m~ are more uncertain and model
dependent.

It is known' that in supersymmetric models, apart
from the usual dimension-6 operators responsible for pro-
ton decay, there can also exist dimension-5 operators
which could give a disastrously small proton lifetime. If
these operators are present, we have a lower bound on the
mass of the superpartners of the triplets given by'

m- &10' GeV. (38)
3

However, one can invoke certain symmetries, for exam-
ple, a Peccei-Quinn symmetry or a discrete symmetry,
which forbid proton decay by dimension-5 operators. In
these cases the hmit is much smaller. For example, Ref.
18 shows that it is possible to reconcile a low-mass Higgs
triplet with the experimental bounds on proton lifetime.
The lower bound is considerably reduced to

m~ &2.85)(10' GeV . (39)

The value of es, or the net baryon number produced by
the decay of a particle-antiparticle pair is also very model
dependent. At the tree level, ez —0 and ez+0 comes
from loop diagrams. For supersymmetric GUT's, no
"surprising" cancellations occur at the one-loop level and
so ez &O(a/4n ) (Ref. 14). The quantity f is to be deter-

mined by looking at the decay modes of the X's. The X's
can decay into anything lighter —triplet, doublet Higgs
bosons, gluons, etc. A value of —,', is not an unreasonable
value for this parameter. Using ez —10 (Ref. 18) we
obtain froin (37)

iO
—10iO( —9-12) (40)S PGH

If we use mz —10+'0 GeV and p-10 M, we obtain a
value of ng/S which almost agrees with that observed.
However, if the higher bound on m& is taken from
models where dimension-5 operators are not suppressed
by some symmetry, then this mechanism gives us a much
smaller value of n~/S in disagreement with observations.

f(x)=@AM(P+e+x+Px ——,', Px ), (41)

where P= ——,
' v 2 ——', e+O(e ). The minimum is super-

symmetry breaking and is at
' 1/2

x=v2+ e
2 2

3
(42)

and the gravitino mass is

miq2 ——,' (3v 2e)'—n ei~2 (43)

In this model, supersymmetry breaking is associated
with a nonzero value of e. However, for the first part of
our analysis we mill assume a=0 since this does not
change our conclusions. We start with a superpotential

f(x)=i/2p M ——+ ——x +3 x 3 2 x
8 v2 8 32

(44)

Coupling the X field to P and carrying out the same
analysis as for model I, we obtain the value of X at the
end of inflation. The slow rollover or the inflationary
epoch ends at a time t =t, when the inequalities in Eq.
(14) are no longer satisfied. It turns out that the second
inequality breaks first when the P field is at P, given by'9

$, -0.71M . (45)

Using this value of p„we solve BV/By =0 to obtain

III. MODEL II

Having computed nz&z for this simple model with no
supersymmetry breaking, we go on to consider a model
with supersymmetry breaking in the inflaton sector.

Consider the inflaton superpotential'

2+0.41 P

y(x =x, )=
M 2+0.42 (46)

—3—0.62
hM

—3—0.62
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Once again, as for model I, we use these initial condi-
tions to approximately solve the evolution equations for X
and P. Not surprisingly, we find again that the motion in
the X direction is governed by a pure quadratic potential.
At time t„ the X field sits away from its true minimum
and has energy px-p, 6 /M which rapidly goes into its
decay products I.n computing n& IS, we need to trace the
evolution of p~ and pz from t, to t&. It is in this part that
the difference from model I comes in.

Recall that for model I, the potential was predominant-
ly quadratic in the P direction and hence the Universe ex-
panded like a matter-dominated one. In model II howev-
er, there are two stages of expansian (once again p~ &&px
and the evolution is governed by p&). From time t, to a
time t=t, -6x10 3e 'M/p, the P term dominates
and the Universe expands as if radiation dominated. '

Thus for t, (t (t,
=[1+2H, , (t —t, )]'i'.R t,

(47)

From time t, to t~=—I ~
', the dominant term is quadra-

tic and expansion is matter dominated:

t, (t (ty, =[1+
& H, , (t t, )]-8 (t)

(4&)

Now following the same steps as in model I with the
same notation, we find that

&ape(ty)
Ply =

7tt8

~f ~P ini 3
tt (49)

iy4~2

gg M mH
(51)

From Ref. 19 we have p, /m —10 —10 and
e-10 +-' . From the discussion for model I, we know
that the values of the other parameters are model depen-
dent. Taking g, -2)&10, dim —10 2, mH —10' GeV,
eg —10,and f- 10 ' we obtain

l1g
lo —11lo(—i.s —2)

S

which is similar to that obtained in model I apart from a
factor of e' . In fact the reheating temperature in this
model is smaller by e ~ compared to model I, and so one
expects a larger n~/S This is not tru.e, however, because
the inflaton field has a longer lifetime in model II. Hence
the energy in the triplets is red-shifted more and the
enhancement due to a lower reheating temperature is
more than canceled to give us nest /S in (52).

The two models we have considered, suffer from the
same discase: they both violate the requirement that at

Since the energy density in X is much smaller than that
in P's, one can easily check that the reheating temperature
is the same as obtained in Ref. 19:

3P/4
TRH

M

Using Eqs. (49), (50), and I &-m&3/Mz it, se3~3/M'
(Ref. 19) we obtain

high temperatures, a sufficient amount of energy is stored
in the scalar field P to give enough inflation —the thermal
constraint. In other words, infiaton must start its evolu-
tion far away from its global minimum, slowly roll down
and eventually settle in its global minimum. This is not
surprising, however, because of a general result given in
Ref. 20. In a hidden sector with a single field and a flat
Kahler metric, the temperature corrections do not stabi-
lize the field at the origin.

The solution to this problem suggested in Refs. 11 and
19 is ta allow for direct couplings between P and another
field f. For our case, we have until now, only considered
the situation with the GUT sectar and the inflaton sector
are separate, i.e., only coupled gravitationally. If direct
couplings between the two sectors are allowed, the situa-
tion in the two models is somewhat different.

In model I, the inflation sector does nat break super-
symmetry and hence direct coupling of P and X will not
have any damager of changing the breaking scale. In model
11, however, the inflation sector is also responsible for the
breaking of supersymmetry (with e+0). In this case we
need to be careful because there is a danger that the super-
symmetry breaking scale will be pushed up to maUT since
the X's now couple directly to the P.

Thus in both cases we see that if we include direct cou-
pling of P and X, then the thermal constraint can be satis-
fied. Furthermore, it is possible that with direct cou-
plings, the value of ntt /S will improve because more ener-

gy can be transferred now from the inflaton to the X.
However, with the direct couplings, the analysis becomes
very complicated. This is because first, one has to be
careful that gauge radiative corrections do not spoil the
nice features of the inflationary potential. Second, both
the fields are now responsible for inflation and reheating
(for an exception see Ref. 21). We do nat carry out this
analysis since it is beyond the scope of the present work.

To conclude, we have studied a mechanism for the gen-
eration of baryon asymmetry which involves the use of
the couplings of heavy fields with the hidden sector. This
mechanism seems to be a very general one since in any
model with an infiationary sector and a GUT sector
which has heavy fields, there will exist the possibility of
the transfer of energy from the inflaton to the heavy
fields. We have obtained the value of nz/S in the case of
two infiaton superpotentials (one with and one without su-
persymmetry breaking). The numerical value of na/S
however is seen to be dependent upon parameters which
are model dependent. We saw that if we use the bound on
mls from supersymmetric GUT's where some syminetry
prohibits dimensions-5 operators for baryon decay, then
we obtain a value of nit/S which is almost in agreement
with the observations. In both models we saw that the
thermal constraint is violated unless one includes direct
couplings between the inflaton and the X fields. We con-
clude then that there exists another possible mechanism
for baryon-number generation within the framework of
supersymmetric inflationary cosmologies.

Note added in proof. After this work was finished, we
found out that similar ideas were mentioned in Ref. 22.
%'e wish to thank Costas Kounnas for bringing this to our
attention.
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(A7)

+(y,' —1)f,f ]=0, (AS)

I M yo f'i'+() o' —&)fi'+figi',
pM

Furthermore at x =0, y =yo,

(A9)

BV B'V BV
Bx

=0 atx =0, y=yo .
These conditions imply

iM M Ifi (fi'+()'o —2)fi]I =0
&"M'I&i'(&o' »—+f"i'+f if i'+) o'f'i'

In this appendix we show that under very general con-
ditions it is impossible for the X field to sit at its absolute
minimum when 4=0. The notation is that of the text.
l.et f(x) and g(y) be the superpotentials in the two sec-
tors. Let

Using (A9) gives us

(A10)

f(x)=p Mf, (x), (A 1)
3

V(03'o) =iu fi fig—i-4e
M p, M

lV(x,y) =f(x)+g(y) . (A3)

Now we impose the following conditions: at x =xo,
y =yo (the true minimum) we must have unbroken super-
symmetry and zero cosmological constant. This implies

fi(xo) =f 'i (xo) =o

gib o) =g i () o)=0 .

(A4)

(A5)

Assume that when x =0, y =yo, i.e., the field y starts off
at its absolute minimum. Then demanding that the po-
tential be flat means

(A2)

where fi(x) and gi (y) are dimensionless. Further assume
that there is no direct coupling between the two fields.
Then

+4& 0 g3p
2

, fi fi+gi
pM

But gi'(yo)-O(M /6 ) since yo-O(b, /M) for the ex-
ample in text which is quite general. Then (Al 1) immedi-
ately tells us that

V(0,yo )-0(b, m~) .

(Al 1)

This is unacceptable because we know that the potential at
/=0 must scale like iu with iu-10 to give us the
correct density fluctuations. If the field X at /=0 sits at
its absolute minimum then the scale LM, drops out of the
potential.

Thus we assume that the field X starts at some other
value at /=0, i.e., we solve for BV/By =0 at /=0 as in
the text.
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