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%'e study how the properties of t-quarkonium states depend on the scale parameter P~s, where

MS is the modified minimal subtraction scheme. %e find that if P~s is as small as 100 MeV the

shape of the QQ potential for the low-lying tt states with trt, -40 GeV ls already almost uniquely

determined while if Axis is as large as 500 MeV the ambiguity in E(2S)—E( 1S), e.g., becomes much

larger (-20%). %e also study the difference of predictions of t-quarkonium spectra between non-

relativistic and relativistic models. Finally we show that hyperfine and fine splittings are sensitive

to the value of Axa, and hence the allowed range of Axis may be restricted from the data of already

known quarkonia, cc and bR

I. INTRODUCTION

Heavy-quark systems have a very clean spectroscopy
which allows precision measurements of all the basic
properties of the states. Up to the present, various parti-
cles which contain the b quark, e.g., Y, Y', . . . , 8,8' are
already found (see, e.g., Refs. 1 and 2), and the UA1 Col-
laboration at the CERN pp collider seems to fmd events
which are consistent with the top quark having a mass be-
tween 30 and 50 GeV. In the near future the energy re-
gion accessible for the e+e colliding machine will be in-
creased drastically and we can expect that the t
quarkonium states will be found and studied in detail.

The properties of t-quarkonium states have been stud-
ied theoretically by various authors (see, e.g., Refs. 4—11).
Because of the success of the nonrelativistic potential
model and the flavor independence of the QQ potential,
we can say that the shape of the potential between 0.1 and
1 fm is already fixed. The root-mean-square radius of the
tt ground state becomes substantially smaller than those
of the cc and bb states due to the large top-quark mass,
and hence it will be able to distinguish between various
kinds of potentials as well as different values of A~,
where MS stands for the modified minimal subtraction
scheme.

In Sec. II we find various QQ potentials which are con-
sistent with QCD expectation and reproduce cc and bb
properties using the Schrodinger equation. In Sec. III we
use the Salpeter equation in order to study the relativistic
effects to heavy-quarkonium spectra. Adopting these po-
tentials we study properties of the tt states as a function
of A~ and show the theoretical ambiguities in Sec. IV.
In order to see the allowed range of A~ in our model we
also compute spin-dependent forces of cc and bb states as
a function of AMs and compare them with the data in Sec.
V. Summary and conclusions are presented in Sec. VI.
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b& ——154/3 are the coefficients of the P for four flavors.
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II. THE QQ POTENTIAL

Some time ago, Buchmuller and Tye proposed a poten-
tial which satisfies the following three conditions.

(i) At long distances, the QQ potential grows linearly
leading to confinement.

(ii) At short distances, the two-loop perturbative calcu-
lations of the QQ potential give reliable predictions.

(iii) It should reproduce the cc and bb spectra.
The asymptotic behavior of the potential due to condi-

tion (ii) can be expressed in momentum space as
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satisfies the above three conditions. Here yE is Euler s
constant and Ei(x) the exponential integral.

Their potential, however, imphes a fairly large A~ of
about 500 MeV, which is related to the Regge slope pa-
rameter (a'-1 GeV t}. It is not possible to incorporate a
smaller A~ (down to 300 MeV) in this scheme to repro-
duce correct cc and bb spectra. Although they have an
additional parameter I, this situation cannot be improved
for any value of 1. As another example they connected
the short-range part of the potential with A~=200 MeV
for r &0.03 fm, and the phenomenologically successful
lang-range part of the potential with A~ ——500 MeV for
r ~0.1 fm by logarithmic interpolation. If one connects
the two potentials in this way, additional parameters be-
come necessary. Furthermore, the potential is not smooth
any more; hence it is not clear whether this potential real-

ly satisfies the above conditions (i), (ii), and (iii).
In order to overcome such problems, we propose here

the following potential in coordinate space:

V(r}=V„F(r)+ar,

where

(2.5}

Buchmuller and Tye found that p(Q ), as defined by the
relation

with i =J/P, P(2S},P(4S), Y(IS), Y(2S), Y(3S} We do
not include 1((3S) and Y(4S} in our fit since masses of
these states might be disturbed by some reason. ' %e
have found that the X value becomes a minimum for
A~ ——340 MeV, but the other value, e.g., A~ ——300 MeV,
is also acceptable. For example, we find an excellent fit
by taking the following parameters:

A~s ——300 MeV, a =0.1414 GeV, b =19,
m, =1.506 GeV, m~ ——4.897 GeV .

(2.9)

V(r)= VAF(r)+dr e s'+ar . (2.10)

In this case we can change A~s from 100 to 500 MeV

keeping a good fit to the cc and bb spectra.
The potential with b= 20 is called "the potential J" and

the one with b= S is called "the potential E." Instead of

We call this potential the nonrelativistic version of the po-
tential I. Note that A~ ——300 MeV is more reasonable
than A~ ——500 MeV used by Buchmiiller and Tye. In the
potential I, the allowed range of A~ is 340+SO MeV. If
we replace ar by av r in Eq. (2.5) [i.e.,
V(r) = VAF( r)+av r )], the allowed range of AMs becomes
lower (A~-100+50 MeV). In this case, however, we do
not have the linear confining potential any more.

In order to extend the possible range of A~, keeping
the linearly rising confining potential, we add a term
which does not disturb either the short-range asymptotic
behavior or the linear confining part of the potential,

with

16n 1 2'Yz+ 75

25 rf (r) f(r)
462 lnf(r)
625f(r)

(2.6)

f(r) =in[1/(A~r)2+b] . (2.7)

6
y2 ~ ~ theo~ exPt ~2

I (2.8)

We call this potential "the potential I." The asymptotic-
freedom potential VAF(r) given in Eq. (2.5) satisfies the
condition (ii) for small values of r and becomes zero for
large values of r. The linear-rising confining potential ar
is then added to V„F(r}.

While the Buchmiiller-Tye potential has two free pa-
rameters A~ and I, we now have three parameters: A~,
a, and b The parame. ter b is included to remove the
singularity which comes from the inverse of the logarith-
mic function. In the Buchmuller- Tye potential or
Richardson potential, ' a similar additional constant is
added but they assumed that it is equal to 1. In some
sense this is a parameter which is taken to be 1. One can
easily prove that such an additional constant (b in our
case and I in the Buchmuller-Tye case} inside the loga-
rithmic function does not change the short-range asymp-
totic behavior up to the order of 1/ln (1/A~ r ) or
1/ln (Q /Agg ).

Let us now find parameters AMs, a, and b. %e fix our
parameters by minimizing the quantity

-5

-3

FIG. 1. Potentials J, K, and 6 are plotted as a function of R
for Abets

= 100, 200, 300, 400, and 500 MeV. A suitable constant

is added to each potential so that all potentials take the same
value at 8.=0.3 fm.
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TABLE I. Parameters used for potentials (a) J(b =20), (b) K(b =5), and (c) G(b =2). See Eqs.
(2.7), (2.10), and (2.11).

(a)
P; — (GeV)

0.1

0.2
0.3
0.4
0.5

0.1733
0.1587
0.1443
0.1387
0.1391

g (GeV)

0.3076
0.3436
0.3280
2.903
2.955

0.4344
0.2550
0.0495
0.582
1.476

m, (GeV)

1.134
1.322
1.471
1.515
1.514

m~ (GeV)

4.563
4.731
4.868
4.910
4.911

0.1

0.2
0.3
0.4
0.5

0.1762
0.1734
0.1615
0.1389
0.1137

0.2753
0.3479
0.4482
0,6219
1.0029

0.4720
0.5362
0.6020
0.5632
0.7368

1.120
1.267
1.416
1.604
1.748

4.551
4.684
4.815
4.986
5.118

0.1

0.2
0.3
0.4
0.5

0.1755
0.1668
0.0956
0.1375
0.1425

0.2849
0.2948
0.0993
0.2430
0.4275

(c)
0.421
0.352
0.1729
0.1311
0.1811

1.125
1.264
1.450
1.535
1.583

4.553
4.679
4.849
4.924
4.972

f(r)=In[i/(A~r) +b] we have also tried another func-

tion, f(r) =in[1/(A~r)+b], i.e.,

V(r) = V&F(r)+dr e s"+ar, (2.11)

with f(r) =In[1/(A~r)+b] . This is called "the poten-
tial G."

Parameters of the potentials J, K, and G, their predic-
tions for cc and bb spectra, and their shapes are shown in

Tables I and II, and Fig. 1, respectively. We find reason-
able fits for all these potentials from A~ ——0.1 GeV to
A~=0.5 GeV. Small discrepancies between the theory
and experiment can be seen, e.g., for lb(3S), lb(ID), and
P(4S). We do not take these seriously since similar
discrepancies are seen for any potential model and it
might be related to the threshold effects' or QQg-QQ
mixing. '

TABLE II. The cc and bb spectra predicted by potentials J, K, and G. The difference E(theory) —E(experiment) is listed in MeV.

(a) Nonrelativistic model with parameters (2.9). (b) Relativistic model with parameters (3.2).

Potential I
(GeV) (a) (b)

cc Expt A)(rs 0.3 0.3
Potential J

0.1 0.2 0.3 0.4 0.5
Potential I(

O. l 0.2 0.3 0.4 0.5
Potential 6

0.1 0.2 0.3 0.4 0.5

1S 3096
1P 3521
1D 3772
2S 3685
3S 4030
2D 4159
4S 4415

—3
—10

23
—3
55
0
5

0
13

56

—3 —2 —4
5 2 —3

37 34 31
5 2 1

48 49 56
—5 —4 3

3 —1 5

1 1

0 —1

31 30
0 0

54 54
2 2
0

—2 —7 —1 —3 —2

4 —6 4 1 2

35 28 35 34 40
3 —1 3 4 11

47 48 46 52 60
—6 —6 —7 —2 5

0 6 0 0 —9

1 —1 —18 —4 —3

6 3 —12 —5 —1

37 36 42 36 33
5 5 17 9 2

48 50 77 61 55
—5 —4 19 5 3

1 —2 —4 —2 3

bb ExPt

1S 9460
1I' 9898
2S 10023
3S 10355
4S 10573
5S 10868'?
6S 11019~
2I' 10259

9 0
—18 —7
—6 —1

—12 4
24 51

—52 —17
—6 36

—21 —3

0 1 —1 0
—20 —17 —12 —1

5 5 1 4
—3 —4 —4 —1

14 21 31 34
—81 —66 —47 —44
—50 —28 —4 0
—9 —10 —11 —5

0

2
—1

36
—42

2
—1

0 5 0
—18 —16 —18

5 0 4
—5 —6 —4

13 18 19
—83 —69 —66
—52 —30 —24
—10 —12 —7

2 1

—24 —25
2 0

—4 2
28 41

—51 —37
—5 4

—11 —11

1 2 9
—19 —14 —32

4 4 —11
—7 —3 5

10 20 53
—86 —70 —25
—55 —35 8
—12 —8 —12

8 —2
—20 —7
—6 1

—2 0
37 37

—43 —40
—3 6

—12 —4
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The slope parameter found in these fits is around 0.15
GeV. The quark masses m, and m~ increase as the
values of A~~ increase. This is explained in the following
way. %e have assumed the short-range asymptotic
behavior given by Eq. (2.3). The absolute value of this
short-range potential decreases with increasing A~. In
order to reproduce experimental masses we need larger
quark masses for larger values of AMs. This situation be-
comes completely different if we are allowed to add an ad-
ditional constant to Eq. (2.3). However, we have not at-
tempted such a possibility in this paper.

III. THE RELATIVISTIC POTENTIAL MODEL

IV. t-QUARKONIUM SPECTROSCOPY AND AMs

In order to predict the properties of tt states, there are
various theoretical ambiguities. Even if we assume the
fiavor independence of the quarkonium potential, the
short-range behavior (r &0.1 fm) is undetermined from
the cc and bb spectra alone. Such a short-range behavior
becomes especially important for the 1S tt state. The
QCD predicts the short-range behavior but the scale pa-
rameter A~ must be determined experimentally.

Buchmiiller and Tye studied the tt spectroscopy by the
use of their potential for various values of A~. We will

In order to study the relativistic effects to heavy-
quarkonium spectra we use the Salpeter equation

[(—V +ms )' +( —V' +m& )'~ + V(r)]Q=EQ . (3.1)

We solve this equation numerically, using the program
developed by Nickisch, Durand, and Durand. 's We first
try to find a potential which reproduces cc and bb spec-
tra. We again use the potential I defined by Eqs. (2.5) and
(2.6},but with different parameters: 0.9-

Y~=500

A~ ——300 MeV, a =0.1585 GeV

b =23.3, m, =1.494 GeV, ms ——4.874 GeV .
(3.2)

These parameters should be compared with the nonrela-
tivistic ones, Eq. (2.9). We now have a slightly larger
slope than the nonrelativistic one (see Fig. 2). This can be
understood in the following way. In the nonrelativistic
models the kinetic energy p /2m is overestimated com-
pared with (@2+m )'~ —trt. Thus if we must fit the
same cc and bb spectra in both the nonrelativistic and rel-
ativistic models, we need a smaller slope to absorb the
overestimation in the kinetic term in the nonrelativistic
model than in the relativistic model.

We find again a reasonable fit with the parameter (3.2)
(see Table II). These calculations are performed by mak-
ing use of the method by Nickish, Durand, and Durand
with X=77, which is fast and accurate. The accuracy of
this calculation is discussed in Ref. 15.

O.S
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FIG. 2. Potentials for the Schrodinger equation and for the
Salpeter equation. A~& ——300 MeV is assumed.

FIG. 3. t-quarkonium mass difference EI,'2S) —E(1S) as a
function of the top-quark mass for various Axis. Results for the

potentials J, K, and G and for the Richardson potential are
shown. Shaded regions correspond to the allowed region for
various AM&. These regions should be regarded as theoretical
ambiguities.
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FIG. 5. Same as Fig. 3 but for I «(1$). The QCD correction
factor 1 —16aq/3m (-0.9) and Z boson effects are omitted.
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FIG. 4. Same as Fig. 3 but for E(3S)—E( IS).

recalculate the properties of the tt spectra in a similar line
with the following improvements.

(i) The short-range asymptotic behavior of the potential
is smoothly inteiyolated to the long-range 1inear1y rising
confining part.

(ii) For each value of Agtg we have made the X fit to
the cc and bb spectra. In this sense our parameters are
chosen without any prejudice for each Agtg.

(iii) We study three kinds of potentials for each AgIg,
and hence, not only the Agg dependence, but aho the po-
tential dependence of various properties of tt can be stud-
Md.

(iv) All our potentials can be generated easily, so that
anyone can reproduce our results mthout any trouble.

2.0-

20

2w
«~~W~i%W i~

Aqua =300

30 &0

~t (GeV)
50

~,t- =)A~=]OQ

FIG. 6. Same as Fig. 5 but for I (2$).
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(v} We also check the relativistic effects by solving the
Salpeter equation.

A. P Ms and potential dependence of the properties

of tt states

Using the potentials J, E, and 6 we compute properties
of the tt states. The quantities E(2S}—E(1S),
E(3S)—E(1S), I „(1S),and I „(2S) are plotted in Figs.
3—6, respectively. The Schrodinger equation is used in
this computation. For I'„we use the well-known formu-
la"

sg (0)r„= (&.1)
M(tt }'

with e~ ———', . The QCD correction factor 1 —16az/3n
(-0.9) and Z -boson effects are omitted. One can easily
include them, but we omit them here for simplicity.

From Figs. 3—6 we can reach the following con-
clusions.

(i) The mass difference between the 1S and 2S states
tends to become larger with increasing A~. This tenden-

cy becomes larger for larger values of m, .
(ii) The shaded regions correspond to the allowed re-

gions for A~ = 100, 200, 300, and 500 MeV, respectively.

The region where the potential can be determined by the
QCD decreases as A~M increases. Thus, for large A~ an
undetermined gap appears between the phenomenological-
ly fixed region (0.1—1 fm) and the one fixed by the QCD.
Thus, the shaded region becomes broader as A~ in-
creases.

(iii) The predictions by the Richardson potential are
also added in Figs. 3—6. One can see that the Richardson
potential has a more singular short-range behavior than
the one with A~ ——500 MeV.

(iv) Ambiguities coming from potentials are larger for
level splittings [E(2S)—E( 1S), E (3S)—E (1S)] than
those for the leptonic widths I „.

B. Use of the Salpeter equation
to study the relativistic effects for properties of fT

The t quark inside the t-quarkonium system is moving
nonrelativistically (u /c2-0. 01 for m, =40 GeV). Thus,
the t-quarkonium system can be well described by the
nonrelativistic Schrodinger equation. However, the cc
and bb systems are not so nonrelativistic and if the poten-
tial is fixed by a fit to cc and bb spectra we find the
steeper potential for the relativistic model than for the
nonrelativistic model. Thus, the relativistic model
predicts larger spacings between various excited levels of

TABLE III. Energy level (in MeV) and I (in keV) of tt states predicted by the Schrodinger theory
and Salpeter theory. The potential I [Eqs. (2.5)—(2.7)] with parameters (2.9) and (3.2) is used.

E(n+ i)s —E~ m, (GeV 30
Schrodinger theory

40 50 30
Salpeter theory

40 50

E(2S )—E(1S)
E{3S)—E{2S)
E(4S}—E(3S)

E{5S )—E(4S)
E(6S )—E(5S)
E(7S )—E(6S)
E(8S)—E(7S)
E(9S)—E(8S)
E{10S)—E(9S)
E(11S)—E (10S)
E(12S)—E ( 11S)

624
315
214
167
140
123
111
102
96
90
86

658
322
216
165
137
118
106
97
90
85
81

686
329
218
165
135
116
103
94
87
81
77

657
325
221
172
145
128
116
108
101
95
90

703
334
222
170
141
123
111
102
95
89
84

751
342
225
170
139
120
108
98
91
85
80

Schrodinger theory
30 40 50

Salpeter theory
30 40 50

(1S)
I „(2S)
I (3S)
r„(4S)
r„(5S)
I {6S)
I (7S)
r,",(8.)
I"„(95)
I „(105)
I „(11S)
I (12S)

5.03
1.80
1.13
0.84
0.68
0.59
0.53
0.48
0.45
0.43
0.41
0.39

5.56
1.77
1.09
0.79
0.63
0.54
0.47
0.43
0.40
0.37
0.36
0.34

6.46
1.76
1.07
0.77
0.60
0.50
0.44
0.40
0.36
0.34
0.32
0.31

6.21
2.36
1.47
1.11
0.91
0.80
0.72
0.67
0.62
0.59
0.56
0.53

6.63
2.30
1.40
1.03
0.83
0.71
0.64
0.59
0.55
0.51
0.48
0.46

7.10
2.26
1.36
0.98
0.79
0.67
0.59
0.54
0.49
0.46
0.44
0.42



33 HEAVY-QUARKONIUM SYSTEMS AND THE QCD SCALE. . . 3355

tt than the nonrelativistic model by around 5% and the
former predicts larger I „ than the latter by around
10—30%. These are shown in Table III.

V. SPIN-DSPaNDENT FORCES AND ~„,
In this section we show that the fine and hyperfine

splittings are very sensitive to the value of A~M,
' thus the

allowed range of AMs might be restricted from the data of
already known quarkonia, i.e., cc and bb T. he QCD radi-
ative corrections to the spin-dependent forces have already
been calculated by various authors. ' ' Taking here the
scheme by Gupta, Radford, and Repko, ' we compute the
A~ dependence of spin-dependent forces. The interac-
tions are given by'

Seas as as ln(pr ) +ys 2 1as ln(mr)+ y@
Hss ——

2
oicr'i 1 — (26+91n2) 5(r) —

2
(33—2n/)V 2V9~2 24m r l6m' r

—:CO') '0'2, (5.1)

as 3oi fo2 r oi oi— 4as as 4 &as
(33—2n~)[ln(pr )+yE ——, ]— [1n(mr)+yE ——, ]3' T 3m 6m 7r

=—8(3oi roy r —oi.o2), (5.2)

2as L S llas as 2as a LS
&I.S = 1 — + (33—2nf )[ln(pr)+ys —1]—— [ln(mr)+ys —1]

Nl 18m 6m 2m

=—ALS, (5.3)

=mls +42S +43$ +44$ (5.6)

The scale parameter in the Gupta-Radford (GR) renor-
malization scheme is related to A~ by

6A,
AGR =Ay@exp

33—Ztff
(5.7)

with A, =(49—10nf/3)/12. The coupling constant is given
by

where m is the quark mass, o is the slope of the scalar
confining potential, and }M, is the renormalization scale.

These interactions depend not only on the renormaliza-
tion scheme, but also on the renormalization scale. We
take the renormalization scheme by Gupta and Radford~o
and choose iu so as to minimize the effect of higher-order
terms which would be generated by the renormalization-
group improvement of the potential. These terms involve
higher powers of

as ki
(33—2nf )

12'fl p
whose expectation value is not very sensitive to the varia-
tions in p except for the S state.

We fix p so that the quantity

(a=s/12m)(33 2n—f )(ln(k /p))/, ( I )

as(33 2nf ) — 1n(pr)+yE
dr

r
V'[g'(r)P(r)]

(5.5)

becomes small for all S states, where ( I)—=
~
P(0)

~

. In
our calculation we find p which minimizes the quantity

6m
as ———

(33—2nf )lnA&R/p

Assuming the nf ——4 and using the potentials J and E
(nonrelativistic wave functions), we compute expectation
values of the spin-dependent potentials (Hss, HLs, HT).
Results are shown in Table IV. We conclude with the fol-
lowing remarks.

(i) The fine and hyperfine splittings are not very sensi-
tive to the choice of potentials, but rapidly increase as

Agg increases.
(ii) For Am-200 MeV, we can reproduce approxi-

mately all hyperfine and fine splittings of cc and bb
states. The values A~ ——400 and 500 MeV are completely
ruled out. This conclusion does not depend on the choice
of potentials.

(iii) Gupta, Radford, and Repko' found the following
parameters: A~ ——134 MeV (nf —4), @=1.88 GeV for
in, =l.2 GeV, p, =3.75 GeV for regis

——4.87 GeV, which
are not very far from ours.

VI. SUMMARY AND CONCLUSIONS

We have found the QQ potentials which reproduce the
properties of cc and bb states for various values of A~M.
These potentials have linearly rising confining parts and a
short-range asymptotic behavior calculated to the fourth
order in perturbative QCD.

Using the nonrelativistic wave equations, we have fixed
acceptable parameters for AMs ——100, 200, 300, 400, and
500 MeV. %'e have then computed various properties of
t-quarkonium states as a function of AMs from these po-
tentials. We have shown that the ambiguities coming
from the shape of the potential are large, especially for
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TABLE IV. The hyperfine and fine sphttiugs in MeV for various Abets predicted by the potentials J and E. The scheme by Gupta,

Radford, and Repko (Ref. 18) is used.

Abets (MeV)

pot E

Expt

100
200
300
400
500
100
200
300
400
500

S state
S)-'So

1S
116+6

117
140
160
195
245
118
146
167
165
163

68
84

101
125
162
69
90

100
102
108

34.9%0.6

20.8
40.5
57.9
79.6

112
20.3
40.3
59.5
77.6
99.6

1P state

10.0+0.3

8.0
10.9
13.9
18.4
25.6
8.0

11.4
14.7
17.9
22.2

1.80
1.98
2.14
2.60
3.85
1.79
1.96
2.09
2.23
2.34

0.346
0.477
0.603
0.752
0.939
0.347
0.481
0.614
0.750
0.908

Abets (MeV)

S(-'So
1S 2S

1P state
8

3.1+0.2
2.5+0.3

A

14.2+0.3
13+1

2P state

1.7+1.0

p (GeV) as

pot E

100
200
300
400
500
100
200
300
400
500

33.5
39.5
44.6
52.7
61.6
34.2
41.0
44.4
42. 1

41.0

18.5
21.5
23.4
26.5
30.6
18.6
22.4
25.0
24.8
24.4

10.3
14.3
17.6
21 ~ 1

24.5
10.3
13.7
17.6
20.8
24.3

2.27
2.94
3.51
4.15
4.79
2.27
2.87
3.55
4.09
4.68

6.77
9.38

12.0
14.5
17.1
6.76
9.38

11.5
13.6
16.3

1.52
1.98
2,46
2.94
3.46
1.53
2.01
2.39
2.74
3.24

3.85
4.07
4.25
4.43
4.61
3.86
4.09
4.25
4.36
4.48

0.257
0.328
0.389
0.446
0.500
0.257
0.327
0.389
0.450
0.510

A~ & 300 MeV, but decrease for small values of A~. If
A~ is as small as 100 MeV, the r-quarkonium properties
can be almost uniquely determined.

We have also computed the fine and hyperfine split-
tings of cc and bb states. These splittings rapidly increase
as A~ increases. Experimental cc and bb splittings can
be reproduced for A~-200 MeV while A~=400 and
500 MeV are clearly ruled out.

Taking the preferred value Am=200 MeV, we can
predict

E(2S)—E(1S)=670+15 MeV,

E(3S)—E(1$)=995+15 MeV,

E(4S) E(lS)=1220+15—MeV

We have also studied how the results are affected if the
Schrodinger equation is replaced by the Salpeter equation
which has a relativistic kinematic part (pi+mi)'~2 —nt.
We find that E((n+1)S)—E(nS) increases around 5%
and I «(nS) increases 10—30%%uo for n up to 10.
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