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We study how the properties of ¢-quarkonium states depend on the scale parameter Ay, where
MS is the modified minimal subtraction scheme. We find that if Agg is as small as 100 MeV the
shape of the QQ potential for the low-lying ff states with m, ~40 GeV is already almost uniquely
determined while if Ay is as large as 500 MeV the ambiguity in E(2S)—E(15), e.g., becomes much
larger (~20%). We also study the difference of predictions of r-quarkonium spectra between non-
relativistic and relativistic models. Finally we show that hyperfine and fine splittings are sensitive
to the value of Ay, and hence the allowed range of Az may be restricted from the data of already

known quarkonia, ¢z and bb.

I. INTRODUCTION

Heavy-quark systems have a very clean spectroscopy
which allows precision measurements of all the basic
properties of the states. Up to the present, various parti-
cles which contain the b quark, e.g., Y, Y',...,B,B* are
already found (see, e.g., Refs. 1 and 2), and the UA1 Col-
laboration® at the CERN pp collider seems to find events
which are consistent with the top quark having a mass be-
tween 30 and 50 GeV. In the near future the energy re-
gion accessible for the e *e ~ colliding machine will be in-
creased drastically and we can expect that the ¢-
quarkonium states will be found and studied in detail.

The properties of t-quarkonium states have been stud-
ied theoretically by various authors (see, e.g., Refs. 4—11).
Because of the success of the nonrelativistic potential
model and the flavor independence of the QQ potential,
we can say that the shape of the potential between 0.1 and
1 fm is already fixed. The root-mean-square radius of the
1t ground state becomes substantially smaller than those
of the ¢¢ and bb states due to the large top-quark mass,
and hence it will be able to distinguish between various
kinds of potentials as well as different values of Agg,
where MS stands for the modified minimal subtraction
scheme. _

In Sec. II we find various QQ potentials which are con-
sistent with QCD expectation and reproduce cc and bb
properties using the Schrodinger equation. In Sec. III we
use the Salpeter equation in order to study the relativistic
effects to heavy-quarkonium spectra. Adopting these po-
tentials we study properties of the #7 states as a function
of Ay and show the theoretical ambiguities in Sec. IV.
In order to see the allowed range of A in our model we
also compute spin-dependent forces of ¢¢ and bb states as
a function of Agg and compare them with the data in Sec.
V. Summary and conclusions are presented in Sec. VI.

II. THE Q0 POTENTIAL

Some time ago, Buchmiiller and Tye’ proposed a poten-
tial which satisfies the following three conditions.

(i) At long distances, the QQ potential grows linearly
leading to confinement.

(ii) At short distances, the two-loop perturbative calcu-
lations of the QQ potential give reliable predictions.

(iii) It should reproduce the ¢ and bb spectra.

The asymptotic behavior of the potential due to condi-
tion (ii) can be expressed in momentum space as
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Buchmiiller and Tye found that p(Q?), as defined by the
relation

2 b,
ln-Q— =In(e 1/tbop) _ 1+ —
A? by?

bo

In 7 v —Eillp)

2

(2.4)

satisfies the above three conditions. Here y g is Euler’s
constant and Ei(x) the exponential integral.

Their potential, however, implies a fairly large Ay of
about 500 MeV, which is related to the Regge slope pa-
rameter (a'~1 GeV~2). It is not possible to incorporate a
smaller Ay (down to 300 MeV) in this scheme to repro-
duce correct ¢z and bb spectra. Although they have an
additional parameter /, this situation cannot be improved
for any value of /. As another example they connected
the short-range part of the potential with Agg=200 MeV
for r <0.03 fm, and the phenomenologically successful
long-range part of the potential with Agz=>500 MeV for
r>0.1 fm by logarithmic interpolation. If one connects
the two potentials in this way, additional parameters be-
come necessary. Furthermore, the potential is not smooth
any more; hence it is not clear whether this potential real-
ly satisfies the above conditions (i), (ii), and (iii).

In order to overcome such problems, we propose here
the following potential in coordinate space:

V(r)=Vagp(r)+ar , (2.5)
where
16 1 We+%  4621nf(r)
Vap(r)=— -
25 rf(r) f(r) 625f(r)
2.6)
with
f(r)=In[1/(Agr)*+b] . Q.7

We call this potential “the potential 1.” The asymptotic-
freedom potential V,g(r) given in Eq. (2.5) satisfies the
condition (ii) for small values of r and becomes zero for
large values of r. The linear-rising confining potential ar
is then added to Vg(r).

While the Buchmiiller-Tye potential has two free pa-
rameters Agg and /, we now have three parameters: Agg,
a, and b. The parameter b is included to remove the
singularity which comes from the inverse of the logarith-
mic function. In the Buchmiiller-Tye potential’® or
Richardson potential,'* a similar additional constant is
added but they assumed that it is equal to 1. In some
sense this is a parameter which is taken to be 1. One can
easily prove that such an additional constant (b in our
case and 1 in the Buchmiiller-Tye case) inside the loga-
rithmic function does not change the short-range asymp-
totic behavior up to the order of 1/In*(1/Agg’r?) or
1/InX(Q%/ Axgsd).

Let us now find parameters Ay, g, and b. We fix our
parameters by minimizing the quantity

6
X2= 3 (mfeoy e 2.8)

i=1
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with i =J /¢, ¥(25), ¥(4S), Y(1S), Y(2S), Y(3S). We do
not include ¥(3S) and Y(4S) in our fit since masses of
these states might be disturbed by some reason.'> We
have found that the X? value becomes a minimum for
Agjg= 340 MeV, but the other value, e.g., Ayg=300 MeV,
is also acceptable. For example, we find an excellent fit
by taking the following parameters:

Agpz=300 MeV, a=0.1414 GeV?, b=19,
m,=1.506 GeV, m;=4.897 GeV .

(2.9)

We call this potential the nonrelativistic version of the po-
tential I. Note that Agg=300 MeV is more reasonable
than Agg=500 MeV used by Buchmiiller and Tye. In the
potential I, the allowed range of Agg is 34050 MeV. If
we replace ar by aVr in Eq. (2.5 [ie,
V(r)=Vap(r)+aV'r)], the allowed range of Aygs becomes
lower (Agg~ 10050 MeV).% In this case, however, we do
not have the linear confining potential any more.

In order to extend the possible range of Ay, keeping
the linearly rising confining potential, we add a term
which does not disturb either the short-range asymptotic
behavior or the linear confining part of the potential,

V(r)=Vp(r)+dre % +ar . (2.10)

In this case we can change Agg from 100 to 500 MeV
keeping a good fit to the ¢Z and bb spectra.

The potential with b=20 is called “the potential J”’ and
the one with b=>5 is called “the potential K.” Instead of

V(R) >

01 R 3
R (fm)
FIG. 1. Potentials J, K, and G are plotted as a function of R
for Az =100, 200, 300, 400, and 500 MeV. A suitable constant

is added to each potential so that all potentials take the same
value at R=0.3 fm.
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TABLE I. Parameters used for potentials (a) J(b=20), (b) K(b=5), and (c) G(b=2). See Egs.

(2.7), (2.10), and (2.11).

(a)

Mg (GeV) a (GeV?) g (GeV) d (GeV?) m, (GeV) m;, (GeV)
0.1 0.1733 0.3076 0.4344 1.134 4.563
0.2 0.1587 0.3436 0.2550 1.322 4,731
0.3 0.1443 0.3280 0.0495 1.471 4.868
0.4 0.1387 2.903 0.582 1.515 4910
0.5 0.1391 2.955 1.476 1.514 4911

(b)
0.1 0.1762 0.2753 0.4720 1.120 4.551
0.2 0.1734 0.3479 0.5362 1.267 4.684
0.3 0.1615 0.4482 0.6020 1.416 4815
0.4 0.1389 0.6219 0.5632 1.604 4.986
0.5 0.1137 1.0029 0.7368 1.748 5.118
(c)
0.1 0.1755 0.2849 0.421 1.125 4.553
0.2 0.1668 0.2948 0.352 1.264 4.679
0.3 0.0956 0.0993 0.1729 1.450 4.849
0.4 0.1375 0.2430 0.1311 1.535 4.924
0.5 0.1425 0.4275 0.1811 1.583 4.972

f (r)=ln[1/(Amr)2+b] we have also tried another func-
tion, f'( r)=1n[l/(Amr)+b]2, ie.,

V(r)=Vap(r)+dre =% +ar (2.11)

with f (r)=ln[1/(AWSr)+b]2. This is called “the poten-
tial G.”

Parameters of the potentials J, K, and G, their predic-
tions for ¢z and bb spectra, and their shapes are shown in

Tables I and II, and Fig. 1, respectively. We find reason-
able fits for all these potentials from Agz=0.1 GeV to
Ays=0.5 GeV. Small discrepancies between the theory
and experiment can be seen, e.g., for ¥(3S), ¥(1D), and
P(4S). We do not take these seriously since similar
discrepancies are seen for any potential model and it
might be related to the threshold effects'* or QQg-QQ
mixing."

TABLE II. The c€ and bb spectra predicted by potentials J, K, and G. The difference E(theory)— E(experiment) is listed in MeV.
(a) Nonrelativistic model with parameters (2.9). (b) Relativistic model with parameters (3.2).

Potential [
(GeV) (a) (b) Potential J Potential K Potential G

@ Expt Agg 0.3 0.3 0.1 02 03 04 05 0.1 02 03 04 05 0.1 02 03 04 05
1S 3096 -3 0 -3 =2 -4 1 1 -2 -7 -1 -3 =2 1 -1 —-18 —4 -3
1P 3521 —10 13 5 2 -3 .0 —1 4 —6 4 1 2 6 312 -5 -1
1D 3772 23 37 34 31 31 30 35 28 35 34 40 37 36 42 36 33
2S 3685 -3 0 5 2 1 0 0 3 -1 3 4 11 5 5 17 9 2
3§ 4030 55 56 48 49 56 54 54 47 48 46 52 60 48 S50 77 61 55
2D 4159 0 -5 -4 3 2 2 -6 —6 —7 =2 5 -5 —4 19 5 3
4S 4415 5 2 3 —1 5 0 1 0 6 0 0 -9 1 -2 —4 =2 3
bb Expt

1S 9460 9 0 0 1 -1 0 0 0 5 0 2 1 1 2 9 g8 =2
1P 9898 —18 -7 =20 —17 —12 —1 4 —18 —16 —18 —24 —25 —19 —14 —32 —-20 -7
2S5 10023 —6 —1 5 5 1 4 2 5 0 4 2 0 4 4 —11 —6 1
3S 10355 —12 4 -3 —4 -4 -1 -1 -5 —6 —4 -4 2 -7 =3 5 =2 0
45 10573 24 51 14 21 31 34 36 13 18 19 28 41 10 20 53 37 37
5510868? -52 —-17 —81 —66 —47 —44 —42 —83 —69 —66 —51 —37 —86 —70 —25 —43 —40
6511019? —6 36 —50 —28 —4 0 2 —52 —-30 —24 -5 4 55 -35 8 -3 6
2P 10259 —-21 -3 -9 —10 —11 -5 -1 -10 —12 -7 —11 —11  —12 —8 —12 —12 —4
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The slope parameter found in these fits is around 0.15
GeV2. The quark masses m, and my increase as the
values of Ay increase. This is explained in the following
way. We have assumed the short-range asymptotic
behavior given by Eq. (2.3). The absolute value of this
short-range potential decreases with increasing Agm. In
order to reproduce experimental masses we need larger
quark masses for larger values of Agm. This situation be-
comes completely different if we are allowed to add an ad-
ditional constant to Eq. (2.3). However, we have not at-
tempted such a possibility in this paper.

ITII. THE RELATIVISTIC POTENTIAL MODEL

In order to study the relativistic effects to heavy-
quarkonium spectra we use the Salpeter equation

(=V24m )24 (=V4m )2+ V(IN[Y=Eyp . (3.1)

We solve this equation numerically, using the program
developed by Nickisch, Durand, and Durand.!> We first
try to find a potential which reproduces ¢z and bb spec-
tra. We again use the potential I defined by Egs. (2.5) and
(2.6), but with different parameters:

Ass=300 MeV, a=0.1585 GeV?,
b=23.3, m,=1.494 GeV, m,=4.874 GeV .

(3.2)

These parameters should be compared with the nonrela-
tivistic ones, Eq. (2.9). We now have a slightly larger
slope than the nonrelativistic one (see Fig. 2). This can be
understood in the following way. In the nonrelativistic
models the kinetic energy p2/2m is overestimated com-
pared with (p’4+m?)2_m. Thus if we must fit the
same c¢ and bb spectra in both the nonrelativistic and rel-
ativistic models, we need a smaller slope to absorb the
overestimation in the kinetic term in the nonrelativistic
model than in the relativistic model.

We find again a reasonable fit with the parameter (3.2)
(see Table II). These calculations are performed by mak-
ing use of the method by Nickish, Durand, and Durand
with N=77, which is fast and accurate. The accuracy of
this calculation is discussed in Ref. 15.

3 T T
24 V(R) 4
/
7
Salpeter 2
—~ 1 A v
3 s
L 7
0 A =
-1 4 Schrédinger
- 2 4 -
-3 T T
TR (tm)

FIG. 2. Potentials for the Schrodinger equation and for the
Salpeter equation. Agz=300 MeV is assumed.
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IV. +-QUARKONIUM SPECTROSCOPY AND Ay

In order to predict the properties of f7 states, there are
various theoretical ambiguities. Even if we assume the
flavor independence of the quarkonium potential, the
short-range behavior (r <0.1 fm) is undetermined from
the ¢t and bb spectra alone. Such a short-range behavior
becomes especially important for the 1S ff state. The
QCD predicts the short-range behavior but the scale pa-
rameter Ay must be determined experimentally.

Buchmiiller and Tye® studied the ff spectroscopy by the
use of their potential for various values of Agm. We will

1.1
E(2S) - EQ1S)
\
<&@
—_— pOt J \q,o J
14 pot K $f pa
______ pot G S s
> ‘\64 d
©
) < /,/ E
> ‘ . =500
0.9 & 4 I N
s /',
A A
0.8 ,A =300
_’}/\ngﬂoo
20 30 40 50 60
my (GeV)
0.8
>
7]
o
0.7 1
0.6 L
20 30 40 50 60
m, (GeV)
FIG. 3. t-quarkonium mass difference E(2S)—E(1S) as a

function of the top-quark mass for various Ayg. Results for the
potentials J, K, and G and for the Richardson potential are
shown. Shaded regions correspond to the allowed region for
various Agw. These regions should be regarded as theoretical
ambiguities.
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E(3S) - E(1S)

1.1 4

=100

1.0

* TR
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iy /"}/\ =200
-

20 30 40 50 60
m(GeV)

FIG. 4. Same as Fig. 3 but for E(3S)—E(1S).

recalculate the properties of the 7 spectra in a similar line
with the following improvements.

(i) The short-range asymptotic behavior of the potential
is smoothly interpolated to the long-range linearly rising
confining part.

(ii) For each value of Agg we have made the X? fit to
the ¢¢ and bb spectra. In this sense our parameters are
chosen without any prejudice for each Agg.

(iii) We study three kinds of potentials for each Agg,
and hence, not only the Ay dependence, but also the po-
tential dependence of various properties of #f can be stud-
ied.

(iv) All our potentials can be generated easily, so that
anyone can reproduce our results without any trouble.

20 30 40 50 60
my (GeV)

FIG. 5. Same as Fig. 3 but for I',.(1S). The QCD correction
factor 1 —16as/3m (~0.9) and Z° boson effects are omitted.

lee(25)
—— pot J

my (GeV)

FIG. 6. Same as Fig. 5 but for I'(2S).



3354

(v) We also check the relativistic effects by solving the
Salpeter equation.

A. Ay and potential dependence of the properties
of {7 states

Using the potentials J, K, and G we compute properties
of the ¢f states. The quantities E(2S)—E(1S),
E(3S)—E(1S), T, (1S), and T, (2S) are plotted in Figs.
3—6, respectively. The Schrodinger equation is used in
this computation. For I',, we use the well-known formu-
la!

4a’ey’R(0)?

M(it)?
with eQ=%. The QCD correction factor 1—16ag/37
(~0.9) and Zboson effects are omitted. One can easily
include them, but we omit them here for simplicity.

From Figs. 3—6 we can reach the following con-
clusions.

(i) The mass difference between the 1.5 and 2S states
tends to become larger with increasing Ayg. This tenden-
cy becomes larger for larger values of m,.

(ii) The shaded regions correspond to the allowed re-
gions for Agm =100, 200, 300, and 500 MeV, respectively.

(4.1)

ee =
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The region where the potential can be determined by the
QCD decreases as Ay increases. Thus, for large Ay an
undetermined gap appears between the phenomenological-
ly fixed region (0.1—1 fm) and the one fixed by the QCD.
Thus, the shaded region becomes broader as Agg in-
creases.

(iii) The predictions by the Richardson potential are
also added in Figs. 3—6. One can see that the Richardson
potential has a more singular short-range behavior than
the one with Agg=>500 MeV.

(iv) Ambiguities coming from potentials are larger for
level splittings [E(2S)—E(1S), E(3S)—E(1S)] than
those for the leptonic widths T,,.

B. Use of the Salpeter equation
to study the relativistic effects for properties of 7

The t quark inside the r-quarkonium system is moving
nonrelativistically (v2/c2~0.01 for m,=40 GeV). Thus,
the t-quarkonium system can be well described by the
nonrelativistic Schrodinger equation. However, the cc
and bb systems are not so nonrelativistic and if the poten-
tial is fixed by a fit to ¢¢ and bb spectra we find the
steeper potential for the relativistic model than for the
nonrelativistic model. Thus, the relativistic model
predicts larger spacings between various excited levels of

TABLE III. Energy level (in MeV) and I, (in keV) of 17 states predicted by the Schrodinger theory
and Salpeter theory. The potential I [Egs. (2.5)—(2.7)] with parameters (2.9) and (3.2) is used.

Schrddinger theory

Emivs—Es m, (GeV)\ 30 40

Salpeter theory

50 30 40 50
E(2S)—E(1S) 624 658 686 657 703 751
E(3S)—E(2S) 315 322 329 325 334 342
E(4S)—E(3S) 214 216 218 221 222 225
E(55)—E(4S) 167 165 165 172 170 170
E(6S)—E(5S) 140 137 135 145 141 139
E(7S)—E(6S) 123 118 116 128 123 120
E(8S)—E(7S) 111 106 103 116 111 108
E(9S5)—E(8S) 102 97 94 108 102 98
E(108)—E(9S) 96 90 87 101 95 91
E(118)—E(108) 90 85 81 95 89 85
E(12S)—E(118) 86 81 77 90 84 80

Schrodinger theory Salpeter theory

Cee (keV) m, (GeV) 30 40 50 30 40 50
[ (1S) 5.03 5.56 6.46 6.21 6.63 7.10
Iee(25) 1.80 1.77 1.76 2.36 2.30 2.26
I (3S) 1.13 1.09 1.07 1.47 1.40 1.36
r.(4S) 0.84 0.79 0.77 1.11 1.03 0.98
I (5S) 0.68 0.63 0.60 0.91 0.83 0.79
I'..(6S) 0.59 0.54 0.50 0.80 0.71 0.67
I (7S) 0.53 0.47 0.44 0.72 0.64 0.59
Iee(8s) 0.48 0.43 0.40 0.67 0.59 0.54
I'..(9S) 0.45 0.40 0.36 0.62 0.55 0.49
r.(108) 0.43 0.37 0.34 0.59 0.51 0.46
I.(118) 0.41 0.36 0.32 0.56 0.48 0.44
I (125) 0.39 0.34 0.31 0.53 0.46 0.42
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ff than the nonrelativistic model by around 5% and the
former predicts larger I',, than the latter by around
10—30%. These are shown in Table III.

V. SPIN-DEPENDENT FORCES AND Ay
In this section we show that the fine and hyperfine

splittings are very sensitive to the value of Ayg; thus the
I
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allowed range of Ay might be restricted from the data of
already known quarkonia, i.e., c¢ and bb. The QCD radi-
ative corrections to the spin-dependent forces have already
been calculated by various authors.!”~!° Taking here the
scheme by Gupta, Radford, and Repko,'® we compute the
Agrs dependence of spin-dependent forces. The interac-
tions are given by'®

8mag ag ag In(ur)+yg 2lag In(mr)+vyg
=—g 1———(26+91n2) |8(r)— 33— 2 2
SS 9m2 010, 127 (26491n2) |8(r) 24#2( 3 2nf)V ; 16172 \Y .
=co,'0,, (5.1
Qg 30’1‘?0’2‘?—0’1'0’2 4(13 ag 3(15
Hr= P = 1+ Fy +—6;(33—2nf)[1n(ur)+y5—%]—T[ln(mr)+yg—%]
=B(30,to, T—0,0,), (5.2)
2a5 L-S llag ag 20 a LS
= —_— - _ —_ —_— ~—1 -
HLS 2 r3 187 + 61T(33 2nf)[ln(yr)+}’E 1] . [ln(mr)+7'E ] 2m2 .
=AL-S, (5.3)
T
where m is the quark mass, a is the slope of the scalar ag= bm (5.8)

confining potential, and u is the renormalization scale.

These interactions depend not only on the renormaliza-
tion scheme, but also on the renormalization scale. We
take the renormalization scheme by Gupta and Radford?°
and choose u so as to minimize the effect of higher-order
terms which would be generated by the renormalization-
group improvement of the potential. These terms involve
higher powers of

2

a
25 (33-2n,) K
7

127

whose expectation value is not very sensitive to the varia-
tions in u except for the S state.
We fix p so that the quantity

E=(as/12m)(33 =2n;)(In(k?/u?)) /(1)

_ as(33=2ny) fd In(pr)+yg
TuR [y 2T

(5.4)

VA¢* (r)(r)]

(5.5)

becomes small for all S states, where (1)= |¥(0)|% In
our calculation we find u which minimizes the quantity

X2 =E57 +Ers +Exs +Eas® (5.6)

The scale parameter in the Gupta-Radford (GR) renor-
malization scheme is related to Agg by

Agr=Aggexp (5.7

61
33-2n,

with A=(49—10n,/3)/12. The coupling constant is given
by

T (33—2np)InAgr/p

Assuming the ny=4 and using the potentials J and K
(nonrelativistic wave functions), we compute expectation
values of the spin-dependent potentials (Hgg,H;g,H7).
Results are shown in Table IV. We conclude with the fol-
lowing remarks.

(i) The fine and hyperfine splittings are not very sensi-
tive to the choice of potentials, but rapidly increase as
Aggs increases.

(ii) For Agg~200 MeV, we can reproduce approxi-
mately all hyperfine and fine splittings of ¢ and bb
states. The values Agg=400 and 500 MeV are completely
ruled out. This conclusion does not depend on the choice
of potentials.

(iii) Gupta, Radford, and Repko'® found the following
parameters: Apg=134 MeV (ny=4), p=1.88 GeV for
m,=12 GeV, u=3.75 GeV for m,=4.87 GeV, which
are not very far from ours.

VI. SUMMARY AND CONCLUSIONS

We have found the Q@ potentials which reproduce the
properties of ¢¢ and bb states for various values of Agg.
These potentials have linearly rising confining parts and a
short-range asymptotic behavior calculated to the fourth
order in perturbative QCD.

Using the nonrelativistic wave equations, we have fixed
acceptable parameters for Agyg=100, 200, 300, 400, and
500 MeV. We have then computed various properties of
t-quarkonium states as a function of Agg from these po-
tentials. We have shown that the ambiguities coming
from the shape of the potential are large, especially for
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TABLE IV. The hyperfine and fine splittings in MeV for various Ay predicted by the potentials J and K. The scheme by Gupta,

Radford, and Repko (Ref. 18) is used.

cc S state 1P state
3S1-‘S0 A B 173 (GeV) as
N Expt 18 28

Ay (MeV) \ 11616 95 34.91£0.6 10.0+0.3

pot J 100 117 68 20.8 8.0 1.80 0.346
200 140 84 40.5 10.9 1.98 0.477
300 160 101 57.9 13.9 2.14 0.603
400 195 125 79.6 18.4 2.60 0.752
500 245 162 112 25.6 3.85 0.939

pot K 100 118 69 20.3 8.0 1.79 0.347
200 146 90 40.3 11.4 1.96 0.481
300 167 100 59.5 14.7 2.09 0.614
400 165 102 77.6 17.9 2.23 0.750
500 163 108 99.6 22.2 2.34 0.908

bb 38,-18, 1P state 2P state
18 28 A B A B © (GeV) as

Expt 14.210.3 3.1£0.2

Mgz MeV) \ 131 2.5+£0.3 11+2 1.7£1.0

pot J 100 335 18.5 10.3 2.27 6.77 1.52 3.85 0.257
200 39.5 21.5 14.3 2.94 9.38 1.98 4.07 0.328
300 44.6 23.4 17.6 3.51 12.0 2.46 4.25 0.389
400 52.7 26.5 21.1 4.15 14.5 2.94 443 0.446
500 61.6 30.6 24.5 4.79 17.1 3.46 4.61 0.500

pot K 100 342 18.6 10.3 2.27 6.76 1.53 3.86 0.257
200 41.0 22.4 13.7 2.87 9.38 2.01 4.09 0.327
300 444 25.0 17.6 3.55 11.5 2.39 4.25 0.389
400 42.1 24.8 20.8 4.09 13.6 2.74 4.36 0.450
500 41.0 24.4 24.3 4.68 16.3 3.24 4.48 0.510

Agzgs > 300 MeV, but decrease for small values of Ag. If
Aygg is as small as 100 MeV, the t-quarkonium properties
can be almost uniquely determined.

We have also computed the fine and hyperfine split-
tings of ¢z and bb states. These splittings rapidly increase
as Ay increases. Experimental ¢¢ and bb splittings can
be reproduced for Agg~200 MeV while Agz=400 and
500 MeV are clearly ruled out.

Taking the preferred value Apg=200 MeV, we can
predict

E(2S8)—E(1S)=670%£15 MeV ,

E(35)—E(15)=995+15 MeV ,

E(45)—E(15)=1220%15 MeV
for m, =40 GeV.

We have also studied how the results are affected if the
Schrodinger equation is replaced by the Salpeter equatlon
which has a relativistic kinematic part (P 4mHV2_m,
We find that E((n+1)S)—E(nS) increases around 5%
and I',, (nS) increases 10—30 % for n up to 10.
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