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%e develop a unified approach to the solution of the Schrodinger and the spinless Salpeter equa-

tions. By adjusting the potential and quark masses to best account for the spin-averaged energy lev-

els, we can compare in a realistic way the effect of using a relativistic kinetic energy. Emphasis is

given to consideration of relativistic wave-function corrections. %e find that the relativistic equa-

tion better accounts for the observed energy levels and gives improved results for s- and p-wave an-

nihilation rates and E1 transitions.

INTRODUCTION

Potential models have had considerable success in ac-
counting for the observed heavy-quark bound-state spec-
troscopy '.Although spin dependence is of intrinsic in-
terest, it necessarily involves additional assumptions
within the potential model. Thus, there is some merit in
separately analyzing the spin-averaged problem where the
I.orentz nature of the potential need not be specified. We
employ two QCD-motivated potentials: the Cornell po-
tential for simplicity and the Wisconsin potential, which
includes the effects of asymptotic freedom.

We choose as our relativistic equation the spinless Sal-
peter (SS), or square-root, equation as the most simple
generalization of the Schrodinger (S) equation with rela-
tivistic kinematics. Since we have little a priori
knowledge of either the QCD potential or the exact
heavy-quark masses, we should not compute relativistic
corrections with the same potential and quark masses.
With either relativistic (SS) or nonrelativistic wave equa-
tions we are attempting to account for the same known
state masses and the potential and quark masses are not
necessarily the same.

In Sec. I we discuss the wave equations used and their
solutions. Details of the method are given in the Appen-
dix. A fit to energy levels and ratios of leptonic widths
with the Cornell and Wisconsin potentials is included in
Sec. II, and the predicted leptonic and gluonic decays are
given in Se:. III. Because the wave functions from short-
distance gluon exchanges are singular at the origin, we de-
fine an effective wave function at the origin by a sum rule
which then can be used in calculating leptonic and gluonic
annihilation rates. %e also discuss in Sec. III the relativ-
istic corrections to radiative transitions.

I. SPINI.ESS WAVE EQUATIONS
AND THEIR SOLUTIONS

%e consider a general coordinate-space ~ave equation
of the form

8'( —V )g+ V(r)Q=MQ

for the coordinate difference r=ri —r2 between the posi-
tions of masses ttti and ttt2. For exainple, in the
Schrodinger case,

—V2

Ws( —V }= +mi+m2 .
2p

(2)

Starting with the Bethe-Salpeter equation, we make a
seri of approximatiom consisting of the replamm~t of
the interaction kernel by an instantaneous local potential
and the neglect of spin and the coupling of "large-large"
to "small-small" components of the wave function. The
resulting 's equation is of the form of Eq. (1) with

Wss( —V )=( V2+rni —)'~ +(—V2+rn22)'~2 . (3)

Equations (1}and (3}are called the spinless Salpeter equa-
tion. For simplicity in this paper we consider only the
equal-mass case in which Eqs. (2) and (3) reduce to

Ws ————V +2m,1

N2

Ass ——2( —V +ttt )'

(4a)

(4b)

The latter equation has the simple virtue of being a direct
relativistic generalization of the Schrodinger equation. As
mentioned, it is also the spinless approximation to the
Bethe-Salpeter equation. Unfortunately, the SS equation
is only solvable in closed form for a harmonic-oscillator
potential, but numerical solutions are no more difficult to
obtain than from the Schrodinger equation.

Our numerical approach will be in momentum space.
The reason for this is that wave functions are well

behaved whereas in coordinate space there is a well-known

relativistic wave-function singularity at r =0 for a singu-
lar (e.g., Coulombic) potential due to the usual instantane-
ous approximation. In addition, the coordinate-space
( U jc) expansion —the Breit-Fermi interaction —is quite
singular, a problem not present in momentum space. Fi-
nally, in our solution method an integral equation in
momentum space is no inore difficult to solve than the
differential form of Schrodinger's equation in coordinate
space.

Transforming Eq. (1) to momentum space we obtain
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W(p )g+ V~Q=Mrj, (5)

A,
&
——(e„W( p2) eJ)+(e;,V, e~ ),

where the angle brackets denote the inner product

~g142~=—f" pgi(p)gz(p)

(7)

and the [e; I are an orthanormal complete set of functions
in momentum space. The second inner product in Eq. (7)
may be simply evaluated by noting that

( e;, V, ej ) = (e;,[V(r)ej(r)]")

=(2m) (e;( —r), V(r)ej(r)),

where e;(r) is the inverse transform of ej(p). The com-
plete set of basis functions [e; I is arbitrary except that for
reasons of simplicity it is highly desirable that the e; have
analytic Fourier transforms and that their energy eigen-
values are discrete. The latter condition would, for exam-
ple, eliminate hydrogenic wave functions. An obvious
candidate for the set of basis functions is the harmanic-
oscillator wave functions. We have chosen an alternate
set which more closely resembles hydrogenic wave func-
tians. Our set is related to Jacobi polynomials in momen-
tum space and Laguerre polynomials in coordinate space.
The basis functions are eigenstates of orbital angular
momentum and have the correct threshold behavior expli-
citly factored out. Again, we refer to the Appendix for a
more complete discussion.

where the caret denotes the Fourier transform and the as-
terisk denotes convolution:

d3 i

gi g2=— 3gi p —p g2 p
(2m )

In momentum space, the only difference between the
Schrodinger and the relativistic equations is in the multi-
plicative function W(p ). We solve Eq. (5) using the
Rayleigh-Ritz-Galerkin method; details are given in the
Appendix. The approximate eigenvalues will be in the
eigenvalues of the matrix A whase elements are

TABLE I. Fit to spin-averaged levels and ratios of leptonic
widths using the Cornell potential. Level energies are in MeV.
The potential parameters and quark masses were varied to best
account for the data. The data set is discussed in Refs. 4 and S.
Both nonrelativistic kinetic energy (Schrodinger) and relativistic
kinetic energy (Salpeter) wave equations were tried.

CC

Schrodinger Salpeter

main drawback of this potential is that the cc and bb
states lie in an intermediate region of quark separation
where neither limiting forms in Eq. (10) should be valid.
The fact that this potential works reasonably well is an in-
dication that there is a smooth transition between the per-
turbative and nonperturbative regimes. In Table I we list
the cc and bb spin-averaged bound-state data below open
flavor threshold.

We vary potential parameters a and a along with the
quark masses m, and mb to optimize agreement to the
data of Table L First we use the Schrodinger wave equa-
tion and then the relativistic spinless Salpeter equation.
In each case the fit ta the data is quite good with the pos-
sible exception of the lowest spin-averaged I, state, the
1P; the fits are both about 30 MeV too low.

Although we have commented on this 1P difficulty pre-
viously, we might briefly remind the reader why the dif-
ficulty was not evident to earlier workers in this area. We
use spin-averaged levels in which the IS and 2S cc masses
are about 30 MeV below the f and 1t' states, respectively.
The 1P level, on the other hand, is near the center of grav-
ity (c.o.g.) of the XJ states since the p-wave hyperfine
splitting is probably small. Previous work has used the
$, 1P,Q' masses giving a misleadingly satisfactory agree-
ment with experiment.

The effective potential for each wave equation is plot-
ted in Fig. l. In the relativistic fit, the string tension is
slightly larger while the color coupling constant as is
slightly smaller so the SS potential exceeds the S potential

II. COMPARING VfITH EXPERIMENT

Since the wave equations we are considering have no
spin we compare our predictions to spin-averaged energy
levels and to ratios of leptonic widths. ' For a given
form of the interquark potential we will vary the potential
parameters and quark masses to achieve the best possible
agreement with the experimental data, considering
separately the S and SS wave equations. %e will investi-
gate two successful QCD-motivated potential forms.

K
Vc(r) = — +ar, —

T
(10)

where K= —', a, is supposed to represent short-range gluon
exchange and a is the confinement string tension. The

A. Cornell potential

The Cornell potential is the simplest of the QCD-
motivated potentials:

M&s

M)p
r„(+')/r„(e )

Mes'

Mls
Ml p

M2s
M2p

M3s
(&')/I (&)

r (& )/r (Y')
12

a (GeV)
m, (QreV)

mb (GeV)

'Not included in fit.

3069
3500

0.50
3697

9445
9897

10004
10259
10354

0.41
0.30

20.6

Fit parameters
0.471
0.192
1.320
4.746

3068+2
3531%10
0.45 20.06
3633+2

bb
9442+10
9900+6

10014%10
10256+5
10346+10

0.44+0.03
0.335+0.03

3069
3506

0.56
3667

9445
9903

10000
10263
10350

0.44
0.33

21.2

0.446
0.200
1.327
4.737
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2— TABLE II. If the data set of Table I is expanded to include
sY states we find that the relativistic wave equation is signifi-
cantly superior. The Coulombic coupHng constant is larger as
expo:ted qualitatively from QCD. The level energies are in
MeV.

Data Schrodinger Salpeter

m, (GeV)

999
2016

Fit parameters
1.8
0.39

1002
1735

0.87
0.07

0
!
2

r (GeV ')

FIG. 1. Potentials of the Cornell form, which best fit the
heavy-quark data using nonrelativistic (Schrodinger) and relativ-

istic (spinless-Salpeter) wave equations

at each quark separation. As pointed out by Durand and
Durand, this is what one would expect, since for a given
momentum the relativistic kinetic energy is less than the
nonrelativistic kinetic energy. If the energy levels are kept
fixed, the relativistic potential energy must then exceed
the nonrelativistic potential energy. The difference be-
tween the potentials is suppressed to some extent because
we have required leptonic width ratios as well as the ener-

gy levels to agree. In addition, the Durands conjecture
that for a confining potential this means a more confined
wave function and hence an enhanced annihilation decay
rate. We shall verify this by direct calculation in Sec. III.

Finally, let us try to accommodate ss states within this
scheme. One might expect that the effective color cou-
pling constant for ss states is larger than that for cc so we
introduce a separate couphng constant ~, . The ss states
we try to fit are the 1S(1.00 GeV) and the 2S(1.61 GeV).
The 1S level is the spin-averaged il'(0.958) and $(1.020)
states and the 2S level is obtained by spin averaging the
i(1 440) and P(1..680) states. The results are shown in
Table II. The relativistic wave equation works much
better than the nonrelaiivistic Schrodinger equation but
still overestimates the 2S mass. The a, parameter is
smaller in the SS fit, and also a small strange-quark mass
is indicated although since its kinetic energy far exceeds
its rest energy the strange-quark mass is poorly deter-
Hllned.

Vg (r) = Vs(r}+VI(r)+ Vl (r),
where the short-range potential V~ is a regularized ver-
sion of the two-loop perturbative potential in which the
Landau zero is pushed off to infinity. The intermediate
potential Vz is taken to be VI(r)=r(c&+c&r)e ', a
rather arbitrary choice whose only requirement is that it
vanishes at small and large quark separations. The long-
range potential is the usual Vl (r) =ar linear confinement.

It is important that the choice of the phenomenological
potential be consistent with the desired perturbative result.
This will be difficult if VI and VL, are significant for
small r. Another requirement should be that there is no
stiff coupling of the perturbative short-range potential to
the longer-range potential. If this were the case, the phys-
ical data would enforce a strong relation between the per-
turbative potential and longer distances where the cc and
bb states primarily lie. This, for example, would imply an
unrealistically accurate determination of the perturbative
scale parameter A~, where MS is the modified minimal
subtraction scheme. In this potential, we avoid both pit-
falls by assigning an error to the potential as a function of
radius based upon an estimate of the a, ' term neglected in
the perturbative calculation. This error grows with in-
creasing radius so that the asymptotic-freedom require-
ment becomes weaker as the quarks separate and a
smooth transition from the perturbative regime is
achieved.

As before, we vary the parameters of the Wisconsin po-
tential and the heavy-quark masses to optimize the agree-
ment with the spin-averaged data but with the additional
constraint that the potential approximates the perturba-
tive result in its range of applicability. The result for both
S and SS wave equations is very good. The detailed com-
parison with the data is given in Table III. A fit to the ss
states using the %isconsin potential gives somewhat better
results than in Table II with the Cornell potential.

8. %'isconsin potential

%e also consider a more realistic potential which ex-
hibits the full content of perturbative QCD at short dis-
tance, linear confinement at a large distance, and fiexible
phenomenological parametrization at intermediate range.
This potential has the form

III. %PAVE-FUNCTION CORRECTIONS

Knowledge of accurate heavy-quark bound-state wave
functions is required to evaluate transition rates. These
transitions are of two types: (i} annihilation into leptons,
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TABLE III. Fit to spin averaged levels and ratios of leptonic
widths using the %isconsin potential. Level energies are in

MeV. The potential parameters and quark masses were varied
to best account for the data; see Refs. 4 and 5. Both nonrela-
tivistic kinetic energy (Schrodinger) and relativistic kinetic ener-

gy (Salpeter) wave equations were tried. ~=250 MeV.

Data

cc

Schrodinger Salpeter

photons, or light quarks and (ii) radiative decay into
another heavy-quark bound state by emission of photons
or light mesons. The radiation of photons is computed by
the evaluation of an expectation value. This evaluation is
quite straightforward for either Schrodinger or spinless
Salpeter wave functions since the integrand vanishes at
the origin where the instantaneous approximation breaks
down. The calculation of annihilation rates, on the other
hand, requires wave-function values at small quark
separations. When a relativistic equation, with a strongly
attractive short-range potential, is solved in the usual in-
stantaneous approximation the wave function at the origin
is singular or at least anomalously large. Retardation ef-
fects are expected to modify these short-distance singulari-
ties. Instantaneous wave functions from singular poten-
tials therefore have unphysical short-distance behavior
and we must take care to define what is meant by the an-
nihilation rate.

Some wave functions resulting from the calculations of
the last section are displayed in Figs. 2—9. Figures 2—5
show the wave functions for the 1S, 1P, and 2S states for
the Cornell potential. Each figure depicts the results for
the cc and bb systems. The dashed lines are the S wave
functions and the solid curves the SS wave functions.

A heavy-quark system is nearly nonrelativistic near the
classical turning point so it is not surprising to see that
the wave functions for the S and SS equations are similar

0 0.5 1.0

r (GeV ')
t.5 2.0

FIG. 2. 1S wave functions using the Cornell potential. The
instantaneous relativistic Salpeter solution shows singular
behavior at the origin as seen by the increase as the number of
basis functions is increased. The dots show the sum rule of Eq.
(12) for the effective

~
R, (0)

~

i from the SS wave function

in this region. The S and SS wave functions differ most
markedly within about two Compton wavelengths where
the relativistic wave function rises above the Schrodinger
one. Within about one-fifth Compton wavelength we see
evidence of singular behavior. Since our basis function
set is regular at r =0, we see successively better approxi-
mations to the singularity as we use 5, 10, or 20 basis
functions. Because the wave function at the origin is not
well defined we cannot directly apply the SS wave func-
tions in calculating annihilation rates. The corresponding
wave functions using the Wisconsin potential are given in
Figs. 6—9.

Since the above instantaneous relativistic wave func-

M)p
I „(4')/I „(+)

M2S'

Mis
Ml p

Mps
M2p
M3S

I „(f')/I ( f}
I ( f"}/I „(f }

X2

3068+2
3531+1
0.45%0.06
3663%2

bb
9442k 10
9900+6

10014+10
10256+5
10346+10

0.44+0.03
0.335%0.03

3069
3503

0.47
3682

9439
9890

10022
10244
10357

0.40
0.31

27.4

3069
3513

0.47
3657

9437
9894

10021
10247
10354

0.41
0.33

14.0

0.6—

0.5

CV

0.4
OP

C9

0.3
CL

IX

0.2

—-- Schrodinger

a (GeV )

cl (GeV )

c2 (GeV3}
&0 (GeV ')
m, (GeV)
mb (GeV}

Fit parameters
0.204

—1.23
1.08
0.681
1.441
4.852

0.206
—1.25

1.09
0.671
1.467
4.860

Q. t

0
2

r {GeV )

'Not included in fit. FIG. 3. 1P wave functions using the Cornell potential.
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—-- Schrodinger

the radiative gluonic corrections are thought to cancel. In
this subsection we consider the absolute values of the lep-
tonic widths. The leptonic width including second-order
radiative corrections is

0.5
gL

K —(24.26—0. 11nf )

-0.5 l

0.5
l

1.0
r (GeV )

2.0

FIG. 8. Derivative of the 1I' wave function using the
Wisconsin potential. (See Fig. 4.)

where E=M~ —2m~. For the Schrodinger equation,

Eqs. (12) and (13) are identities. For the SS equation these
sum rules define effective wave-function values at the ori-
gin. The effective values are computed as expectation
values using the corresponding instantaneous wave func-
tions. Analogous relations can be found for higher angu-
lar momentum states. In Figs. 2, 4—6, 8, and 9 the sum-
rule values of Eqs. (12) and (13) are indicated.

In the remainder of this section we investigate the ef-
fects of relativistic corrections on leptonic, radiative, and
gluonic widths.

A. Leptonic widths

The ratios of leptonic widths were used in the fits and
as seen from Tables I and III are satisfactorily accounted
for for both potentials and both wave equations. In ratios

Numerically, the radiative correction term 5 is

0.76, a, =0.20, nf ——3,
1 —5='

0.79, o.'p ——0.16, nf ——4 . (15)

B. Radiative transitions

As we indicated earlier, radiative transitions between
heavy states are well defined even in the instantaneous ap-
proximation. We will discuss here the spin-independent
relativistic correction to the electric dipole transitions
occurring between sharp states in the ce and bb spectros-
copies. The transitions observed so far are of the type

4a(2J+1)k eg I ( PJ
I
r

I Si ) Ir('S, 'P, y) =
27

(16a)

The upper value was used for the f while the lower one
was used in correcting the Y 1eptonic widths. From Figs.
2 and 6 we can read off the S and effective SS wave func-
tions at the origin. The predicted absolute 1eptonic widths
are given in Table IV. Taking into account the uncertain-
ties in the gluonic radiative correction, all of these values
are reasonable. The somewhat large Y leptonic widths
predicted by the Cornell potential is presumably due to
the stronger Coulomb singularity in the potential com-
pared to the logarithmically modified singularity in the
asymptotically free Wisconsin potential.

--- Schrodinger

Salpeter

~ sum rule

4ak eg I ( Si I
r

I
Pq ) If'( Pg~ Sty)=

9
(16b)

Wisconsin potential TABLE IV. Leptonic widths for tP and Y states predicted by
our potentials and wave equations. The radiative corrections of
Eq. (14) are qualitatively correct.

Come B
S SS

%'isconsin
S SS

fnb

l

0.5
l

l.Q

f {GeV )

I

l.5 2.0

FIG. 9. 2S wave function from the %isaonsin potential. (See
Fig. 5.)

CC

I ~,s(o) I

' (GeV')
r„(o) (kev)

I' '(1 —5) (keV)

bb

IZ„(O) I' (GeV')
r„(0) (kev)

I' '(1 —5) (keV)

I „(1S)=4.60+0.39 keV (experiment)
0.74 1.00 0.79 0.94
5.60 7.60 6.00 7.10
4.30 5.80 4.60 5.40

I (1S)=1.10+0.12 keV (experiment)
9.4 11.6 5.6 6.2
1.9 2.3 1.1 1.2
1.5 1.8 0.9 0.95
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8a
I {~So~2g) =

I
~s{0)

3M

40(H —9)a,
I ( St~3g)=

(17a)

(17b)

where the notation S& or PJ might denote any radially
excited state. The quark charge e& is in units of the elec-

tronic charge and k is the c.m. photon energy. Spin-
independent relativistic corrections are automatically in-

cluded if relativistic wave functions are used as shown by
Sregert's theorem. '

The predicted E1 transition rates for the sharp S& and

P2 states are given in Table V for the Cornell and
Wisconsin potentials using the Schrodinger and spinless
Salpeter wave equations. We first note that in the well-

determined cases, relativistic kinetic energy corrections
reduce the radiative widths by 5—20%%uo. However, con-
trary to conventional wisdom, ' transitions involving
wave functions with the same number of nodes are more
strongly affected by these relativistic corrections. In par-
ticular, the g'~X2y transition width is decreased by the
relativistic kinetic energy correction but by less than 15%,
not enough to agree with the experimental value which is
about half the nonrelativistic prediction. Spin-dependent
corrections and admixture of DD states may also be im-

portant.
In Table V we also have computed an "average" width

which is taken over the two potential forms and with non-

relativistic and relativistic kinetic energies. The error as-
signed to this average encompasses the individual values.
The average value thus gives an estimate for a model-
independent transition width. Unfortunately, there is lit-
tle experimental information yet available for bb radiative
transitions.

C. Hadronic total widths

Some of the earliest QCD predictions' were made for
the hadronic widths of hmvy quark bound states. In stan-
dard +'L,J spectroscopic notation, the lowest-order ha-
dronic widths, denoted by the minimum number of
gluons, are

96a,
I { Pp~2g)= ~Rq(0)

~

(17c)

128m,
I { Pt~3g;qqg)= ~R'(0)

~

ln 1—
3@M

I (3P 2g}=—„I ( P 2g),

I ('P, ~3g;qqg) =—', I'{'Pi ~3g;qqg) .

M

4mg

(17d)

(17e)

(17f)

In these annihilation rates either the s-wave function at
the origin or the derivative of the P-wave wave function at
the origin must be specified. We will consider directly the
Schrodinger wave function at the origin for the Cornell

and Wisconsin potentials. For the corresponding solu-

tions to the SS equation we use the sum rules of Eqs. (12}
and (13) in calculating the annihilation rates.

We concentrate on the two gluon decays of the rl& and

X&{2 states. Three gluon decays of St states are reviewed

by Lepage. ' For two gluon decays it has been pointed
out recently' that the lowest-order formulas seem to
work best for the rl, and Xb states while considerably un-

derestimating the X, widths. Although this discrepancy
may have a number of possible explanations we will con-
sider here only relativistic spin-independent wave-function
corrections. We also briefly discuss why some other ef-
fects are not important.

First we consider pseudoscalar ('So) decays into two
gluons. Using Eq. (17a) and the wave functions of Table
IV we calculate the ground-state rl~ widths in Table VI.
The il, width has been measured' to be
I (il, ~all)=11.5+4 o5 MeV. For a, =0.2 the Predictions
are all consistent with this value. As seen in Table VI, the
predicted rib width is comparable to the g, width. The
decrease of an order of magnitude due to the M factor
is compensated by an increase in the wave function at the
origin.

The Xz& decays into two gluons in lowest order are
computed with the aid of Eqs. (17c) and (17e). The wave
functions for each of our potentials and wave equations
are given in Table VII. There is some experimental evi-

TABLE V. Electric dipole radiative widths (in keV) involving SI and g2 states. The relativistic
wave equation reduces the P'~X2y rate by about 13%. The "no node" transition X2~gy is reduced by
20%.

Process Cornell %isconsin
Experiment

X2 Yy
Y' X2y

X2 Y'y
X2 Yy
Y"-X2y
Y" X2y

577
36

37
2.3

18
12
2.6
0.3

35
2.2

16
ll
2.5
0.7

cc widths
515

35

bb widths
39
2.0

21
10
2.3
0.03

419
31

36
1.9

20
8
2.2
0.003

497+80
33k3

37+2
2.1+0.2

19+3
10+2

2.4+0.2
0.4+0.4

330+170
17+5
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TABLE VI. Pseudoscalar widths (in MeV}. Since the wave

equation at the origin increases to compensate for the decreased
m factor in Eq. (17a) the qs and r1, widths are comparable.

Wisconsin
SSS S

I {g,~2g) =11.5+4'o MeV {experiment)

a, =0.2

a, =0.16
a, =0.18

9.0

7.2
9.1

I (g, ~2g} {MeV)
12.2 9.6

I (qg~2g) {MeV)
8.8 4.3

11.1 5.4

11.5

4.7
5.9

TABLE VII. g2 hadronic widths. There is good agreement
between the g~q and +2b measured and predicted widths. The
g2, predicted widths are considerably smaller than the measured
values. Spin-independent kinetic energy wave-function correc-
tions increase the g~ width prediction by 50%.

Cornell %isconsin
S SS

I (g~ —+2g) =144J35 keV {experiment)
~R~(0)

~

i (GeV ) 1.39 1 69 1 51
I (+2b 2g) (keV)

a, =0.16 95 115
a, =0.18 120 145

103
130

I (+2b ~2g )= 130+40 keV {experiment)

~

Rr'(0)
(

2 {GeV ) 1.77 2.28 1.56
I (+2b~2g) (keV)

a, =0.16 105 92
a, =0.18 132 117

135
171

I (+2,~2g) =2.5X1.0 MeV {experiment}

i R~(0) i (GeV ) 0.058 0.096 0.073
I (g2, 2g) (MeV)

a, =0.2 0.37 0.62 0.47

1.80

1.96

116
147

0.109

0.70

dence' ' for X2s, X~, and X2, two gluon widths. As
seen in Table VII the bb Xz widths are easily explained by
the lowest-order theory but the ce Xz width seems to be
about six times larger than the predicted value. Relativis-
tic wave-function effects reduce the discrepancy to a fac-
tor of about 4. The theoretical expectation for the Xz,
width, even with relativistic wave-function corrections,

appears to be significantly below the expeiimental value.
One explanation which might be advanced for the

disagreement between the theoretical and experimental
values of the Xi, width aught be QCD radiative correc-
tions. These corrections have been calculated in lowest
order and, depending on the renormalization point chosen,
can be quite large. We thus gain little insight into the to-
tal radiative corrections. However, since the Xzs and Xib
widths are roughly consistent with the leading term we
might conclude that the radiative corrections are under
control in that they probably do not change the lowest-
order width by more than 50%.

Another explanation which can probably be rejected is a
massive failure of @CD factorization. The wave func-

tions which appear in Eqs. (17) are normally taken to be
the same as the QQ bound-state wave functions. This
would not be the case if the initial-state radiative correc-
tions to the decay process are not actually part of the
bound-state wave function. Just as in the radiative correc-
tion case it would be surprising if the Xib rate was
correctly predicted and the Xi, not due to a breakdown in
factorization.

The most reasonable way to account for the failure of
the X width calculation in the c case but not the b case is
from relativistic corrections. We have already seen that
relativistic kinetic energy corrections alone will increase
the X2, rate by 50%. Spin-dependent relativistic correc-
tions may also increase this rate. With the fortutious col-
laboration of radiative corrections and a more accurate
(and smaller) experimental width measurement, agreement

may yet be achieved.

SUMMARY

Using two realistic interquark potentials we have com-
pared the predictions of the nonrelativistic (S) and relativ-
istic (SS) wave equations for a range of heavy-quark spec-
troscopic data. To avoid introducing many theoretical as-
sumptions we consider only spin-averaged energy levels.
Our result is that using a relativistic kinetic energy some-
what improves the already satisfactory cc and bb energy
levels and ratios of leptonic widths and that wave-
function corrections increase annihilation decay rates and
decrease radiative rates as required phenomenologically.

Of particular interest to us are the wave-function
corrections induced by relativistic kinematics. In heavy
quarkonia the lowest few energy levels are known but the
qunrk masses and the detailed shape of the potential are
not. The proper procedure in this case is to adjust the
quark masses and the potential so that the observed parti-
cle energy levels agree as accurately as possible with the
predicted ones using either nonrelativistic or relativistic
kinetic energies.

As seen in Figs. 2—9, for distances greater than a few
Compton wavelengths the SS and S s-wave and derivative
of the p-wave wave functions are virtually identical.
Below one or two Compton wavelengths the relativistic
s-wave wave functions begin to rise steadily above the S
wave functions. The same rise is seen in the derivative of
the p-wave wave function. At about one-fifth wavelength
the s-wave wave functions and the derivative of the p-
wave wave functions rise sharply. This singular behavior
can be ascribed to the instantaneous approximation and
hence is unphysical.

To separate the relativistic kinematic wave-function
enhancement from the spurious wave-function singularity
at r =0 we employ the sum rules of Eqs. (12) and (13).
These sum rules provide an effective S wave function at
r =0 which then can be used to compute annihilation
rates. Radiative (photon) decays are straightforwardly
computed as expectation values using either S or SS wave
functions. The r =0 singularity is wiped out by the p-
wave angular momentum barrier factor in this case.

We find that kinematic relativistic corrections decrease
the XJ—+~ transition rates, but not enough to give good
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agreement with experiment. Spin-dependent corrections
and coupling to the DD channel are also expected to be
important in this case. A surprising result is that the ra-
diative decay rates between states with no nodes were
modified by relativistic corrections as strongly as in tran-
sitions where strong cancellations occur.

Two-gluon annihilations are in good agreement with ex-
Periment for il, and Xis decays but not for Xi, decay.
The S wave function considerably underestimates the Xi,
decay rate and SS wave function is larger at r =0 but only
increases the rate by about 50%. Because the Xb predic-
tions are in reasonable agreement with experiment we ex-
pect that relativistic wave-function corrections are the
most likely consideration. We have only examined the
wave-function corrections due to kinetic energy. A more
complete analysis including spin-dependent corrections is
currently in progress.
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APPENDIX

g(p)= g C,ej(p), (A6)

where the CJ are as yet undetermined coefficients. Substi-
tuting Eq. (A6) into Eq. (A4) we obtain

N

g CJW(p )ej+ g CJV, ej. M—g Cfej=0. (A7)

&f g &—= f d'pf(p)i(p) . (A9)

Define the EXE matrix 2 whose ijth entry is given by

In general, Eq. (A7) cannot be satisfied because Eq. (A6)
was only an approximate solution. However, we can re-
quire that the left-hand side of Eq. (A7) be orthogonal to
each of the N basis functions Iei, eq, . . . , e~J. In other
words, we require that the projection of Eq. (A7) onto the
subsp ace formed by the span of the N functions

Iei, ez, . . . , e„I be satisfied identically. Taking inner
products, we obtain

g CJ(e;, W(p )eg}+ g Cj(e;, V, eg) =MCUS, (AS)
n=1

for i =1,2, . . . , N. The inner product is denoted by angle
brackets:

In this appendix we will review the Rayleigh-Ritz-
Galerkin (RRG) methods' for the solution of a certain
class of eigenvalue problems. Consider an eigenvalue
problem of the form

A&& ——(e&, W(p ) ej)+(e;,V, e&) .

Then Eq. (A8) becomes

N

g A,AC) ——MC„ i =1,2, . . . ,E

(A 10)

(A 1 1)

W(V2)p(r)+ V(r)1((r) =M/(r), (A 1)

where M is the eigenvalue parameter. This general form
encompasses the Schrodinger equation, for which

W(V ) = +2m (A2a)

and the spinless Salpeter equation for which

W(V ) =2( —V +m )'~ (A2b)

(A3a)

Here, rn denotes the quark mass and for simplicity we
only consider the equal-mass case. We define the Fourier
transform of a function by

p(p)= f d re'P'p(r) .

or in matrix natation

AC=MC . (A12)

~1 +~1 ~ ~2 +~2 s ~3 +~3 & ~ ~ ~ (A13)

This is an ordinary matrix eigenvalue equation. One can
show ' that the eigenvalues of this matrix equation con-
verge to the eigenvalues of Eq. (A4). Also, the approxi-
mate solutions Eq. (A6} with the Cj determined above as
eigenvectors of the matrix A will converge to the solu-
tions of Eq. (A4). Furthermore, if the eigenvalue spec-
trum of Eq. (A4) is positive definite (which will occur for
all physically reasonable potentials) then one can show
that

The inverse transform is given by

d1 —s.rf(r)= f ie '&'f(p) .
(2n.)'

(A3b)

where the M; are the exact eigenvalues of Eq. (A4) and
the M ' are the eigenvalues of Eq. (A12).

The operator W'(pi}+ V, is self-adjoint, so that

Multiplying Eq. (Al} by e'~' and integrating over r, we
obtain

(A14a)

= (e~, IVe; }+(ej, V e; ), (A14b)

( e;, Wej }+(e;, V~ej }= ( We;, ez ) + ( V, e;,ej }

W'(p )g+ V, f=MP,
where the asterisk product denotes convolution:

(A4)
where the overbar denotes complex conjugation. Thus

(A15}
d

V.4=- f (A5)
(2m )

I.et t ei, ez, . . . I be an orthonormal basis for Lz(R ). We
seek an approximate solution to Eq. (A4) in the form

and the matrix A will be Hermitian. %"e will choose the
ej so that 3;j is real; A will then be a real symmetric ma-
trix. Thus we will only need to evaluate the diagonal and
upper triagonal elements of A. The inner product of e;
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(et, V, ej) =(2n) (et( —r), V(r)el(r))I,

where e;(r) is the inverse transform of e;(p). Thus,

(A16}

AJ ——(e;, We& )+(2sr) (e;( —r},V(r}ej(r) )

pe;p 8'p ezp

+(2sr) J d re;( r)V—(r)e (r) .

(A17a)

with a convolution may be easily evaluated by direct sub-

stitution into coordinate space quantities:
where p~ is an arbitrary constant. In practice, pi is
chosen to minimize the approximate eigenvalues obtained
from Eq. (A12) since the approximate eigenvalues are al-

vrays larger than the true eigenvalues. The inverse
transforms of the basis functions are given byes

e (r)= (mp ) N 'e " L' + '(x)x 1'( i—)'
jim

(2 )i~i i jl j—1 Im

(A20)

w~ere

We choose for basis functions

ejt (p)=(NJt) '(mpi) '~'
' I+2

1

1+4y

4 —1&&(I+3r2,I+ in)
Im ~

where F~ is a spherical harmonic;

(A18)

' 1/2
(j+2l +1)!

(j —1)!
(A21)

is a normalization constant, L&
+ '(x) is the jth general-

ized Laguerre polynomial with parameter 21+2 and x
is related to r = ~r

~
by

x = r(mpi)'~z . (A22)

Substituting these basis functions into Eq. (A17b) and us-

ing the orthonormality of the spherical harmonics, we
find

2+ I( —,')
NIt (2')'~—2

I [(j+l+1)!(j—1)!]'~'J
1(j+l+ i } AJ ——I W(p )v P 1+4~2

' 2l+4

is a normalization constant, and

(mpi)'
(A19)

P

J~I+3y2, I+ in) 4P —1

J 4y 2+1

is the jth Jacobi polynomial of the argument
(4y —1}/(4y +1) with parameters l+ —', and l+ —,. The
dimensionless variable y is related to p =

~ p ~
by

V(r}x '+ e ' dx .
00 L; i L

0 N I NJI
(A23)

By making the change of variable z =(4y —1)i(4y +1),
the first integral may be simply evaluated using Gauss-
Chebyshev quadrature. 6 The second inte ral can be
evaluated using Gauss-Laguerre quadrature. Once the

A,
&

have been evaluated, the eigenvalues and eigenvectors
of the matrix can be obtained by using standard methods
for determining the eigensystems of real symmetric ma-
trices. 26 27
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