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Radiative corrections for semileptonic decays of hyperons: "Model-independent" part
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The "model-independent" part of the order-o, radiative correction due to virtual-photon ex-
changes and inner bremsstrahlung is studied for semileptonic decays of hyperons. Numerical results
of high accuracy are given for the relative correction to the branching ratio, the electron energy
spectrum, and the (E„Ef) Dalitz distribution in cases of four different decays: X ~nev,
X —+Aev, " ~Aev, and A~tv.

I. INTRODUCTION

In the last few years several high-statistics experiments
were carried out to study semileptonic decays of hyperons.
The most interesting question about these decays is
whether the experimental results fit into the framework of
the Cabibbo model. ' At the level of quarks, and after the
extension made by Kobayashi and Maskawa this model
has become an important ingredient of the standard
Glashow-Salam-Weinberg theory of electroweak interac-
tions.

The improving precision of the measurements made it
necessary to apply radiative corrections in the analysis of
the experimental data. Several calculations exist in the
literature for the corrections to the branching ratio and
the electron energy spectrum, ~ s all of them being descen-
dant of the classical radiative correction calculations for
neutron P decay. 9 We carried out a comprehensive cal-
culation of the radiative corrections for the decays
X ~nev, X ~Aev, = ~Aev, and A~pev with the
aim of obtaining coherent sets of results for the branching
ratio, the electron energy spectrum, and the Dalitz distri-
bution. In the course of this work we were in close con-
tact with the WA2 experimental group at CERN. This
group measured the above decay modes, and the main
goal of our work was to supply the experimental analysis
with the necessary radiative corrections. Our results con-
cerning the branching ratio and electron energy spectrum
are simply more accurate, in a sense to be explained later,
than already existing results. The radiative corrections on
the (electron energy, final baryon energy) Dalitz plot,
which we are going to present here are so far unique in
the literature. The obtained large variation of the latter
correction is a warning, that, even if the integrated
"theoretical" correction to the branching ratio is small,
the experimentally observed radiative corrections can be
relevant and quite different in various experiments, be-
cause of the acceptance properties of the experimental ap-
paratus.

%e mention that analytical formulas have already been
published to give the radiative corrections for the decay
distribution on the (E„cos8,„) plane, ' '" E, and 8,-„be-
ing the electron energy and the angle between the three-
momenta of the electron and the antineutrino, respective-
ly. However, this result is of very liniited use from the

point of view of analyzing experiments, since 8,„is never
measured. 'z

In Sec. II we start with the presentation of the theoreti-
cal program for the calculation of radiative corrections to
semileptonic decays. In Sec. III we describe the "model-
independent" part of the virtual-photon corrections. In
Sec. IV we discuss some characteristic properties of two-
dimensional decay distributions in the presence of inner
bremsstrahlung. Our results are presented in Sec. V, to-
gether with a detailed discussion of the inputs and tests of
our numerical calculation. In an Appendix we shortly
discuss the effect of some numerical approximations.

II, FORMULATION OF THE PROBLEM

1 — (1+2Q)lncos 8n +~„,
Sm

(2.1)

where 8n is the Weinberg angle and Q is the average elec-

The calculation of radiative corrections to semileptonic
decays is an old and complicated theoretical problem.
The weak interaction, responsible for these decays, is
mixed up with the electromagnetic and strong interac-
tions. Infrared and ultraviolet divergences spoil the calcu-
lation, which must be overcome in a reliable fashion.

The problem of infinities, at least to order a, the fine-
structure constant, is now solved. The solution is simple
in case of the infrared divergence, as the method familiar
from QED works: one must add the decay probability of
the bremsstrahlung process 8~bevy to that of B~bev
The infrared-divergent parts for both processes are the
same, as if the coupling between the (real, or virtual} pho-
ton and the charged baryon are pointlike.

The problem of the cancellation of the ultraviolet infin-
ities is much more difficult, the method of solution is
rather complicated. ' The result, however, can be ex-
pressed in a simple way. In a very general framework,
which includes (1) the standard SU(2)8 U(1) unified gauge
theory of the weak and electromagnetic interactions, (2}
generally accepted properties for the strong interactions,
such as SU(3) color gauge group, asymptotic freedom,
current-algebra relations, and (3) an appropriate choice of
counterterms, '" the B~bev decay amplitude to order a
can be written as
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tric charge of the relevant weak isodoublet. (For quarks
in hyperon decays Q= —,', for leptons in muon decay

Q = ——,.} The notation Mo is used for the decay ampli-

tude in lowest order:

~0=i 2GF[u2y"(I+y')»]&f
I
JS«0)

I
i & .

The labels i, f, 1, and 2 in (2.2) refer to the decaying and
final baryon, antineutrino, and electron, respectively. The
coupling constant G~ is equal with that observed in muon

decay, G~=G„.
(We use the conventions of Ref. 15 for the Dirac y ma-

trices y",y, and for the metric in the scalar product of
four-vectors. We normalize the Dirac spinors as
uu = —uu =2m. ) The matrix element M in (2.1) is ultra-
violet finite. The order-a part of the expression in the
large parentheses in (2.1) is due to diagrams, which are in-

finite before renormalization. We do not go into the de-

tails here of how to eliminate the infinities, neither into
the derivation of their finite remnant. The interested
reader can study these problems in the excellent works of
Sirlin. ""

The term Mr in (2.1) collects the contribution of three
different types of diagrams:

My
——Mo5Z(~),(1)

where

(2.4)

5Z(, )
—— f dkD(„(k)

[(k —p2)'+m, i]~

a 1

f /kD((k) u2[yp~ 1/2 y&2
32m' m, ' " [(k —p2)'+m, ']i

(2.5)

A virtual photon can be emitted and reabsorbed also by
the hadronic weak vertex. This is the origin of M~~',

i v 26—~[u2y"(1+y )v &]T"(, (2.6)

They are familiar from the literature, nevertheless, we
write down the corresponding expressions in order to give
explicitly the basis of our calculation.

The first term, Mr' ', in (2.3) is a contribution, which
comes from the wave-function renormalization of the
final-state electron due to the emission and reabsorption
of a virtual photon:

(1) (2) (3) (2.3) where

Ti'(= lim f dkD„(k) f dye +' f dxe ' (f
~
T[Jg(y)J&(x)Jr(0)] ~i) —&""

p; —pf . Sm'
(2.7)

Xu2
(k —pz) +m,

Xy~(1+y')Ui . (2.8)

The tensor T~(k) is defined as

T~(k)= f dxe ~(f
~
T[J&y(x)Jfy(0)) ~i) (2.9)

The symbol M~ stands for the mass of the charged weak
vector boson, and D&„ is the photon propagator in the
Feynman gauge:

D~„(k)=
k +A,

A small photon mass A, is needed to regularize the in-
frared divergence of (2.5), (2.7), and (2.9). Finally, D(„
denotes

We use the notation J&z for the hadronic electromagnetic
current. 8&~ is a counterterm to assure that the pole of
the uncorrected and the O(a)-corrected propagator for
the i (or f) particle be at the same mass value: m; (or
mf ).

The last term M'r3' in (2.3) corresponds to the exchange
of a photon between the weak vertex and the electron:

2

M' '=~2GF f dkD „(k)T"~(k}pv
Mg +k

D („(k)=
2 D„„(k) .

~w'
k'+M '

When writing down expressions (2.5)—(2.9) we neglected
the dependence of the II'-boson propagator on p; —pf.
This means the neglect of very small terms proportional
to 6~am; /Ms in the matrix element. As a result, we
could write down the well-known formulas for the virtual
photonic radiative corrections in the traditional current
Xcurrent theory of weak interactions. ' Even an ultra-
violet regularizing factor Ma /(Mii +k ), needed in
this approach, is present in (2.5), (2.7), and (2.8). This is
quite natural in the case of (2.8), since, in fact, our start-
ing point is the Glashow-Weinberg-Salam theory of weak
interactions. The situation is slightly different in the case
of (2.5) and (2.7). In Sirlin's approach, which we follow
here, these two types of diagrams are treated using the
separation

Dp„——Dp~„+D~~„,

D~~„(k)=
k +My

That part which contains D„„is ultraviolet divergent, and
is treated together with the other UV-divergent diagrams
arising in the SU(2)SU(1) framework. Their finite rem-
nant is included in the first term of (2.1). Since the factor
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M~ l/(Ma +k } is not really a tool to make the order-a
riu9iative correction UV finite, the "cutoff mass" Ms
may survive even in the final results, and it was recently
proved by Sirlin to indeed do so. ' Some reedit and old
r~Jative correction calculations, which start with the
currentXcurrent theory, solve the problem of UV infin-
ltcs by uslllg momentum-transfer-dependent weak alld
electromagnetic form factors, the deIpendence being extra-
polated from the low-q2 region. 6 ' These calculations
cannot account for the mentioned {logarithmic) depen-
dence on My, and probably underestimate the large-kl
part of thc loop lntcgrais.

Finally, the infrared problem requires us to deal with
inner brcmsstrahlung. The matrix element for the
B~bevy process can be written as

(2.10)

Mz"' ——v 26zc [ugly&(1+y )Ui] Tl (k)cl"(k,s), (2.11)

Mr~ ~ ——~26sc[u2e' {k,s)[i (px —k)+in ]
xy"(I+y'»i) (i I &I {o}If & . (2.12)

The purpose of this paper is to study the decay distribu-
tion

III. THE MQDEI -INDEPENDENT CORRECTION

The first tenn I 0(E„Ef) in (2.13) is the lowest-order
distribution function for the process B~bev. It has been
studied in detail by several authors; our basic reference is
18.

FoHovang tradition me a&rite the weak-current matrix
element in (2.2) as

(f ~
Jg(0) ~i ) =i(2n) —,'u/H"u;,

where

(3.1)

4f =Br —Pf .
(3.2)

In its most general form H" contains three further form
factors, fi, g2, and gi, which we neglect m this paper.
[The sign convention in (3.2) for the axial-vector form

I'{E„Ef)= I 0(E„Ef)+I' (E„Ef), (2.13)

where E, and Ef are the energy of the electron and the fi-
nal baryon, respectively, in the rest system of the decaying
particle. The integral of f'{E„Ef) gives the order-a
corrected branching ratio

p(B-+bev) =—I PE„Ef)dE,dE/,
j.

r
where I' is the total decay width of the particle B. The
brcmsstrahlung part of I (E„Ef) is obtained after in-
tegration over the whole kinematically allowed phase
space for photons. Therefore our results are suitable for
the purpose of experiments, which use no discrimination
against hard photons at all.

factor gi is the saine as in Ref. 18.]
For the purpose of experimental analysis I (E„Ef)

should be given in a form similar to I'0(E„Ef), that is, as
a bilin ear combination of the unknown parameters
f~,fi,gi with known functions of E, and Ef as coeffi-
cients. At present, this task is too difficult to solve, since
our knowledge about strong interactions is not sufficient
to evaluate the matrix elements of the product of two or
three hadronic currents, T~(k) and T"~(k).

In the bremsstrahlung case it seems reasonable to ap-
proximate Tiv'(k) as if the photon is coupled minimally to
a pointlike baryon, since the photon energy cannot be
large in the final state:

Tiv'(k) =—(2m) ufo[i (pi k)+—m&] 'y"u;, (3.3a)

for the X ~nev type of decays, and

T~(k)= — (2n) —ufy"[i(pf+k)+mf] 'H u;
2

(3.3b)

Mg m,
6Z(, )

——— — — —ln —1n
2m 2 m, X 8

(3 4)

Substituting the model-independent part for T"~ in (2.6),
M'„' takes the form

for the n~pcv type.
The situation is much more serious in the case of the

virtual-photon corrections, since in (2.7) and in (2.8) k is
an unbounded variable of integration. We shall follow the
strategy of writing Mz as the sum of a so-called model-
independent and a model-dependent term The .idea of
such a separation was originally invented by Sirlin in the
case of neutron P decay. Since the mathematical expres-
sion giving the model-independent part is quite general, it
served later as a starting point of calculations also in the
case of other semileptonic decays. '" In this paper we use
its model-independent part for M„, and call, following
tradition, the resulting I' (E„Ef) the model-independent
correction. By definition, this I ~(E„Ef) is a bilinear
combination of the form factors fi,f2,gi and the coeffi-
cients (functions of E„Ef) are calculable. We want, how-
ever, to stress, that the radiative corrections are complete
only, when also the model-dependent part of M„ is in-
clude. Sirhn, 7 md later Gmci~ll suggetK", that,
neglecting terms proportional to GsaE, /m; in M„, the
only effect of the model-dependent part is that it changes

fi,gi to some "effective form factors" f'„gi without
changing the coefficient functions, already known from
the calculation of the model-independent part. Perhaps
this is true, but the notion of effective form factors is use-
less, when the ultimate purpose is to compare the experi-
mental results with Cabibbo's predictions, which refer to
the true form factors. We find it particularly disturbing
that the model-independent —model-dependent separation
is nonunique, and therefore the effective form factors are
ill defined. We postpone the study of the problem of the
model-dependent part to a subsequent paper. '9

By the model-independent part of A'& ee mean the ex-
pressions given in Ref. 7 for (2.7) and (2.9). 5Zt, ~

in {2.5}
is well known from QED. In the Feynman gauge,
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(3.5) Sp(x)= —I dt —ln(1 —xr) .
t

(2p",h —k")(2p,"h —k")
5Z= f dkD„„(k)

This is part of the expression valid in QED for a point-
like, charged particle with —p,h ——m, h [cf. {2.5)]. Stan-
dard calculation gives

a I ~w ~ch 3—ln —ln +-
2m' 2 m, h A, 4

(3.7)

The model-independent part of M'„' is obtained by writ-
ing in (2.8}

2p",h —k"
T~(k}=—,'(2m)

2 2
ufHi'u; .

(k —P,h} +m, h

Then the contribution of Mir~' is

{3.8)

( —d+d )My =2~ 0 1 0

i(2ir) v 2' ut y"(1+y )vi2' hach

X(ufHi'u, )dii . (3.9)

In (3.9) the last term is included only for the sake of tradi-
tion. Let alone the very low end of the electron energy
spectrum, it is negligibly small, the function d i i being

I~e pe+
dii = ill

2p~ Pl~

where p,
' =(E,' m, )', p—,'+ E,'+p,', and E,' i——s the en-

ergy of the electron in the rest frame of the charged
baryon. The first term on the right-hand side of (3.9) is
the so-called Coulomb term. Mc'"" b=0, if the final
baryon is neutral, and

t

pe
(3.10)

p:+
d ) ——ln +—+ In

m, 2 p, m,
' (3.1 1)

2E~ p~ + Nl~, Eg pg +
do —— ln ln + ln

p' m~ X p' m~

Sp + ln —2 . (3.12)
pe pe+ ~ch ~ch

The mass m,h is equal with m; or —mf, depending on
whether the initial or final baryon is charged, respectively.
For the definition of the Spence function in (3.12) we use
the convention

if the final baryon is positively charged. Finally, the
functions do and d„neglecting terms proportional to
m, /m, h and ( E,'/m, h), can be written as

In summary, the model-independent part of M„ is a
multiple of Mo [neglecting now the term with dii in
(3.9)]:

A
gi(E,')Mo . (3.13)

The order-(a/n )E,'/m, h terms in the function g i (E,') are
of very little significance from the numerical point of
view. The situation is different, when the E,'/m, h terms
coming from Mo are considered. In hyperon decays they
are not small enough to suppress large and remarkably
varying terms of order a coming from gi(E,'). [Such a
term is, i.e., (E,'/p, ')1n (p,'+/m, ).] We mention that in
the case of the neutral-hyperon decays (n, A~pev) an
imaginary part should be added to the function gi (E,'). It
gives, however, no contribution to any physical observ-
able, if spin polarizations are not detected. Therefore, we
omitted it in this paper.

IV. TWO-DIMENSIONAL DISTRIBUTIONS
IN THE PRESENCE OF BREMSSTRAHLUNG

It is well known that in the case of the B~bev process
four-momentum conservation is very restrictive. Assum-
ing that polarizations are not detected and the decaying
particle is at rest, E;=m;, only two independent variables
are available for the description of the final states.
Several choices are possible for these two variables, the al-
ternatives being easily related to each other. As a conse-
quence, the quantities measured in an experiment can be
freely transformed to other ones in order to obtain the
wanted distribution. If radiative corrections are applied
in the analysis such a possibility does not exist any more.
This is a consequence of the presence of four particles,
bevy, in the bremsstrahlung final states and of the in-
tegration over the three-momentum of the photon.

In order to illustrate what we mean we compare some
properties of two distributions without and with radiative
corrections.

m, &E, &E,

Ef „(E,) &Ef (Ef (E )

{4.1)

(4.2)

PB. —ltlf +me2 2 2

2' )
'l

1
Efmax, fmin= {mi Ee ~Pe)+

2
Vlf

2

m; —E, +p,

(4.3)

(4.4)

The variables E„Efdetermine a decay event up to trivial
rotations. The angle H,f bet&veen the three-vectors p, and

A. Distributions in terms of ( E„Ef)

If the B~bev decay process alone is analyzed, the
kinematically allowed region for these variables is
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pf is uniquely fixed by the relation rn; E—, —Ef
=

I Pe+Pf I:
m; +mf +m, E—f(2m; E—, ) E—,(2m; E—f)

2pePI
cos8~f

(4.5)

where

(E 2 m 2}i/2 p (E 2 m 2)i/2

If radiative corrections are taken into account the ex-
perimental analysis must cover an (E,„Ef} regian, which
is larger than the one defined by (4.1) and (4.2). Because
of inner bremsstrahlung extra events appear with

is finite, because here the infrared-divergent bremsstrah-
lung and virtual-photon corrections sum up to give a fin-
ite result.

Another interesting case is when E, and Ef are on the
curve Ef (E, ) or on Ef (E, ) (and, in the latter case,
E, &E,' ). In both cases m; E, —Ef =—~p, —pf ~, and
the two-dimensional region of integration over (E„,q) de-
generates to a line:

«E, & lp. —Pfl .

It is straightforward to verify, that, as a result of this de-

generacy,

mf (Ef &Efmm(Ee), (4.6) I ~(E„Ef)-—In I—a Ip. —Pf I

rn —E —Efe
(4.16)

m, &E, (E,'

where

=1 m, 2

E,' =—(mr —mf )+emax
Ptl( —Fllf

(4.7)

(4.8)

when the above-mentioned boundary curves are ap-
proached. As the bremsstrahlung contribution to
I ~(E„Ef) becomes finite in this limit, the infrared diver-
gence of the virtual-photon part reappears.

B. DIStflbutlans ln teeaaas Of ( E,COSH f ).

For the set of events with given E„Ef the relation (4.5) is
not true any mare. This point can be conveniently dis-
cussed in terms of the variable

Whether radiative corrections are considered or not,
possible values af cos8,f are

q =
I pe+ pf I =(pe'+Pf'+2pepfcas8ef }'".

Instead of the single value

g =m —E —Ef

(4.9)

(4.10)

—1&cos8,f & I,

me &Ee KEemm

(4.17)

it is an interval, which is allowed for q, and, therefore, for
cos8,f at each (E„Ef)point. Namely,

~pe —pf ~
&q &mr E, Ef,— —

if (E„Ef) is in (4.1) and (4.2), and

Ipe Pf I &q&Pe+Pf ~

if ( E„Ef) is in (4.6) and (4.7). In the latter case

p +pf gm. —E —Ef .

(4.1 I)

(4.12)

(4.13)

The contribution of inner bremsstrahlung to I'~{E„Ef) is
obtained by integration over q. Another variable of in-
tegration is the energy E„of the bremsstrahlung photon.
The range of the possible photon energies is a function of

(m' E Ef q)(Er ( g (rri —E Ef+q) . (4.14'}—
Interesting properties of I'~(E„Ef) follow from
(4.11)—(4.14). When (E„Ef) is in {4.6) and (4.7) the
"correction" I ~(E„Ef) comes from bremsstr»lung
alone. It is finite, since min(Er ) & 0. But, when the curve
Ef;„(E,) is approached, min( E„) 0, and I' (E„Ef)
grows logarithmically:

T T

a m. —E —EfI (E„Ef)-——ln 1 — -++ao . (4.15)
Pe+Sf

COS8ef &0,
m; Em~ —E,

0&sin8,f( Vlf P~

(4.18)

if E,' &E, &E, . For those events which have the
same E, and cos8,f, the possible energies for the final
baryon are different depending an whether it comes from
a B~bev or B~beet event, but these events are not dis-
tinguished from each other Let us. denote by Ef+' the-
quantities

Ej'+-' ——I(rn; E, )[mr(E, ~ —E, )+mf ]—
0

+p, cos8,f[m; (E, ,„E,)—
mf 2P, 2sin28,f ]-'/2'I,

Ef—Ef(
—)

The relation is two to one if E, & E,'

Ef——Ef—+(+)

(4.20)

(4.21)

where a =(m; E, ) —p, cos 8,f.—In the case of B~bev
events Ef is uniquely determined by E, and cos8,f if
Ee &Eemax'

On the curve Efm (E, ) (and, for E, &Ee'm~) 1~(E„Ef) For B~bevt events these relations change to
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Vlf (Ef 4Ef
when E, ~E,', and to

(4.22} TABLE I. The form-factor values used in the present calcu-
lation.

E(+)(E (E(—) (4.23)

when E, )E; . In order to evaluate the bremsstrahlung
contribution to I (E„cos8,f ), one must integrate over Ef
and E„The allowed range for Er is given by (4.14) and
(4.9}. Unbounded behavior of l,(E„cos8,/) emerges
only, when E, & E,', and

X ~nev
X ~Aev

—+Aev
A~pev
n ~kiev

—1.139
1.213

—0.065
0.974
1.974

0.310
—0.588
—0.249
—0.699
—1.239

m]E, —E,
sln8gf ~

mf Pe

Along this boundary curve Ef'+'=E/' ', and

E(+)
I (E,cos8,~}-—ln 1 — ~—ao .c c~ 8 E( )f

(4.24)

This is another example of the recovery of the infrared
divergence coming from the virtual-photon corrections.

Further illustrative examples could be brought to stress
that kinematical relations, which are commonly known
for B~bev decay, might be incorrect to use in experi-
mental analysis if radiative corrections are relevant.
Nonetheless it is difficult to tell in a given context wheth-
er or not the use of B~bev kinematics is an acceptable
approximation. Intuitively one expects that this approxi-
mation can be used, if in most of the bevy final states the
photon and the antineutrino move parallel to each other.
This is, however, not the case, because the smallness of
the electron mass results in a sharp maximum of the
bremsstrahlung matrix element when the photon and the
electron have paraHel momenta. A theoretical calculation
of radiative corrections must be designed very carefully in
order not to confuse theoretical and experimentally mea-
sured qu uitities. The best example is cos8,~, 8,v being the

angle between the momenta of the electron and the an-
tineutrino. In experiments 8,„ is an indirectly obtained

quantity, since the antineutrino is not seen. A radiative
correction calculation must use the "experimental" defini-
tion of 8,v, if it is destined for the purpose of analyzing
experiments. The radiative correction to the (E„cos8,-„)
distribution given in Refs. 10 and 11 is only of theoretical
value, since in this paper 8,„means the actual angle be-

tween the momenta of the electron and the antineutrino.
For a similar reason, any result known to us in the litera-
ture concerning the radiative correction to the asymmetry
parameter a,„is inadequate to apply to the experimentally
measured a,~ (Ref. 12).

ing particle is at rest. In this calculation we have needed
the weak form factors as input. We have used the zero-
momentum-transfer values of fi, f2, and gi obtained by
the WA2 group at CERN from a first fitting of the exper-
imental data without applying radiative corrections. We
have checked that our results do not change under the in-
fluence of a few percent change (which is allowed by the
experimental errors) in the value of these parameters. We
have put equal with zero the form factors f3, g2, and gq.
Exact SU(3) and the conserved-vector-current hypothesis
justifies this in the case of fi and g2. The term with g3
in the matrix element of the weak current is very much
suppressed in the lowest-order decay matrix element;
therefore, it is usually not included in experimental
analysis. The suppression is resolved in the order-a
corrections, but, unless one expects an unreasonably large
value for g3, its contribution cannot be more than
0.1—0.2%%uo. We have also ignored the momentum-
transfer dependence of the form factors, its effect being of
the order of (a/m)[(m; —mf ) /ni; ]. In fact, to calculate
the relative corrections given in this paper one needs only
the form factors divided by f& (by the cosine of the Cabib-
bo angle in the case of X -+Aev). These input numbers
are summarized in Table I, together with the correspond-
ing ones for n~pev decay, as they have been used in the
Cabibbo analysis of the WA2 group. '

We have obtained our results from computer calcula-
tion. We have used REDUCE algebraic programs to calcu-
late traces of complicated products of Dirac y matrices.
To evaluate the three-, four-, and five-dimensional in-
tegrals required by the bremsstrahlung part of the correc-
tion to the Dalitz distribution, electron energy spectrum
and branching ratio, respectively, we have used the DEVON

TABLE II. Relative correction to the semileptonic decay
rates in %.

V. RESULTS

Using the model-independent expressions of Sec. III for
the virtual-photon corrections and the "electromagnetical-
ly pointlike" baryon approximation [(33a}and (3.3b)] for
the description of inner bremsstrahlung we have calculat-
ed radiative corrections to the branching ratio, the elec-
tron energy spectrum, and the (E„EI) Dalitz distribution
for four different semileptonic baryon decays, X ~nev,
X ~Aev, = ~Aev, A~pev, assuming that the decay-

X ~net
X —+Aev

~Aev
A~pev
n ~kiev

Tllls
calculation

—0.41
0.14

—0.20
—0.57

1.53

'See the Appendix.
+ 2.29% Coulomb correction.

'+ 3.5% Coulomb correction.

Sirlin

—0.25
0.12

—0.15
—0.22

1.50

Garcia'

—0.81
—0.23
—0.50
—0.89

1.50
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TABLE III. Relative correction to the electron energy spectrum in %. At each x the upper number gives the value of Sirlin s

(a/2m )g (E„E, },the lower one is our result. (Coulomb correction is not included. )

A~pev

0.1

14.9
18.2
11.4
13.4
14.3
16.2
13.7
18.0

0.2

5.84
7.2
4.90
5.5
5.70
6.5
5.45
7.0

0.3

2.71
3.S
2.54
3.0
2.71
3.2
2.57

0.4

0.76
1.3
1.01
1.3
0.84
1.2
0.75
1.3
1.88
2.0

0.5

—0.80
—0.4
—0.24
—0.2
—0.66

(}.4
—0.71

0,4
1.77
1.8

0.6

—2.23
—2.0
—1.40
—1.3
—2.05
—1.8
—2.05
—2.0

1.60
1.7

0.7

—3.70
—3.8
—2.61
—2.6
—3.47
—3.4
—3.44
—3.7

1.39
1.5

0.8

—5.41
—5.6
—4.01
—4.1

—5.12
—5.0
—5.04

517
1.13
1.1

0.9

—7.83
—8.6
—6.01
—6.2
—7.47
—7.6
—7.34
—8.5

0.74
0.7

I ~I I
xa'= a Psf

k.p; f

p 2

/
Mo f

. (5.1)
k p»

For the three-dimensional integration of (5.1) over the
photon mom enta we have used standard methods
described, e.g., in Ref. 22. The integration of the remain-
ing finite part is, in principle, straightforward. Conver-
gence problems arise, however, due to the electron propa-
gator in (3.12). In order to make the numerical integra-
tion convergent, we have had to smooth the large varia-
tions of the integrand by means of appropriately choem

general-purpose routine for numerical integration. 2' We
have had to subtract the infrared-divergent part of
the square of the bremsstrahlung matrix element

[(3.10)—(3.12)]:

variables of integration. For the Spence function we have
used power-series expansion.

To check our programs and to study the convergence
properties of the DrvoN routine in the case of our specific
problem we have made the following tests.

(1) We have computed the model-independent radiative
correction to the n ~pev decay rate. This number, 1.5%,
is well known from the literature. Our result by comput-
er is 1.54%o.

(2) We have computed the model-independent radiative
correction to the electron energy spectrum in n ~pev de-

cay. In Table II we present our results together with the
corresponding values of the famous g(E„E, ) function
of Sirlin.

(3) We have computed the total order-a photonic radia-
tive correction to the p ~ev„v decay rate. The classic

TABLE IV. Radiative correction to the Dalitz distribution in %%uo. In the case of A~per uniformly
2.3 /o must be added for the Coulomb correction.

X ~nev
X —+Aev

—+Aev
A —+pev

X —+nev
X ~Aev

~Aev
A —+pev

5.4
3.9
1.4

10.9
5.4
6.1
9.5

1.7
1.6
2.3
1.1

34
2.8
3.7
3.0

—0.7
0,4

—1.0
—1.2

0.3
0.8
0.5
0.2

—2.9
—1.9
—3.4
—3.2

—2.2
—1.0
—2.0
—2.1

—5.7
—5.0
—5.2
—5.9

—5.6
—4.1

—5.4
—S.2

—9.0
—6.5
—8.2
—8.7

—11.6

—15.0
—13.0

X —+nev
X ~Aev

4.5
2.9
4.6
4.1

0.5
0.9
0.6
0.5

—2.3
—1.0
—2.1
—2.0

—6.6
—3.6
—6.5
—6.1

X —+nev
X —+Ac@

~Aev
A~pev

6.8
2.9
6.7
5.5

0.7
0.8
0.6
0.8

—2.5
—1.4
—2.5
—2.1

—12.0
—19.8

X ~nev
X ~Aev

—+Aev
A~per

1.0
0.4
0.4
0.8

—3.0
—3.9
—5.0
—2.4
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TABLE V. The (x,g} coordinate values belonging to the points, in which the radiative correction io
the Dalitz contribution is calculated (x =E, /E, ,g=Ef /m; ). x; =O.1, 0.25, 0.45, 0.65, 0.85, 0.95.

X ~nev
X ~Ace

—+Aev
A~pev

0.7925
0.9320
0.8460
0.8440

0.7965
0.9325
0.8500
0.8465

0.8005
0.9330
0.8520
0.8490

0.8045
0.9335
0.8540
0.8515

0.8075
0.9340
0.8560
0.8535

result for it is

(ir ——,' )=—0.42% .2'
This is an example, in which (m; —m~)/m; is not

negligible. (We have assumed mf =—m„=0.} For the

purposes of this calculation we have had to keep the com-
plete "pointlike" expressions for T"~ in (2.6) and for T"i'
in (2.8). In our computer program there has been a for-
mal dependence on Ma. It is well known that in V —A

theory and to order tz, the radiative correction to p decay
is independent of the cutoff mass. We have put 80 GeV
for Ma, but our results have not changed, when this
number had been changed to 800 and to 80000. We have
obtained —0.45% for the correction to the p, -+ev„v de-

cay rate.
(4} We have calculated the correction to all of the

branching ratios in two different ways. First, we have
taken the complete order-a expression for the radiative
correction, and computed its five-dimensional integral. In
the second case, we have decomposed the weak current
matrix element (3.1) in terms of the form factors F~, Fq,
F3 ~ and 6 i instead of the ones f&, fi, and g &

(see Ref.
18). Then, we have separated and integrated the kinemati-

cal coefficients for Fi, FiFq, Fq, etc., and have obtained

the correction to the branching ratio as a combination of
these terms. This procedure is extremely sensitive to nu-
merical inaccuracies, because in most cases large terms
with opposite sign sum up to give small result. In this
way we have beni able to excellently reproduce the results
obtained by the first method. (In an early report we stud-
ied the Dalitz distribution for X ~nev decay following
the second method. In that calculation we used the com-
plete pointlike expression for the X -photon coupling. )

On the basis of these investigations we can say that the
percentage values we give here for the relative corrections
(RC%) have a numerical accuracy -0.1% [(RC+0.1)%]
for all branching ratios, and for the electron energy spec-
trum and the Dalitz distribution in the case of the
X ~nev and A~pev decays. In some points of the en-

ergy spectrum and the Dalitz distribution for X ~Aev
and:- ~Aev decays this accuracy is worse, (RC+0.5)%.
The reason for this is that we saved computer time.

Of course, we do not think, that our present theoretical
knowledge allows us to produce the complete radiative
corro:tion, i.e., including the model-dependent part, with
the above accuracy. However, we wanted to avoid numer-
ical uncertainties in the calculation of the model-
independent part, which are possibly comparable with the
theoretical uncertainties. We have been very careful
about terms proportional to (a/n. )E,/m; or
(a/ir)(m; —mf)/m;, particularly, because large factors,
such as in(E, /m, ) and ln (E, /m, ), can make them signi-
ficant.

%e present our results in Tables II—V. Tables II and
III contain the relative model-independent correction for
the branching ratios and the electron energy spectra. For
comparison, we give our numbers together with the ones
which can be obtained by using Sirlin's well-known results
derived originally for n~pev decay, neglecting con-
sistently all the terms with E, /rn; or (rn; —mf)/m;.
With the exception of A~pev decay there is no difference
between the two sets of numbers in the case of the branch-

ing ratios. (Table II does not contain the Coulomb part of
the correction, which is + 3.5% for n ~pe v, and

+ 2.3% for A~pev. ) The situation is different for the
electron energy spectra. In comparison with the limiting
curve g(E„E, ,„) of Sirlin we have obtained a steeper
function for the relative corrections. The difference is

best visible in the lower third of the curve.
Table IV contains the relative correction to the two-

dimensional distributions in some points of the (E„Ef)
Dalitz plot. (The points were specifically chosen to meet

the needs of the WA2 experiment. Table V gives the
dimensionless coordinate values x =E, /E, ,„and
g=E//m; for the various decays. ) As discussed in Sec.
IV, part of the (E„Ef) distribution is due to bremsstrah-
lung events alone. Here the "relative correction" would,
of course, be infinite. Therefore, in Table VI we separate-

ly present the contribution of these events to the electron
energy spectrum.

TABLE VI. Radiative correction in k to the electron energy spectrum, caused by bremsstrahlung
events, which fall outside the three-body Dalitz plot {see Sec. IV).

7.8
8.4
6.5
9.5

0.2

1.5
2.4
1.2
2.3

0.3

0.5
0.9
0.3
0.8

0.4

0.1
0.2
0.1

0.25

0.5

0.02
0.01
0.01
0.02
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x 1+ g(E„E, ,„)2' (Al)

2
2

Eemax {fi +3gi )
60

In this paper we gave an account of our calculation of
the order-a radiative corrections to the (E„Ef) Dalitz
distribution, the electron energy spectrum, and the
branching ratio for semileptonic hyperon decays. The
numbers given in the tables refer to the model-
independent part of the corrections. Since there now exist
several calculations of the model-independent corrections
to the electron energy spectrum and the branching ratio,
we find it necessary to clearly state the differences.

We have carried out our calculations without approxi-
mations in the lowest-order expression for the decay ma-
trix element, 's and keeping all the terms proportional to
E, /mi, (m; —m/}/ m;in the order-a virtual- and real-
photonic expressions. The tables give our results for the
corrections in the percentage of the precisely calculated
lowest-order quantity.

In the tables we marked another set of numbers by the
name of Sirlin. These numbers come from calculations,
which were originally designed to describe n ~lpev decay,
and, in which all the E, /m;, (m; mf)/m—&

terms are
neglected. That is, the formulas for the corrected electron
energy spectrum and the branching ratio are

6 2

Ia»(E, )= (f) +3g) )E, (E, —E, )

In hyperon decay m; —mf is not small enough; therefore,
the approximate lowest-order quantities in (Al) and (A2)
are not suitable for the purpose of the present experi-
ments.

Garcia has attempted to cure this problem in Ref. 11,
and he has given a general expression for the (E„cos8,„)
distributions which is valid also when polarizations are
detected. This result is not suitable for application in ex-
perimental analysis, because cos8,„ is not a good vari-

able. ' One can, however, integrate Garcia's result over
cos8,~ and, e.g., perform summation over the polarization
to obtain for the electron energy spectrum:

I'~ t„„(E,)=rM s,„(E,) 1+ g(E„E,I~), (A4)

where I'M»(E, ) is the lowest-order function for the
electron energy spectrum without approximations. 's [In
the notations of Ref. 11: g{E„E, )=2{4~+8&).) The
relative correction is the same, as in (Al}]. An unaesthet-
ic point about (A4) is that it follows from a result in Ref.
11, which is obtained after ad hoc manipulations with
a/sr(E, /m& ), (a/sr)(m& —mf )/m; terms in the inner
bremsstrahlung contributions. The purpose of these ma-
nipulations is to obtain a result, which contains the pre-
cise lowest-order quantities. The problem is, that large
logarithmic factors multiply a/m(E, /m; ) and
a/sr(m& —mf )/m~ and, therefore, they are not really small
in hyperon decays. An illustration of this is the correc-
tion to the branching ratio. Garcia gives

a
~a sr=~os b v 1+

225

[It is better to say the numerical values of ( /a2 )sgr(E, ,„)
are given in Ref. 11 for several hyperon decays. ] The rel-
ative correction is again the same, as in Sirlin s case, but
in (A5) I oz &-„ is the lowest-order decay rate without ap-
proximation. In contrast with (A5) the actual relative
correction, which follows from (A4) is

a 1

OS b-

where

x 1+ g(E, ,„)

EPl

4Eemax

(A2)

(A3)

This quantity is given in our Table II under the name of
Garcia. (In Ref. 19, Table IV has just the opposite head-
ing. ) These numbers are definitely different from the rela-
tive correction in (A5). In the case of A~pev decay the
difference, 0.7%, is not even small in comparison with the
error, 2%, of the currently best experiment. 6
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