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A system of cosmic strings may evolve either to a scaling configuration, in which the persistence

length scales with the horizon distance, or to a string-dominated universe. The former alternative

provides the basis of an attractive theory of galaxy formation. This paper is concerned mainly mth
the latter alternative. It is shown that, provided the strings are formed later, and hence are lighter,

than in a conventional grand unified theory, it is possible that our Universe became string dominat-

ed rather recently, at about 10"yr. Such a universe would behave very like a matter-dominated one.

Strings would constitute the bulk of the dark matter required to make 0= 1, but would be very hard

to detect.

I. INTRODUCTION

Phase transitions in the early history of the Universe
can generate topological structures of various
dimensions —monopoles, strings, and domain walls. '

Strings, in particular, may yield the density perturbations
from which galaxies evolve, as suggested by Zel'dovich
and Vilenkin. In Vilenkin's scenario a crucial role is
played by the process of formation of small closed loops,
which then lose energy by gravitational radiation. The ef-
fect of this radiation on the timing of the millisecond pul-
sar provides a stringent upper limit to the string tension,
or mass per unit length p. The dimensionless parameter
Gp, cannot exceed 10

It is obviously important to understand better the pro-
cess of string evolution and loop formation. In a previous
publication I tried to develop a set of equations describ-
ing the evolution of the system of strings and loops, and
concluded that the system must evolve either toward a
scaling solution in which the characteristic persistence
length g (called L in Ref. 5) increases in proportion to the
horizon distance (g=yr, y=constant) or else toward a
string-dominated universe.

Here I wish to examine further some aspects of these
equations and in particular to discuss in more detail the
second alternative. If the phase transition occurs at a typ-
ical grand-unification scale, that can almost certainly be
ruled out, but if the scale is substantially lower it may be
viable. It turns out that contrary to naive expectations a
string-dominated universe behaves much like an ordinary
matter-dominated universe, with 8 ~ t . Thus it is not
impossible that our Universe is dominated by strings, pro-
vided that it became so only quite recently, in particular,
after nucleosynthesis.

Vilenkin suggested previously the possibility of a
string-dominated universe, but based on a very different
scenario in which strings are assumed to be unable to ex-
change partners when they cross (i.e., the "intercommut-
ing probability" p is zero)

It must be emphasized that strings cannot solve both
problems. They may provide the seeds for galaxy forma-
tion or they may constitute the dark matter that makes

0=1 (nor the dark matter in halos), but they certainly
cannot do both. The first appears to be the more attrac-
tive hypothesis, but the second should not be ignored.

11. EVOLUTION EQUATIONS

Let us begin by recalling the formalism developed ear-
lier. Consider the energy E in a comoving volume R in
the form of long strings, and the energy e (l)dl in the form
of loops of size between 1 and 1+dl. Here "size" is to be
interpreted in terms of the total (invariant) length of the
loop: a loop of size 1 has by definition a perimeter 2irl (if
it is at rest) or more generally a total energy in a comov-
ing frame 2rrp, l.

If the system of strings has a random ("Brownian" )
configuration with persistence length g, its energy is given

by

E=pR /g

The probability that a small segment of string of length 1

will encounter a long string in a time interval 5t is of or-
der 1u5r/gi, where u is a typical (say, rms) transverse
string velocity. Consequently, if p is the "intercommuting
probability" that strings will exchange partners when they
cross, the probability that a loop of size 1 will survive
without reattachment from time i (given that g oc r) is ap-
proximately exp( plut/g ). I—t follows that large loops,
with 1 »g, have a very transitory existence. The behavior
of a segment of string is quite unaffected by whether it is
part of a large loop or of an infinitely long string. Conse-
quently the separation between the energy in large loops
and in infinitely long strings is artificial. (This is particu-
larly true for loops that are still outside the horizon,
which cannot "know" they are closed. ) Thus, as already
noted in Ref. 5, it would be reasonable to impose an arbi-
trary upper cutoff on the loop size at a few times the per-
sistence length, say

max Ok» 0

In Ref. 5 I suggested that it is unnecessary to choose a
specific cutoff because e(1) falls off rapidly for large 1.

However, as explained below, it does not in fact fall off as
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n~(I)dl = a (x) (4)
2mgs

This relation can be used to estimate the function a (x) as
discussed below.

Vachaspati and Vilenkin have performed a numerical
simulation of the string configuration created at a phase
transition where a U(1) symmetry is broken. They argue
that on scales larger than the persistence length the con-
figuration of loops may be expected to be self-similar. So
far as the loop size distribution is concerned, this expecta-
tion is confirmed. Since the typical radius of a loop of
size I is ( If)'~, this implies that the number distribution
of loops n (l)dl should be a function only of this variable.
Hence, if n(1) may be identified with n~(l}, it follows
from (4) that

a(x) Ocx (S)

(not x as stated in Ref. S). Vachaspati and Vilenkin
also find that only about 20go of the total length of string
is in the form of loops, implying that

a x x=02.

The simulation cannot determine a(x} for x &1 be-

cause the lattice spacing used is essentially g. In any case,
we should expect a (x) to decrease at small x, because it is
difficult to create loops of size much less than the per-
sistence length. Consequently we may expect that for
x ~ 1 it is unknown but decreasing rapidly as x ~0.

Recent work has shown that for the Zi strings that
appear in non-Abe1ian gauge theories, the loop distribu-
tion is similar, but the proportion of closed loops is only
about half as large.

It is of course an assumption that the equilibrium dis-
tribution n,q(1)dl should coincide with the initial distribu-
tion n(1)dl. The rationale behind it is that both distribu-
tions presumably correspond to states of minimum free
energy, but obviously the assumption may be wrong.
Indeed, there is some recent evidence to indicate that in a
nonexpanding universe the proportion of loops would in-
crease above its initial value, suggesting that n~(l} is
larger than the n (I) obtained from the simulation.

When we impose the cutoff (2) we must allow for the
fact that in any small time interval 5t, some loops that
have hitherto been included as part of the system of long

rapidly as stated there, and the imposition of a cutoff is
essential.

The probability of formation of a loop of size I in a sys-
tem of strings with persistence length g depends essential-

ly on the ratio x =I/g'. Thus the fraction of the energy E
lost to loops in the size range I to I +dl within a time in-
terval 5t is

(pu5t/g)xa(x)dx (x =I/g),
where a (x) is an as yet unknown function.

If the Universe were not expanding the system of
strings would presumably approach an equilibrium distri-
bution in which the energy loss (3) is exactly balanced by
the gain from loops undergoing reattachment. In that
case the number density of strings would be given by

strings must be reclassified as small loops. This yields an
extra term in the equation for E. The number of loops so
reclassified, in volume R, is

1n(xone)xodg=, ao

Then the evolution equations [(19) and (20) of Ref. Sj be-
come

E= E(1 —2uz) ——E~xoao
R

E f—xa(x)dx+pu f e(xg)x dx
o 0

(8)

e(xg)=E xa(x) — xe(xg) .

In addition, we must impose an initial condition on e,
namely,

e (xone) =Eaolg . (10)

It should be noted that the rms velocity u is not strictly
constant, but will change slowly with time.

If these equations were strictly correct, it should make
no difference where we choose the cutoff xo. However
there are approximations involved, and we must be more
careful. The main reason lies in the first term on the
right-hand side of (8), which represents the work done on
the system of strings by the universal expansion. Since we
have not included a corresponding term in (9) it does
make a difference whether loops of a particular size are
included in E or in e (I). The point is that, as discussed in
Sec. 3 of Ref. S, the energy of a small loop is constant,
and correspondingly the rms velocity u is 1/v 2, while the
energy of a very large loop increases roughly in propor-
tion to R. For consistency we should therefore treat
separately only the loops which are small enough to have
effectively constant energy; i.e., xo should not be much
larger than unity.

Another way of looking at this problem is to note that
u in the first term on the right-hand side of (8} is an
average over the entire string system. The effect of lower-
ing the cutoff and thus including some shorter loops
would be to increase the average value, or decrease 1—2U .
The corresponding increase in E/E would be compensat-
ed by the increased magnitude of xoao in the second term.
(We may expect xoao ~xo '~ .) As long as the cutoff is
low enough so that the loops in question have almost con-
stant energy, its precise value should be irrelevant: small
changes in xo are compensated by small changes in U .
Of course u appears elsewhere in the equation, so the com-

R n (xone)xog5t,

where n(1} is the current value of the loop distribution
function. If we were to assume that n(I)= n~(l), we
could again express (7} in terms of a (x}. To make it clear
that this equality need not hold but nevertheless em-

phasize the relationship, it will be convenient to define ao
by
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pensation can only be partial. Nevertheless, within

reasonable limits the choice of xo should not matter.

III. QUALITATIVE FEATURES OF THE SOLUTION

2
1 —v —xoao

(/tent ', k=
2—xoao

(14)

In Ref. 5 I argued that the solution of Eqs. (8} and (9)
will evolve either toward a scaling solution in which the
persistence length scales with the horizon distance, g =yt,
or toward a string-dominated universe in which g/t ap-
proaches zero.

In the scaling solution the loop-energy distribution
function is given by

e (xg) =Ef(x)/g,

where f(x) is a dimensionless function of x =1/g, related
to a (x) by Eq. (2.7) of Ref. 5. In the radiation-dominated
case (n = —,

'
) this relation, modified to incorporate the

cutoff at xo, reads

xo
f(x)= ~Ux &~ e ""~" y&~ e r+ ra(y}dy

r x

(12)

This relation takes a particularly simple and instructive
form when (5) holds for the relevant range of values of x.
If we set

a (x)=ax

and define ao similarly by
—3/2ao =Gfoxo

we then find
—pu {xo—x)/yf(x)=a (x)—(a —ao)e (13)

In particular, if a=ao, then f(x)=a (x), and there is
no net contribution from the two integrals in (8). This is
an accident of the radiation-dominated case: the expan-
sion of the Universe is exactly matched to the scaling of
loops with size, so that to maintain the scaling condition
no net production or destruction of loops is required. The
entire energy loss from long strings to loops would then be
represented by the second term on the right of (8).

The equality f(x)=a(x) depends on the assumption
that the initial loop distribution is essentially the same as
the equilibrium distribution. If in fact there are more
loops in equilibrium, then a would be larger than ao, and
hence f(x) &a(x), implying a net negative contribution
from the integrals in (8).

In any event the equality f= a cannot extend to small
values of x, where a (x) decreases rapidly but f does not.
Indeed the whole energy-loss mechanism via gravitational
radiation from loops clearly only works because there is
an excess over the equilibrium distribution of very small
loops. From the region x ~~1 there will be a small net
positive contribution from the integrals, because of small
loops occasionally becoming reattached.

We are primarily interested in how g/t evolves with
time. Let us first assume that indeed f(x)=a(x}. Then
using (1) we easily find

The parameter xoao does of course depend on the choice
of xii, though only weakly. From the discussion above we
should expect that small changes in xo ~ould be compen-
sated by small changes in the effective value of U2 so it
may not be unreasonable to treat xoao as approximately a
constant. This parameter does not have any very direct
physical significance, though it is closely related to the
proportion of the total length in the form of loops. It
may be regarded as a measure of the efficiency of loop
formation as a mechanism for transferring energy from
long strings to small loops.

If xoao & —,', then for sufficiently small g/t, where v

approaches —,', k would become negative. This is the case
in which the system approaches a scaling solution. On
the other hand, if xoao & —,', k would remain positive, g/t
would continue to decrease toward zero, and string dom-
ination would be inevitable.

Compared with the values suggested b~ the numerical
simulations of Vachaspati and Vilenkin, —, seems a rather
large value for xoao. 0.1 would be more likely. On the
other hand, the dynamical simulations performed by Al-
brecht and Turok'0 do suggest a rather rapid evolution of
the string systems toward scaling behavior. There is an
apparent contradiction here. The most likely explanation
appears to be that there is indeed a substantial difference
between the equilibrium loop distribution and the initial
one. Although initially the proportion of the total length
in the form of loops is quite small, it may grow with time
and even approach 100go. Indeed this sirens to be sug-
gested by the work of Albrecht and Turok. In that event
there will be a large positive contribution to the energy
loss from the integrals in (8). Recently Bennett" has sug-
gested that the origin of the discrepancy lies in the fact
that the equations do not explicitly allow for the fragmen-
tation of loops; that process too leads to a change in the
effective form of the function a(x). Further numerical
studies may well resolve this question.

If indeed a is substantially larger than f, then a scaling
solution will be much more likely. Consider, for example,
the extreme case in which the last term of (8), representing
reconnection of loops, is negligible, and suppose that the
integral in the preceding term can be approximated by a
constant c. Then one finds in place of (14),

+c't-'
1 —U —xoao

where c' is another constant. This evidently represents a
scaling solution at large times.

We have implicitly assumed in this discussion that the
loop distribution function is close to its scaling value, so
that the problem reduces to a single differential equation
for g. Once g/t is substantially less than unity, this is
probably a good approximation. From (9) we see that the
time scale on which the loop distribution function ap-
proaches its scaling value is roughly g/pux. As long as
g « t, this time scale will be short compared to the expan-
sion time (which controls the evolution of g/t) except for
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the smallest loops whose contribution is in any case small.
On the other hand, in the interesting region where g/t is

of order unity, the two time scales are comparable, and we

really ought to treat the coupled equations (8) and (9) to-

gether.

IV. THE STRING-DOMINATED UNIVERSE

From the discussion of the preceding section it is not
possible to decide unambiguously between the two alterna-
tives of scaling and string domination. Only a fuller nu-
merical study is likely to be able to resolve this issue.

Meanwhile, it is interesting to ask what a string-
dominated universe would be like.

Once g' has fallen well below t, it should be a reasonable
approximation to equate the loop distribution function to
its scaling value, because the relevant time scale is then
much shorter than the expansion time. Let us again as-
sume for simplicity that f(x)=a(x), so that the solution
during the radiation-dominated era is given by (14). We
may set u = —,, and hence expect that g/t will decrease
like t '/ (for xpap ——0) or a little slower (for example,
g/t cc t '/ for xpap ——0.2). The universe will therefore
approach string domination rather slowly.

When the energy density of stings exceeds that of radia-
tion, the energy density is p=E/8 =p, /g . From
Einstein's equation it follows that g~t. Constancy of E
(corresponding to xoao ——0) would require

g~R / ~t,

1
t =t»

(Gp) mp

or equivalently at the temperature

T» Gpmp .

(18)

(19)

From this point onward the strings evolve freely, and Eqs.
(8) and (9) apply.

We can get at least a rough estimate of the subsequent
evolution from (14). If we set u2= —,

'
and assume that

xpap lies between 0 and 0.2, we find
i k i

The ratio of the string density to the radiation density

where the damping time is tz-p/op. Here p =3/32m Gt
and o is the effective linear cross section of a string for
particles of momentum —T, which as Everett' has
shown is

o=m /Tln (T/To) .

Neglecting the slow variation of the logarithmic factor,
we then find

(2 Gpm 1/2t 5/2

It follows that g/t grows to be of order unity when

i.e., the Universe behaves exactly as though it were matter
dominated. If we allow for some loss of energy to loops,
we find that the Universe would expand a little slower.
From (8)

1s

ps 32K
Gp, — =306@ t

2k

(20)

0 0

or equivalently,

~ ~ P ~ t" n =(2-xoao)/3 (15)

Since we have assume that xoao ( 2i, we have n & 2, i.e.,
a string-doininated universe always expands faster than a
radiation-dominated universe.

In any event, once the strings come to dominate we do
arrive at a scaling solution with g/t constant at the value

1/2
1 8nGp,

(16)
t n 3

It is clear that the Universe cannot have been string
dominated until very recently. In particular, the success
of the nucleosynthesis scenario requires that at that time
the Universe was radiation dominated. This implies a
stringent limit on Giu.

We can estimate the required value of Gp by following
the evolution of strings from formation onward. The
strings are formed at a critical temperature

T, =(Gp)'/ mt,
where mp-10' GeV is the Planck mass. Initially the
coherence length g is small compared to t. Its early evo-
lution during the period of heavy damping is governed"
by the equation

This is equal to unity when t is

G =10 i4. 5 10 j2 (22)

These values are substantially smaller than those typical
of strings in grand unified theories. They correspond to
transition temperatures in the range

Tc=10' —10' GeV

and correspondingly

(23)

T, =10 —10 GeV . (24)

The upper limit here is not at all firm. If the parame-
ters were close to the limiting values separating string
domination from scaling, the Universe could spend a long
time in a near-scaling condition where the effective value
of k in (14) would be close to zero. In principle, therefore,

t~- to (21)
(306@) (306@)

Let us assume that our present Universe has 0=1 (as
suggested by the inflationary universe scenario) and is
string dominated. It must then have become string dom-
inated at about t~=10 yr, so we require

mpt~-1055 .

From (19) and (21) we then find
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one might have, say, 6@=10 and still only reach string
dominance at the same epoch t,q. However, this would
require rather fine-tuning of the parameters.

Subsequent to t~, the value of g/r has remained con-
stant. Thus its present value would be

noir

r k

( 30Gp ) i /2

This corresponds to

g=l —30 kpc . (25)

It is interMting to ask how thee stnngs might b
detected. For values of Gp larger than about 10 the
best hope is to look for the gravitational lensing effects'~
of strings. But with values as small as those in (22) this
would be impractical because the maximum value of the
angular separation between double images would be only
10 " rad. It is perhaps more likely that one could see
characteristic dynamical effects such as the wake left
behind a moving string. '

The estimate (20) of string density takes no account of
the contribution of small loops. One might suppose that
as in the case of the scaling solution the loops would con-
tribute a larger amount, proportional to (Gp)'~ rather
than Gp. However, that is not the case. Loops of size
around g will contribute a similar fraction of the total
density as in the scaling solution. However, since the ex-
pansion time of the Universe is so long in comparison to
their size their chances of survival are exponentially small.
Almost all the loops produced will reintersect long strings
and become reattached. It is not necessary to assume that
every such encounter leads to reattachment. So long as
there is some reasonable probability of reattachment, this
will almost always happen in the end. The nuinber densi-
ty of very small loops will be suppressed by an exponen-
tial factor of the form e i'"~r with y &~1.

V. CONCLUSIONS

It is not possible at present to decide unambiguously
whether a system of strings would evolve toward a scaling
solution or toward string dominance. Both are interesting
possibilities cosmologically, though for rather different
ranges of the parameter Gp.

For values of Gp typical of strings in grand unified
theories, string dominance is almost certainly incompati-
ble with observation, whereas the scaling solution is the
basis for a very attractive theory of galaxy formation.
Turok' has recently shown that the loop distribution
function reproduces remarkably well the observed correla-
tion function of clusters of galaxies.

For smaller values of Gp, both scenarios are in princi-
ple viable. In particular with values of Gp in the range
(22), there is a possibility that strings could constitute the
dark matter that is required to make 0= l. This is not of
course a solution to the "dark-matter problem. '" lt would
certainly not be easy to identify strings with the dark
matter in galactic halos required by observations of rota-
tion curves and the like. Long strings could hardly be
bound in galaxies. Of course, we should expect a sizable
fraction of the total density to be in the form of loops of
size around g, and even if their existence on a cosmologi-
cal time scale is rather transitory they might perhaps live
long enough to be at least temporarily bound. Against
this, it must be said that they would in general be expect-
ed to have rather large velocities. Probably therefore we
would have to suppose that the dark matter in halos is of
some other form, perhaps baryonic or quark matter.

It is not easy to see how if the Universe were string
dominated we should be able to tell, since the strings in
question are not heavy enough to yield resolvable double
images. There might however be observable, indirect ef-
fects. The only immediate prospect of distinguishing the
tw'o alternative string scenarios lies in numerical simula-
tions.
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