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The mean transverse energy of the produced hadrons in pp interactions is calculated in the
leading-logarithm approximation of QCD. Besides the computation of the contribution of large-pr
jets, we have sho~n that gluon bremsstrahlung, which dominates at small x, corresponds to events

arith a large transverse energy and a large multiplicity. Experimental results seem to support this

QCD property up to hadronization effects which we have estimated from phenomenology.

I. INTRODUCTION

The dynamics of lepton-induced hadroproduction is ex-
plained as a factorizable mechanism. At high enough en-

ergy, partons are generated in a pointlike interaction
described by perturbative QCD at short distances. At
large distances, these partons fragment into hadrons, this
last step being governed by confinement forces, the
dynamics of which is not yet fully understood. The
hadron-hadron interaction is more intricate since this fac-
torization property is not obvious. Recent results in pp
and pp collisions at the CERN collider shed some light on
this problem. Hard collisions are indeed observed as two
or more large-transverse-momentum jets of particles. But
these events emerge from a background of nonjet configu-
rations corresponding to small-transverse-momentum par-
ticles with a large multiplicity. ' Quite a few of these
events are characterized by a large transverse energy
ET—g„(Er)„,—where the sum runs over all the particles
which deposit energy inside the calorimeters.

A priori it is not straightforward to relate the low-
transverse-momentum events and QCD since there is no
obvious large scale of momentum allowing perturbative
calculations. However, we have shown in a previous work
that gluon or quark radiation induced by "semihard" col-
lisions may explain most of the low-pz events at high en-
ergy. Indeed the rise of the total cross section at high en-

ergy is attributed to the low-x parton (mainly gluon) cas-
cading. The relevance of perturbative QCD calculations
at low x have been recently confirmed theoretically.
Roughly speaking, Q /x can be made large enough at
moderate Q to apply safely to perturbative QCD, which
explains why QCD is relevant to describe small-x events
(large multiplicity) and medium transverse momentum.

To study the mean total transverse energy (Er) or
do/dEi at the hadronic level, we have to calculate first
the corresponding observables at the partonic level using
perturbative QCD and take into account both the partoni-
zation of the incident hadrons and the fragmentation of
the outgoing partons. On one hand, we use our formalism
developed in Ref. 3 for the constituent quarks sharing the
total hadron momentum. On the other hand, the final-
state hadronization contribution to the transverse energy
has to be considered. Following an analysis made in
e+e annihilation into hadrons, the effects of hadroni-

zation are minimal when calculating (ET). This is why
we will focus in this paper on the calculation of the mean
value of the total energy (Ez ).

Our paper is organized as follows. In Sec. II, we recall
the formalism previously used in Ref. 3 to describe the
rise of the pp and pp total cross section. In Sec. III we
perform the perturbative QCD calculation for do/dEz
and (Ez ) at the partonic level and discuss the origin of
the large contribution to (Er ). Section IV is devoted to
the estimate of hadronization effects, allowing the com-
parison of our results with the full-acceptance, minimal-
bias events available at CERN ISR and CERN SPS col-
lider energies. ' In the Conclusion we emphasize the
relevance of perturbative QCD for this problem. In Ap-
pendixes A, B, and C we discuss the validity of QCD at
low x and derive (ET ) at the partonic level.

G. HADRONIC CROSS SECTIONS: THE FORMALISM

Let us recall briefiy the formalism which has yielded
the rise of the total hadronic cross section between the
ISR and collider energies. In a first stage, one singles out
for each incoming hadron p or p one constituent quark of
low-transverse momentum rrt =300—400 MeV=mN/3
where istic is the nucleon mass. Its nonperturbative Q-
independent distribution g(Z), where Z is the fraction of
longitudinal momentum, is constrained by both valence-
number and energy-momentum conservation: namely,

Z Z=3, Z Z Z=1.
The contribution to the pp cross section is given by

o &(s)=fdZidZ2$(Zi)g(Z2)oi "(ZiZ2s) . (1)

To describe a~" at high energy, ~e retain as the dom-
inant contribution the exchange of one hard gluon of vir-
tual mass squared

~
t

~
&&rrt 2 (see Fig. 1). One gets

ot (ZiZ2s =s)

= g f f f De(x„t)D&(xs, t)dt dx, dxb .
a, b

x, and xb are the Bjorken variables of the interacting par-
tons a,b; do/dt is the one-gluon-exchange cross section;
and the D s are the parton distributions inside the constit-
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(domain II). In a 2X2 matrix form, one may write, in an
an elegant way,

tl, x)/
m

C (n), +E, (n) =(C,N, ) g f gdMi O, (4)
m=0 i =1

FIG. 1. Quark-gluon cascading. Pr and Pr are the outgo-
ing transverse momenta in the parton-a —parton-b collision.
The PT s are those of the cascading partons i or j (i &m —j. ,

j &m' —1).

where i labels the step of parton cascading and

ag(rg ) dry xi+ 1 dxi
dMi= H

4m t; x; x;

where H(Z;=x;+i/x;) is the usual singlet-gluon mixing
matrix

uent quarks. The b, domain of integration specifies the
phase space suitable for perturbative QCD calculations
and corresponds to the following cutoff conditions.

(i) Short-range interactions imply a transverse-
momentum cutoff Qr »AqcD where AqcD is the @CD
scale parameter of the coupling constant

a, (t)
4m

1 1

Ny ln(t/A —)

(iii) The required validity of the leading-logarithm ap-
proximation (LLA) implies a cutoff on the longitudinal
momentum x„xb Indeed for. a given Q, x cannot be
too small (this point is discussed in Appendix A). In a
model-dependent way, we have fixed the longitudinal
cutoff as

PIT
xa xb +xc (2)

The integration on x„xb, and the summation over parton
species a, b reads, in a coinpact form,

a~'"(s)= —f,a, (r) (Ci(n), +E, (n)s)2, (3)

where (n )„(n )s are defined as the truncated multiplici-
ties of excited quarks and gluons at the scale t:

( n )s, ——f Dqs'(x, t)dx,
min

where x;„ is specified by conditions (ii) and (iii). In a
factorized approximation one gets

and QT has to be chosen for consistency larger than m .
Qr & 1 GeV, for instance.

(ii) The kinematics of the a,b collision implies

A At g s =xgxbs

P~(Z) 2NJP~(Z)

Psq(Z) P~(Z)

and t&,x; labels the virtualness of parton i, and the longi-
tudinal momentum fraction of parton i versus the
constituent-quark momentum. Note that among the
Altarelli-Parisi kernels P and Psq behave as I/Z near
Z=O,

The t s (more precisely the 5; =t;/x;) are strictly or-
dered in the LLA. This condition allows the resumma-
tion of all the ladder contribution (see Appendix C). The
truncated multiplicity of the gluon and the singlet are
simple functions of

t sg=ln, g, =ln

(at) dr

p,
' 4m t

where p is a phenomenological parameter determined by
Dokshitzer, Dyakonov, and Troyan (DDT) to obtain the
correct sharing of momentum between quarks and gluons
in the nucleon at all scales.

With this formalism, we have obtained the correct rise
of the pp total cross section between CERN ISR and col-
lider energies. This rise is explained by the excess of the
increase of the parton inultiplicities over the decrease of
each individual cross section.

III. QCD CALCULATION OF THE PARTON
TRANSVERSE ENERGY

Let us consider the differential transverse energy cross
section for partons do '"/dET. Following our formalism
[see Eqs. (3) and (4)], one writes
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Psst m —1 j.
=—g f, (C, ,N, ) gdM,

O

1

m' —1 1 a ~{r) m m'

(C„X,) g dM, '„, d 5 E,—g ~p„~ —g ~p„~
j—] . . . t i=1 j=l

lpT)i —)),1& —)) I ri& (1 Z;i), l —1, . . . , m 1, J 1, . . . , m —11/2 1/2

is the transverse momentum ( = transverse energy) of the parton of the upper or lower cascades (see Fig. 1). arm and

pTm are the transverse momenta of the interacting partons. ET is the total transverse energy of the fimt produced par-
tons. It is formally simple to express the moments of dop'"/dET thanks to the 5 function. Indeed the Laplace
transform p{T) of da/dET reads

st)(T)= f e dET, Rer~O
dE,

—'sIPy& I s —'si IPT I+ IPT
m' —1 1 a ~(r)

je O
e

j=1

(Qz~;")cr;„=(—1&"

v=0

if we neglect the logarithmic dependence of the running
coupling constant on t;. As a consequence the term
t;+)'~ cancels the singularity of the next matrix element

dMi+1, which in turn cancels the next singularity with
the appearance of a power of a, (t) at each step. This cal-
culation is performed in Appendix C by using the as-
sumption of strong ordering of the t s inside each chain

&&t; &&t ~. %e get an order-a, correction
to the main contribution. This order-a, contribution is
nothing but a sort of soft-gluon bremsstrahlung and corre-
sponds to the sum of the transverse energy arising from
the cascading partons inside each chain. Under the strong
ordering assumption the main contribution to (ET )
comes from

~ pT;J ~, i =m —l, m, j=m' —l, m'. The ex-

Note that for this specific problem, the usual exponentia-
tion methods for moments do not apply. For instance, the
x; integrations defined by the domain 5 require some care
(see Appendix C). The mean transverse energy is obtained
for n= l. To perform the calculation we note that each
term

~
pT;~in BQIBT cancels the 1/r; singularity of the

matrix element dMi [so: Eq. (5)]. Indeed one can write
this integral as

i+) as{ i ) dri )yp as{ti+1
4m' t; 4m

i — ~ i+1

act calculation is difficult to handle since from energy-
momentum conservation in the parton-parton collision

PTm PT(m —1) PTm' PT(m' 1)»'d —
I PTm PT(m —1) I

'
=t Howe. ver, we show from kinematics that, as in deep-
inelastic scattering, the maximum value of (pT1 1))

[(pT1 1)) ] is equal to t(1 —Z, )/4Z, [t(1—Zs)/4'].
For Z, b of order 1 this maximum value is smaller than t
whereas it is larger for small Z, b.

In the first case, the balance of transverse momentum is
realized between the two outgoing partons a and b:
pT -PT, and

~ pTm ~

-t . ET is thus nothing but
2t ' and corresponds to the usual hard-scattering contri-
bution to large-pT events.

In the second case, for Z, « 1 say, the energy-
momentum conservation is realized between the outgoing
Parton a and Parton m —1 IPTm I

—IPT)m-»I »r
This is nothing but the configuration of a deep-inelastic
process where it is W =Q (1—Z)/4Z rather than Q
which sets the scale (pT ) (Ref. 8). The first configura-
tion [Z, b=o(1)] is very easy to handle for the main
contribution. Indeed ET-2t ' at this order and we get

51——(ET & )cr;„

a, (t)=~f, „', (C, (n), +X,(n), )ir "Vi'
T' t'

The order-a, correction arising from the contribution of
the remaining pTi s of the cascading partons is calculated
in Appendix C.

The final result reads

5)=(ET),O;„=m f, „', (Ci(n)s+&, (n)S) r' '[1+&(t)], (10)

where
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cln
1

ag(t) '
xm;„

X(t)=
g(t)

' r/2
r f/2

Ii 16N, gin
1

+min

Io 16Ncgln
1

+min

cln
I

a, (t) ' x;„
17 g(t )

for large 16N, gin
I

+min

In the second configuration, both the first- and second-order soft-gluon bremsstrahlung contributions need some more
care. The complete calculation is performed in Appendix C yielding the result

a, (t)
5i ——(Er)2o';„=n' J, (C2(n )g+N, {n)g)F{t}dt,

&r' t 2

where

a, (t)
Y(t) =4N,

+min

1/2

1+2N ' («y'") +N, &y'") )
a, (t)

and

(y i/2) f y i/2Ps, g(y t )dy
+min

is the —', truncated moment of the singlet and the gluon

structure function, respectively.
Comparing formulas (11) and (10) we notice that 5i is

of order a, (t) compared to the large-pz contribution 5i.
But the energy scale is {t/x;„)'~ rather than t '+ and is
quite large for small x;„.This explains why 52 gives an
appreciable contribution to the transverse partonic energy.
This result has already been obtained in deep-inelastic
scattering where the scale of {pr ) is W -Q /4x rather
than Q . Note that it is not the truncated multiplicity but
the —', truncated moment which enters in the definition of
F(t). Indeed the maximum value of pz t i ~

is
(tx i/4x, )'/ and not (t/4x, )'/i. As shown in Appen-
dix C, this extra x i'/ arising from the integration over
t i changes the first moment into the —,

' moment of the
gluon and singlet chstributions.

A general comment is in order. Our calculation relies
heavily upon the non-Abelian character of the theory,
namely, the existence of the three-gluon vertex yielding
the 1/Z singularity of the P~ and Pz& kernels. We thus
think that this large-Ez background observed in hadron-
hadron collisions at high energy may be connected to the
non-Abelian character of QCD.

A rough quantitative estimate can be made when com-
paring 5i and 52. Indeed in the model of Ref. 3 for the
rise of the total cross sections, one considers x;„=m /t
[(s t)' ) in domain I [domain II]. In this model, the
minimum value of x;„ is ( m /s)'/ =7X 10 at
i/s =540 GeV and (y'~)g/(x;„)'/ 2 4{n )g. Thus if.
we consider only the main contribution for the gluon we
get (52/5i)g-10a, (t). In this model, {t) is of order 3—5
which means a,({t))of the order 0.25. Thus 5i/5i-4.

As far as the soft-gluon contribution is concerned, we get
a correction

2N,
a, (t)=2a, (t }=0.5

7r

for 52 and

N, ln
1x;„a,(t)

f(t ) tt

or 2.5a, (t)=0.6 for 5i.
This rough quantitative estimate tells us that, at the

partonic level, the direct hard-scattering contribution to
Ez is four times smaller than the bremsstrahlung ones
(the gluon gives the main contribution to Er).

In Sec. IV a more quantitative estimate taking into ac-
count the hadronization is given. Note that at the parton-
ic level the s dependence of Ez may be parametrized as
s ~. In our model we have found a=0.25 which is inter-
mediate between the a=0 expected theoretically from soft
interaction and a=0.5 characteristic of scale-invariant
hard interaction.

EV. HADRONEZATEON EE'SECTS AND RESULTS

In order to estimate the hadronization we first have to
discuss the nonperturbative distribution g(Z) [see Eq. (1)t.
In this equation the partonic contribution oi "(s) depends
on Z~ and Z2 only through s=Z&Zzs. The energy
dependence of (Er )~„ is rougly As with a =0.25 for
model of Ref. 3. The effect of the initial hadrons on the
determination of (ET )h~ is to give an overall factor

I Z P(Z)dZ
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Although the distribution g(Z) is not well known, its first
and second moments are determined to be 3 and 1, respec-
tively. A phenomenological form

3 Z'(1 —Z)
I (a +1)l"(b +1)

with b =2a + 1 and —1/2 (a (0 yields an overall factor
of —', rather than 9 for an independent quark model. It is

interesting to note that the order of magnitude is not far
from the expectation of the additive quark model
P(Z) =35( —,

' —Z) which yields

9oi"" —=5.4As =5.4cri""(s) .
9

Indeed the Z„Zz components of the distribution func-
tions near 1 are depleted by energy sharing among the
constituent quark.

The estimate of the hadronization effect of the first
produced partons is less reliable. The broadening of par-
ton jets modifies the value of (ET)h,e. Here, we rely
upon similar calculation done in e+e annihilation.
Indeed comparing a QCD calculation at the LLA with re-
cent experimental results, it is possible" to compare
(&r)~„and (Er)h, d for the jets seen in e+e annihila-
tion at different energies. (Er)h, d can be described by
the same perturbative QCD formula as (Er )~„but with
a rescaled larger A (Ah, d-600 MeV rather than
A&cD-100 MeV). We have tentatively applied the same
recipe in our calculation of (ET )h,d, namely, by replacing
A~cD by Ah, d-600 MeV both in F(t) and X(t). To get
a rough quantitative estimate of the broadening of the
jets, we note that (t ) -rn (s/9rri )'r' (see Ref. 3) =3—6
GeV at ~s=540GeV. Thus

In this scheme, the final hadronization increase of the
amount of transverse energy overcompensates the decreas-
ing effect of the partonization of the initial hadrons.

A dire:t phenomenological comparison with experi-
mental data at each energy is not reliable due to our lack
of knowledge of the cut-off Qr and our nonperturbative
hadronization uncertainty. However as in the model of
Ref. 3 we calculate the rise of (Er )o;„between the ISR
and the SPS energy which does not depend on Qr . With
the same set of parameters as in Ref. 3 we get

~(groin) =Er~in I v z —g40 ozv +r~in I v z —go o~v

with the data. However, our QCD-inspired approach
gives a consistent description of the rise of both the ha-
dronic cross section and the hadronic incan transverse en-

ergy.

V. CONCLUSION AND OUTLOOK

We have shown that, in addition to the large-P~ jets
corresponding to hard parton-parton interaction, quite a
few hadron-hadron events at very high energy can be
described by gluon bremsstrahlung related to the low-x
singularities of perturbative QCD. These events, charac-
terized by a large total transverse energy and a high multi-
plicity are produced for intermediate values of the interac-
tion scale "t In .this domain, the smallness of the asymp-
totically free coupling constant is offset by the large mul-
tiplicity of partons at low x. In our specific case the
dominant contribution to the total transverse energy is the
second term of the perturbative expansion

5~ —(a, ("t)
+min

rather than the first one Si —(t ' ).
The reasonable order of magnitude obtained for the

average Er is linked to the non-Abelian character of the
underlying field theory. An essential role is indeed played
in our mechanism by the low-x singularities of perturba-
tive QCD for medium size scale. This specific regime has
been investigated by numerous authors. ~ These studies
have shown the relevance of perturbative QCD for x
values larger than x;„(Q ) which can be very small.
[The higher the Q, the smaller the lower bound

x;„(Q ).]
The success of the semihard interactions to explain both

the rise of the total pp cross section and the mean total
transverse energy in hadronic collisions at high energy is
an incentive to get a better understanding of this lower
bound below which perturbative QCD does not apply any
more. On a phenomenological ground, we hope that our
scheme can explain the so-called "minimum-bias" events
observed recently at the SPS collider and provides a good
tool to study the future hadronic experiments of the very-
high-energy machines (Fermilab Tevatron Large Hadron
Collider and Superconducting Super Collider). Because of
the expected dominance of semihard interactions, the
main prediction of our scheme could be the presence of
many minijets or middle momentum jets among these
"minimum-bias" events. More quantitative study of this
expected phenomena is required.

=750 GeVmb .

to be compared to (850+115) GeVmb quoted by the ex-
perimentalists. '

The correct order of magnitude of the effect is repro-
duced by our calculation. This seems to indicate that the
mechanism we have imagined is not too far from the real-
ity.

Note that other authors have treated the same problem
by using different methods such as, for instance, Monte
Carlo calculations. They have obtained a fair agreement

APPENDIX A: LONGITUDINAL-MOMENTUM
CUTOFFS IN PERTURBATIVE QCD

The calculations of ET and other related observables
rely upon the validity of perturbative QCD at sinall x and
the knowledge of x;„(t). In a previous work we have
shown that the choice x, i, ) rn /t allowed to describe the
rise of the total cross section for pp at high energy The.
purpose of this appendix is to argue this choice and to dis-
cuss the validity of perturbative QCD in the vicinity of
the lower bound.
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Known results' in the Regge limit of Yang-Mills
theories yield naturally a perturbative cutoff x, such that
lnl/x, -ln(t/to). Indeed, one has to consider three dif-
ferent domains when either lnl/x or Int/A [=1/a, (t)]
or both of them are large.

(i) The domain lnl/x « lnt/Ai where the LLA is
valid.

(ii) The Reggeization domain lnl/x » lnt/Ai.
(iii) The intermediate domain lnl/x ln-t/A .
Actually, it can be shown' that the results obtained for

the LLA in domain (i) still apply in the intermediate
domain. In particular, the nonplanar diagrams which
contribute in this domain restore the strong ordering of
virtualities which characterize domain (i).

In a previous works we tried a form x, =m 2/t, and got
a reasonable description of the rise of the total pp cross
section between the ISR and SPS colliders for m identi-
fied as the intrinsic transverse momentum of the constitu-
ent quark =330 MeV. Note that for a timelike cascade
this bound must be obeyed from kinematics.

It is now of paramount importance to check that per-
turbative QCD calculations, based upon the factorization
property of one-gluon exchange and the Altarelli-Parisi
evolution equations, are valid for x value bounded both by
x, and the kinematical conditions x,xmas » t which yields

=m'
ln domain I,

where f(x,t) is the structure function of the involved par-
tons. For the gluon sector we get after integration

+min +& ( 1

{n) = J f(x t)dx « J
min min X

1ln-
ln~ Xmin

For large t this yields

16K,g ln « ln
1

+min Pl~

which is obviously satisfied if lnl/x;„-lnt jm .
It is worthwhile to note that in the model of Ref. 3,

{n )s is always 100 times smaller than (t jm )lnl/x;„
which justifies the use of perturbative QCD at small x.

APPENDIX 8: THE TRUNCATED
MULTIPLICITIES (REF. 3)

For valence quarks we have approximated the truncated
multiplicity by the full multiplicity which is finite:
n "(i)) =1. For gluon and sea quarks the truncated multi-
plicities are obtained from Eq. (4) and the normalization
is fixed by means of the second moments. This yields

1/2
t

S
in domain II . Ii[(16%,+i))'~ ] 1 +1

2

Note that the absolute minimum of x is (m /t)'/
=7)& 10 at colhder energy.

Recent theoretical investigations have shown that there
exists a simple criterion to test the validity of perturbative
QCD at small x; namely, the packing fractions of partons
%has to be much smaller than one:

where

9$
domain I,

'9= '

7$9 9$
domain II,

~ &s(t) dt
i)=in, i), =in

m m2 p2 M t

4Ciexp( —4E,() 1 —exp[ ——,
' (4C2+Nf )g]

4Ci+Xy 1 —exp( —4X,g)

'"~
4C, +~,

8 4C2 2—exp( ——,Czg) + exp[ —Tg(4Cz+X&) ]4C2+Xf
exp(4%, g) —1 —4X,g

Io»d &i are modified Bessel functions.
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APPENDIX C: QCD, RESUMhLKTION FORMULAS FOR TRANSVERSE-ENERGY DISTRIBUTIONS

From formulas (8) and (9), (Er ) o;„reads

3271

(E )o;,=2&( —f', '
(C (n), +N, (n) }X

rn —1 —g~pT I $ —~pTf(,t) = —y f d (C,N, } g dM~
'

O
Cg—,—(,t)+N, P (,t),

min i=1

where ass(r, t) is one ladder contribution for the singlet
and gluon sector, respectively. The factor 2 in front takes
into account the two ladder contributions.

To proceed further, we use the following assumptions.
(i) The t s (rather than the s a= t;/x;) are strongly or-
dered, namely, m « ti « . « t i. (ii) The x; are
also strongly ordered which means that we keep only the
small Z; contribution to g(r, t) With. this approximation
the gluon contribution is dominant and P~(Z; )

=4N, /Z;, Z; =x;+i/x;.
With these assumptions it is possible to get the contri-

bution to (Ez ) the cascading partons by performing the
integrals over dt; and dx;, i =1, . . . , m —2. Indeed, for
the gluon contribution

—~!tT! dx; a, (t;) dt; «i/2,
'x; 4m t;:—f(x;)g (t; )dx;dt; .

1 1„"3'o 3'o=
f h (y')dy'

(n +1)!

The result for fs(~, t ) reads, up to a normalization,

Note that p;=t / (1—Z;)' t at small Z;. The
calculation of the nested integrals in x; and t; is simple
since

]max

y(~t)= f 4N,
' f 4N,

"

a, (t )) dt
X

" 18 —2

4%,1n
1

+m —1

(m —2)!
[J(r,t, )]™i

(m —1)!

if we neglect in the last integral the small logarithmic dependence of a, (t ).

&««hat without assumption i, dM; e ' would not have been factorizable and the summation impossible.
In the case Z =0(1)[(pz~~ —i~) ]max=pT~ -t and we can easily perform the last three integrations:

and

4Ncln
1

Qs(~, t) =e
m!

[J(r t )]Isl

m!

Bfs(~,t)
~( i /2 y

4N, ln g(t)
+min

+2
as(t )

~ i/2 ~
4Neln

1

[Pt)]
(m —1)!

Remembering that
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4N, ln g(t)
Xmin

m!m!
1=ID 16N, $ ln—
X

1/2
1= f Dg(x', t)dx',

(m+1)!

1/2

I 16N, $ ln—1
X

=xD (x,t),
4N, gln—

X

we get at once

4N, ( ln—
1

Xmin

m!m!
=(n)s

which is the truncated multiplicity for the gluon and

4/cln
1

Xmin

m!
[Pt)]
(m —1)!

' 1/2

4N, ln
Xmin I i 16N, (ln 1

Xmin

' 1/2

The tota1 contribution reads

Bf(r,t)
87.

4E, ln

(~ )g 1+2
a, (t) ' x

~=0 4'tt g(t )

' 1/2 1
I& 16N, gin

min

Io 16N,(ln
1

Xmin

1/2

The second case (ii) is a little bit difficult to handle.
Indeed in this configuration (Z, -0), the maximum value (pT )mn„=t/4xm i/x, does depend on x, and xm

( —1) max-
and pT =pT ~ i~ due to the balance of momentum inside the chain

dxa i dxm —I m —1~ a +s( m —1) d m —i 2rtm-
mt~ Xa ~ Xm —l 4m t

' m —2

4N, ln
1

Xm —1

(m —2)!
[J( t ri)]

(m —1)!

gy(& t) i dxa i dxm i sxm 1/ xa As(tm i) dtm 1

mm Xa a X~ 4~ . t~

[4Nag(t ) )]
X

4N, (m —1)!

Xmin

(m —2)!

a, (t i)+ '
4~

Nl —2

J

(m —2)!

1n
1

[4Ne g(tm —i )] min

(m —2)!

The integral on t i can be readily expressed if here again we neglect the t i dependence of D (x, tm i) and as(tm i.):
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(}y((,g) 4N, a,(t(,qq I dx,
2X

r=O 4W "min +a "u

' 1/2

D (x i, t)dx

4N, a, (t) f dx, f+ 4n. +min X+ +a

1/2
dx

Ds(x 2 t)dx
Xm 1 Ps —1

For the first contribution, we change the order of integration:

f dx((

+min (x ) ~ (x; )

and we get
' 1/2

1

min

where (y'~ )z is the —', truncated moment of the gluon structure function. By the same kind of trick, we get for the
second integral

in
in (y

xmin

The final result reads

gy(t ~) 41)1,a, (t)

.=o 4~ +min

Following exactly the same method for the singlet sector we get the answer for the mean transverse energy (ET )2 aris-
ing from the small-Z, domain:

where

4N, tz, (t)
F(t)=4

1/2

where (y 'r ), is the —,
' truncated moment of the singlet structure function.
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