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%e discuss a class of dynamical models motivated by Koba-Nielsen-Olesen (KNO) scaling and
phase-space considerations. These modified phase-space models (MPSM's) generalize some of the
existing models and provide them mth a dynamical basis. Multiplicity distributions in MPSM s can
be obtained by solving an appropriate evolution equation, from which kinematical KNO-scaling
violations before the asymptotic scaling energy is reached can be calculated. Possible causes for
dynamical KNO-scaling violations are also discussed.

I. INTRODUCTION

Koba-Nielsen-Olesen (KNO) scaling' for multiplicity
distributions is probably the best scaling law we have. It
works remarkably well for a great variety of reactians
over a wide range of energies. If interpreted correctly
the apparent violation of KNO scaling observed at the
CERN SOS collider at v s =540 GeV (Ref. 5) will also
d1sappear.

There is a large number of models proposed to explain
KNO scaling, approximate KNO scaling, or merely the
associated large multiplicity fluctuations. ' The latter
is achieved in a class of models 's by the incoherent super-
position af narrow distributions such as the Poisson distri-
bution. KNO scaling is not guaranteed in this approach
unless additional ingredients are introduced. Otherwise
approximate KNO scaling will simply emerge as a result
of the numerical calculations.

Another class of models is constructed in such a way
that KNO scaling emerges from the very beginning. Ex-
amples of this class of model are the stochastic cell
model and the three-fireball model. '0

We shall adopt the point of view that the excellence of
the KNO-scaling law should be treated seriously and
should be utilized as a guide for our search for the under-
lying dynamical mechanisms for strong-interaction reac-
tions. Our goal is ta make a systematic study of the prob-
lem in order to find the most general dynamical scheme
capable of predicting KNO scahng. Once this is done one
would also understand how KNO-scaling violations can
be achieved. We cannot claim to be completely successful
in that goal, but we have found a large enough class of
dynamical models to be able to begin a systematic dynam-
ical study using KNO scaling as an input. To this end we
note that the probabihty P„(n) for producing n particles
at an incoming c.m. energy Vs that yields an average
multiplicity n(s) satisfies the evolution equation"

dI'„
2 d„=f.-iP. -i f.P. — (1)

in at least two cases. If P„(n) is given by a Poisson distri-
bution, then x =2n and f„=l. If P„(n ) obeys KNO scal-
ing, then (1) is again satisfied in the KNO limit n »1,
n»1, z=n jn fixed. " In that case we should take

x =21n(n ) and f„=n W. e shall adopt the convention in
(1) and below that P„=O if n ~ 0.

For the Poisson distribution, Eq. (1) may be interpreted
as follows. Let the probability for emitting an additional
particle as we change the energy from s to s+ds be given
by dxl2 for some x (s). Then the rate of change of P„(n )

is given by the right-hand side of (1), with the first term
describing the gain in P„due to the emission of an addi-
tional particle when n —1 particles are already present,
and the second describing the loss in P„due ta the emis-
sion of an additional particle in the presence of n of them.
Thus this equation describes the independent emission
from a single source, as is depicted by the multiperipheral
chain in Fig. 1. The relaxation x =2n is a consequence of
Eq. (1).

By the same token Eq. (1) can be interpreted similarly"
for KNO distributions in the KNO limit. Since naw
f„=n, we must have n sources participating in the emis-
sion of particles. This means that every particle present
must be capable of acting as a source and this naturally
suggests a picture given by the multichain diagram depict-

FIG. 1. A multiperipheral diagram.
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p'"(S 123 . n)= f gd"k, gk, ' —m, ')e(k,')
i=1

x5' k, —g k;

can be decomposed into phase-space factors for a fewer
number of particles via the formula

p(S-+123 n )

k
= J' p(S A, A A„) g p(A& i, i ~ ~ . i„, , )

FIG. 2. A multichain diagram with P vertices.

gdm (A~) . (3)

ed in Fig. 2. Again x =21n(n) is a consequence of Eq.
(1).

Chain models have been studied previously by other au-
thors. ' We shall consider here a particular version of
such a model which is largely based on phase-space con-
siderations. It is in fact a phase-space model motivated
by KNO scaling that is modified minimally to allow for
an arbitrary average multiplicity function n(s). We shall
refer to this model as the modified phase-space model
(MPSM).

We shall define and study this model for a one-channel
problem in Sec. II. Initially we shall discuss the case
when the dynamics is described by an 1+2=3 prong ver-
tex as is depicted in Fig. 2, but later on the cases for other
I's are also considered. Multicharmel generalizations are
straightforward and will be discussed briefly at the end of
that section. We shall show that if the energy is suffi-
ciently large, then P„(n ) given by the MPSM satisfies Eq.
(1) with f„=n for all n, and not only so for n »1. In
Sec. III we discuss the solution of Eq. (1), which is obvi-
ously unique once an initial condition (at some fixed
x=xc) is given. If P„(n(xp))=5~, then P„(n(x)) is
given by a function G„which approaches a I' distribution
in z in the KNO limit. These I distributions have in-
tegral powers in z if /=1, but have rational powers if
I & 1. This solution corresponds to the initial production
of k off-shell clusters, which subsequently decay accord-
ing to the multichain dynamics depicted in Fig. 2. The
solution for the case of a mixture of several initial clusters
mill also be discussed. %'e will also discuss in Sec. III an
example of the two-channel case. In general the solution
for this case cannot be found analytically, but we can ob-
tain partial results for special cases and through them we
see that the multichannel results could be quite different
from the one-channel result discussed above.

Section IV contains an application of the one-channel
analysis to pp multiplicity distributions and a discussion
of the various origins of KNO-scaling violations.

This formula, valid for any d, can be represented graphi-
cally by Fig. 3. In particular, repeated use of (3) allows us
to decompose an n-body phase-space factor into two-body
phase-space factors. The latter is given in two and four
dimensions by

(4)

A, =[(m, —mg' —ms ) —4m' ms ]2 2 22 2 21/2

Phenomenologically the transverse moments ki of the
produced particles are generally much smaller than the
longitudinal momenta k~~, therefore, the appropriate
phase-space factor to use is the two-dimensional one. In
this region m, » mz, ms, for the reaction S~A+8, and
p' ' is well approximated by 1/2m, . However we must
be cautious in using the two-dimensional phase-space for-
mula in the region where ki is of the same order as k~~.
Since transverse and longitudinal momenta are of the
same order in this region, we must take a smooth transi-

1

L2

II. THE MODIFIED PHASE-SPACE MODEL

It is well known that the d-dimensional n-particle
phase-space factor

FIG. 3. A diagram illustrating the phase-space decomposi-
tion of Eq. (3).
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tion from two-dimensional to four-dimensional phase-

space factors. Now in this region, m, —m„+ms, the
function in (5} vanishes. The two-dimensional phase-

space factor p' ' goes to infinity while the four-
dimensional phase-space factor p' ' goes to zero. The
correct phase-space factor in this region is then presum-
ably somewhere between zero and infinity, and the exact
form will depend on the details of the ki and the k~~ dis-
tributions in that region. For the sake of simplicity, we
shall take it to be finite and given by the two-dimensional
asymptotic form given above. Thus we assume the effec-
tive two-body phase-space factor appropriate to the
present problem to be

1p(S~AB)= 8(m, —mz ms) —.
2m,

(6)

As we shall see below, the functional form in (6) for
p(S~AB} actually does not matter as long as it is given

by a function of m, 2 satisfying the 8-function threshold
constraint.

The modified phase-space model (MPSM} is construct-
ed below. For simphcity we shall describe in detail only
the one-channel case whose dynamics is described by an
effective t})i vertex. Generalization to other vertices and
the inclusion of many channels are straightforward and
will be discussed briefly at the end of this section.

The MPSM is constructed as follows.
(i) Draw all topologically distinct branching-type tree

diagrams corresponding to a Ps vertex. Two such dia-
grams are topologically distinct if one cannot be obtained
from another by a combination of permutations of ver-
tices. By a permutation of vertex we mean the permuta-
tion of the two lines emerging from the vertex together
with their associated tree structures. The symmetry fac-
tor (Fs) for such a diagram is defined to be the number of
permutations which reproduces exactly the same diagram.
We shall also use the terminology of geometrically dis-
tinct diagrams. Two diagrams obtained from one another
by permutation of vertices are considered to be geometri-
cally distinct as long as they are not identical. Thus for a
diagram with U vertices, the number of geometrically dis-
tinct diagrams that are topologically identical is 2 /Fz.

(ii) For each toplogically distinct diagram, use Eq. (3) to
decompose the phase-space factor according to this dia-
gram, and use Eq. (6) for the two-body phase space factor.
Dynamics is introduced by allowing in addition a wave-
function factor 2m U(m z) for each farm-factor-
propagator combination, where m is the off-shell mass of
that propagator, U(m ~} is defined in such a way that it is
the product of the two-body phase-space factor (6) and the
newly introduced wave-function factor. Finally, we must
as usual divide this diagram by its symmetry factor Fs.
After summing up all the topologically distinct diagrams
with n final particles, the resulting expression will be
denoted by P„.

Now P, would essentially have been the probability of
producing n particles if the tree diagrams respected uni-

tarity. Since they do not and since we are unwilling to
calculate loop diagrams, unitarity, or rather probability
conservation in the present context, must be enforced by
hand in much the same that is done for the Altarelli-

Parisi equation. We shall show below that P„satisfie the
relation

P„
2 =(n —1}P„

Nfl

where

because the branching diagrams describe creation of parti-
cles through branching but fail to account for the loss of
the initial particles that branched. We must therefore
modify (7) by introducing a loss term so that (9) is satis-
fie. The resulting probability of producing n particles
now satisfies the evolution equation

2 = (n —1)P„ i nP„,—
dx

(10}

which is nothing but Eq. (1) with f„=n, valid however
for arbitrary n. In this way the branching diagrams P„
act like a "potential" to drive the final unitarized proba-
bility P„. By multiplying (10} on both sides by n and
summing over all n it is easy to show that the function
x(m2) is related to the average multiplicity n(m ) by the
relation

x(m )=21nn(m ) .

Now it remains to show that Eq. (7) is true. For this
purpose recall rules (i) and (ii) above for P„Using. the
variable x defined in (8},we obtain simply

P'„=(1/Fs) f dxidxidxi dxi

—= (1/Fs}Qn (12)

where P '„denotes the contribution from a particular dia-

gram whereas the unprimed expression P„ is used to
denote the sum of all n particle diagrams. In (12) there
are as many x integrations as there are internal propaga-
tors. The limits of the x integrations are determined from
Eq. (8) and the mass-threshold 8 function in (6).

For example, the Fs factors for diagrams A,B,C,D,E
in Fig. 4 are, respectively, 4,2,8,8,2, and the Q „' function
for each of A,B,C are I dxidxzdxi. Although these

three integrals appear to be the same, actually they are not
because the three diagrams have different structures and
therefore different boundaries in the (x, ,x2,x&}space.

There are two basic ingredients involved in showing (7):
one is phase space and the other is topological. We start
with the phase-space consideration. Assume for the sake
of simplicity the on-shell mass to be zero and n(0) =1, so
that x(0)=0. This assumption for n is not critical at all
for the following analysis. Now for a two-body decay
S~A+B, the boundary for the xz,xs integrations is
determined by mz )0, m~ & 0, and m, & mq +m~. The
first two conditions correspond to x~ )0 and xa &0. To
study the last condition let us consider two special eases.

dx (m ) =U(m )dm

It is clear that this equation does not respect probability
conservation,
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FIG. 4. Topologically distinct diagrams for n =5 and 4.

(1) Suppose

n(m )=[1+1n(m +1)]
Then (11) implies

x =2a in[1+!n(m +1)]
and (8) implies

u(m2)=2a/(m +1)[1+!n(m +1}].
Thus

m = [exp(e —1)—1]'

and the boundary m, =mq +m~ maps into

[exp(e ' —1}—1]'/

=[exp(e " —1)—I]'~ +[exp(e —1)—1]'~2

In particular, when x, »2a, mz ——0 maps into xz ——0
and x~ ——x„while mz ——m~ maps into

—zg /2cE zg /2a
xq ——xii~, —2ae ' I2ln2 —3exp[ —(e ' —l)]I .

shrink. It is also important to note that the shrinkage
occurs more in the region where mz ——mz than when one
particle is on shell. Thus it has the effect of discouraging
the decay to two off-shell particles compared to the decay
to one on-shell and one off-shell particle. This effect is
more prominent the faster n(m ) rises with m. More-
over, finite on-shell masses also have the effect of cutting
down the phase space of high-multiplicity events and
thereby decreasing their probabilities for occurrence. In
addition, since n(m )/m approaches zero for large rn,
this effect is more pronounced at low energies than at
high energies.

To illustrate these features the phase-space boundaries
for pp interactions where n(m )=0.88 + 0.44 in(s)
+ 0.118ln (s), and for e+e annihilations where
n(s)=2s', are plotted in Fig. 5 for two energies:
~s =540 and 30 GeV. To make comparison easier, these
boundaries are displayed in the y variables, where yq (yii)
is defined to be a linear function of xz (xii ) in such a way
that (yz, yii) =(0,1) and (1,0) are points on the phase-space
boundary.

For the rest of this section we shall assume the energy
to be so large that the two-body phase space may be ap-
proximated by a square in the x variables. Consider a
linear chain with r propagators splitting into two dia-
grams with Ax„i' and Bx,& dependences, respectively (Fig.
6). Then, for the whole diagram in Fig. 6,

Q'= J dxi J dx2 J dx, ABx,i'+~

(p +q)!
(p+q+r )!

(13)

By using this rule repeatedly, one can obtain an expression
for Q for any diagram.

In order to derive (7) we have to know how to compute
dQ „'/dx. Since Q '„ is always given by a power of x, this
computation is trivial. What is less trivial is to put it into
a form so that (7} can easily be derived. For that purpose
let us consider Fig. 6 again. Since

Q '=ABxi'+'i+'(p+q)!/(p+q+r)!,

For x, »2a, the region in (x„,xii) space is practically a
square with length x, on each side.

(2) Sup ose n(m )=(m +1)~. Then x=2aln(m +1)
and u(m )=2a/(m +1). Hence m =[exp(x/2a) —1]'~i
and the boundary m, =mq +m~ maps into

[exp(x, /2a) —1]'~ = [exp(xz /2a) —1]'~

+ [exp(xii /2a )—1]'~

For x, ~&2u, mz ——0 maps into xq ——0 and x~ ——x„while—Z /2a
mq ——mii maps into xz ——xii~, —2a(2ln2 —3e ' ).
Once again the region of integration is almost a square if
xs &&2a

The conclusion of this analysis is the following. The
integration region in (x„,xii ) space is practically a square
if x »4aln2, and if the on-shell masses are neglected.
%%en x, is decreased, the phase space shrinks. It shrinks
more for larger a, and it shrinks more in case (2) than in
case (1). In other words, the faster the average multiplici-
ty n(m ) grows with m, the more the phase space will

{c)

540 GcV 30 GcV

FIG. 5. T~o-dimensional phase-space boundaries for pp and
e+e interactions at two energies. The y& and y~ variables are
linear functions of the x& and xq variables in the text normal-
ized so that (y~,y~)={0,1) and (1,0) are points on the phase-
space boundary.
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removing cl and c2 from C yields E.
It remains to show that the symmetry factor Fs will

cooperate with the d ldx action to yield (7). Before carry-
ing out the general argument which is topological in na-
ture, let us first see how this works in the special case of
Fig. 4. The Fs for these diagrams have been given before.
They are 4,2,8,8,2, for A,B,C,D,E. Therefore
P s(A) =Q 's(A)I4, P4(D) =Q g(D)I8, P 4(E)=Q g(E)I2.
We obtain, from (15),

FIG. 6. A diagram used in deriving Eq. (13).

clearly

d Q '/dx =ABx++&+" '(p +q)!/(p +q +r —1)!

Q s(A)=x /2!1!, Q 5(B)=x /3!,

Q s(C)=x 2!/3!1!1!,

Q4(D)=x /1!1!, Q4(E)=x /2! .

Thus

(14)

d Q s(A)/dx =Q 4(D)+ Q 4(E),

d Q s(B)/dx =Q z(E),

dQ s(C)ldx =2Q 4(E) .

(15)

Equation (15) illustrates the rules of removing the last
vertices. Removing the last vertices a1 and a2 in A yields
D and E, respectively; removing b from B yields E and

=(p+.q)ABxr+&+" (p +q 1)t/(p+q+r i)t

Written in the latter form, we may interpret the action of
dldx to be the sum of two actions. One follows the
upper branch and differentiates it at a point immediately
after the branching at 0, and the other follows the lower
branch and differentiates it at the same point. The dif-
ferentiation on the upper branch turns Ax~ into pAx~
resulting in a new diagram with

Q '=pABxl'+s+' '(p+q —1)!I(p+q+r—1)!.
Similarly the differentiation on the lower branch yields a
new diagram with a

Q '=qABxi'+s+" '(p+q —1)!I(p+q+r —1)! .
If the upper branch consists of an on-shell particle, then

p =0 and the d/dx action follows only the lower branch.
If both branches are on-shell particles, then p =q =0 and
the action stops. Thus the action of d /dx is like a current
which follows the off-shell lines until it comes to the end,
whence it removes the last vertex on that line from the di-
agram. In other words, the operator dldx simply serves
to remove the last vertices of the diagram one at a time in
all possible ways.

Let us illustrate these results with Fig. 4. By using (13),
one gets

dP &(A)ldx =2P 4(D)+P 4(E)I2 .

Similarly, we get

dP s(B)/dx =P g(E)

dP s(C)ldx =P g(E)/2 .

Adding these results, we get

dPsldx =d[P s(A)+P s(B)+P 's(C)]ldx

=2[P4(D)+P 4(E)]=4P4/2, (16)

d P„=—,(n —1)P„
X

(17)

and Eq. (7) is finally proved.
It is also clear from these considerations that if only

one source is present, as is the case in the multiperipheral
chain of Fig. 1, then one may add a new vertex only to the
source line and hence dP, /dx =P„/2.

The generalization beyond tI)s vertices is easy. If the ef-
fective vertex is t!! +, then instead of the effective two-
particle phase-space factor in (6} we must talk about
an effective (I + 1)-particle phase-space factor
p(S~AtAz . . At+t}. We argue as in (6) that this can
be taken as a function of rn, only, and then we would
procetxl as before to introduce the wave-function factor
and the function x(rn, }. The phase space at a vertex is
now an (1+1)-dimensional hypercube if rn, is large.
The action of d/dx on Q is still to remove the final ver-
tices, but noir this involves reducing I particles. Instead

which agrees with Eq. (7}.
To carry out the argument in general, note that the

number of vertices in an n-particle diagram is U =n —1,
and that the number of geometrically distinct diagrams

corresponding to the same topological diagram is 2'/Fs.
Thus P„=Q„/Fs ——2 '" " (times the sum of Q „' for all
geometrically distinct diagrams). Now d ldx acts on Q „'

by removing the last vertices one at a time, thereby getting
a number of diagrams with n —1 final particles. Prom an
n —1 particle diagram, n —1 geometrically distinct n

particle diagrams can be created by adjoining a new vertex
to each of the n —1 external lines. Conversely, the remo-
val of this newly added vertex from each of these newly
created geometrically distinct diagrams would yield back
the original n —1 particle diagram. Thus (sum of
dQ „'/dx for all geometrically distinct n particle
diagrams)=(n —I times the sum of Q„', of all the
geometrically distinct n —1 particle diagrams). In other
words
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of (7), we will therefore have

P„=—,
'

(n l—)P„
dx

(18)

The unitarized probabilities then satisfy the evolution
equation

P„=( n I }P—n (~—P

DI. SOLUTIONS OF THE EVOLUTION EQUATIONS

A. One-chN»el evolution equation

Note that we have chosen the normalization of x to yield
the factor —,

'
in (18}. The relation between x (s) and II(s)

can be obtained from (19). It is x ={2/l)ln(i.
This kind of generalization can also be made to the

case» when we have a mixture of vertices of different I's,
and to the case when more than one channel is present. In
each case the evolution equation should be modified and
the modification can be inferred simply from probabilistic
considerations. See Sec. III for the case of a two-channel
equation.

=[PC'—1}] '
dg

and this can be solved by letting g'=g. Then we obtain

lg=ln

f{r) (1 el»I) —il(

Consequently,

f(r(+ —,
' (x —xp)) =g'

1/I
(i

~(
Ii

np no
(26)

In principle, P„(x}can be read out from (25) by expand-
ing it in powers of g.

In practice it is not so easy to obtain g(g) and f(ri)
analytically. It is also not simple to do the power-series
expansion in g. However, when we have vertices with a
fixed 1, then the solution can indeed be obtained. " In that
case,

If we have a mixture of vertices of different I, and if
the wave-function factors are different 1 have the same
energy dependence though not necessarily the same
strength, then a formal solution to the evolution equation
for this case

np= n(x—p) .

Now define G„"by

fk y Gk(~)g»» (27)

=g P([(n l)P„( n—P„]-
lp1

(20)

P(g,x ) = g P„(n(x)g'" (21)

(remember that P„=O for n & 0) satisfies the equation

P(g»x )=g Pg(g —1) P(g,x )
x

can be obtained. Here P( are the relative strengths for the
vertices»I}(+ . We shall normalize the definition of x such
that g(p( ——1. Then (20) implies ((=exp(7x/2) where
7=+(Ip(.

The generating function

where (J=n/no Then.

Gk N ~ N-k I'(k'+p)
1

I (k') I (p + 1)
(28)

no znp
N I

l —(So/I )s

(k' —1)!
(29)

The solution of the evolution equation with the initial dis-
tribution P„(xp)=a„ is

T

P„(x)=g akG„" (30)
kp1 np

where k'—=k/l. In the KNO limit when n »1, n »1,
and z=n/n fixed,

—=DgP(g, x)

@&hose solution is given by

P{g,x }=exp[—,
' {x—xp)D&]P(g, xp) .

Define the function ri{f) by

g Pg(g —1)
lp 1

and denote its inverse function by g=f(r(). Then

P{g,x }=exp —,
' (x —xo) P(f(rl }»o)a1.

=P(f(g(g)+ —,
' (x —xp)),xp) .

(23)

(24)

(25)

We can think of this as the multiplicity distribution re-
sulting from the decay of k clusters produced initially by
Ole collision, and that ak gives the distribution for pro-
ducing these k clusters. The number np =g„na„ is then

the average number of the initial clusters. It is useful to
note that in the KNO limit, if a„=5„k,then the pth mo-
ment of z is given by

{z')= 1+ 1

k'
o e e

—1

k' (31)

Note that for finite energies (28) is not identical to (29).
This model therefore naturally contains KNO-scaling
violations. Strictly speaking these are not really viola-
tions; we simply have not yet reached the scaling limit at
lower energies. Another source of scaling violations of
kinematical origin was discussed in Sec. II: the evolution
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equation is valid only at high energies. At lower energies
the region of phase space as depicted in Fig. 5 is not a
square and the nonzero on-shell masses must also be ac-
counted for. These considerations have the effect of mak-
ing the multiplicity distributions narrower (more Poisson-

type) and more symmetrical about z =1 (i.e., the long tail
at large z has been cut off by the loss of large multiplicity
events).

FIG. 7. The three basic vertices for the two-channel model
considered in Sec. III.

B. A t~o-channel problem

Consider a two-channel problem and refer to the parti-
cles in the two channels as gluons and quarks. We assume
that there are three kinds of interactions, as depicted in

Fig. 7. We emphasize that despite the terminology, we

are not necessarily considering real quarks and gluons.
They could be any two kinds of particles coupled in the

way shown in Fig. 7. We also point out that spin and oth-
er complications have not been built into this model so
that these quarks and gluons are spinless. Nevertheless, if
their coupling were determined by the usual SU(3)-color
factors for real gluons and quarks, then
A 8 C=4/3:F/2 3 where F is the number of quark fla-
vors. The sudden opening up of a new flavor threshold
will change 8, and hence, the evolution equation, and
therefore will lead to KNO scaling violations.

The evolution equation is

P(n, m) =A[nP(n, m —1) nP(n—,m)]
dx

+8[(m+1)P(n —2, m +1)—mP(n, m)]

+C[(m —1)P(n, m —1)—mP(n, m )], (32)

where P(n, m} is the probability of finding m gluons and
n quarks or antiquarks. This equation is difficult to solve

analytically, except in some special situations. We will
now discuss them individually.

(i) We can easily obtain from (32) the equation for the
moments. For the first moments, they are

dnldx =28m, dm ldx =An+(C B)m —. (33)

Assuming an initial condition of m =1 and n =0 at
x =0, the solution of (33) is

n(x )= (e —e""),

m(x)= —(M —pei },l

)L,,p= ,'[D+E],—D=C 8, —

E=(D'+8AB)'" .

(34)

( n'mb) (n'mb) 28
—g—b ~+b'

( a —1 bg1) (35)

where R, +b is independent of energy. Thus KNO scaling
is valid in this limit. The second-moment equations are

For large x, the larger eigenvalue A, dominates the ener-

gy variation. Then n/m is a constant. Similarly, it can
be shown from the moment equations for any initial con-
ditions that

d(n')/dx =48((nm )+m), d(nm )/dx =A (n')+8(2(m') —2m —(nm ) )+C(nm ),
d(m )/dx=A(2(nm)+n)+8( —2(m )+m)+C(2(m )+m) .

The solution of this is contained in (36), and a rather lengthy calculation for the initial conditions previously specified
leads to the result

R2 ——2[D(2A C)(A+2—p)+2[3AB(A+C)+D (C A)]JIA(D +9A—B}.

(ii} 8=0. In this case the quark number n is con-
served. Gluons are emitted from quarks by A and from
gluons by C. If C=O, then the solution is a Poisson dis-
tribution„and it is narrow. From now on we shall assume
C&0. With 8 =0 this problem has become a one-
channel problem and the technique used in case A is still
applicable in this case. If we start with k gluon clusters,
the result in the KNO limit is a y distribution with an ex-
ponential slope k'=k+Q, where Q =An/C. Thus even
if k' is known from. data fitting, we cannot know what
the number k of initial gluon clusters is, especially if Q
turns out to be a large number.

(iii) A =0. The evolution equation for P

=Q„P(n, m) is

dP /dx=8[(m+1)P +i —mP ]

+C[(m —1)P i
—mP~ ] . (38)

This differs from the one-channel equation by having the
8 term present. This term describes the disappearance of
gluons when a quark pair is produced. We will therefore
find that if we start with k clusters, we may now get
n ~k particles at larger x, a phenomenon that never
occurs in the one-channel case.

Multiplying both sides of (38) by m and summing over
m, we obtain an equation for the average multiplicity
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which can be solved to yield m=moexp(Dx), where
D=C —8. Thus if C~B, the average multiplicity de-
creases with energy. This is because the production of
gluons from the C term cannot catch up with the loss of
gluons from the 8 term. Suppose now C&8 and D &0.
Then p=8/C & l. Equation (38) can be solved with the
same technique as in the one-channel case. Using the no-
tation there, we find

P(g,x ) =P(f(g(g)+ Cx ),0),
f(r/(g)+ Cx )=(ag py )—/(yg 5),—

a=pm/m, —1, y=m/m, —1, 5=m/m, p. —
(39)

z=m/m .

The emergence of the 5 function and the associated
change of exponential slope is the new feature in this reac-
tion. It is caused by the loss term 8 which results in a pil-
ing up of particles at z =0. Then change of the exponen-
tial slope from 1 in the one-channel case to 1 —p in this
case is then necessary to maintain the sum rule that the
zeroth and the first moments of a KNO function must
both be 1.

IV. PHENOMENOLOGICAL APPLICATIONS

In this section we shall apply the one-channel analysis
to hadron-hadron multiplicity distributions. A mul-
tichannel analysis would have been needed to calculate the
simultaneous multiplicity distribution of pions and kaons
(or some other types of hadrons), but no experimental data
on these joint distribution are presently available.

We will concentrate on a one-channel analysis. In such
a system the wave function (form-factor-propagator com-
bination) is determined by the average multiplicity and
can therefore be considered as known. The dynamics is
then solely controlled by I (1=1,2,3, . . .), where 1+1 is
the number of lines emerging to the right of a vertex.
Again for the sake of simplicity we will assume to have
only one kind of vertex with a fixed l and we will proceed
to discuss the experimental data in this framework.

Under this framework it was shown in Sec. III [Eq.
(30)] that the final multiplicity distributions P„are given
by the initial-cluster distributions ak as

I

P„(x)=g akG„ (41)
kgb Io

It is known that up to CERN ISR energies the multipli-
city distributions for all hadron-hadron reactions satisfy
KNO scaling quite well and that the KNG curve common
to a11 reactions can be parametrized, e.g., by the Slattery
distribution. ' From ISR to SppS energy of ~s=540
GeV, violations of KNO sealing become apparent.

There is no problem in obtaining a general solution from
(39) for any initial condition, but it is sufficient to take
the simple case when P =5 I initially at x =0 to illus-
trate the new features for this reaction. In that case
mo ——1, and the probability in the KNO limit is

P =—
Ip5(z)+(p —1)2exp[ —(1—p)z]),1

1
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FIG. 8. Multiplicity distributions for pp and pp reactions.
Data have been taken from Ref. 5 and the sources quoted
therein. The theoretical results are obtained from {28}by taking
k' =3. The average multiplicities n used for the solid, dashed,
and dotted curves are, respectively, 29.1 (SppS}, 12 {ISR), and
8.5 {Fermilab).

It has been shown by Carruthers and Shih that
throughout the whole energy range from Fermilab to
SOS energies, the multiplicity distribution can be fitted
very well if leading particles are subtracted.

Our distribution given in (28) and (29) is different from
theirs and gives rise to as good an agreement as theirs
when we take k'=3 (see Fig. 8). If we want a perfect fit
then additional energy violations of k' is necessary. '

Whether this can be accounted for by the kinematical
corrections discussed in this paper remains to be seen.

There remains the question of what I is. If the channel
in question is taken to involve pions, the 6-parity conser-
vation would forbid 1=1. If we take l =2, then the ini-
tial cluster number would be k=6. Why this number is
so large is presently not understood, bui perhaps ~e
should not attribute too much significance to it at this
point. The number of clusters depends critically on the
dynamics involved (e.g., the number l), and a multichan-
nel analysis (see, e.g., the example in Sec. III) is capable of
reducing the number of clusters. It is also possible that
the good agreement with data from a one-channel analysis
is coincidental.

We have emphasized how naturally KNO scaling arises
in the MPSM for kinematical reasons. This does not
mean that KNO-scaling violations will not occur dynami-
cally. The simplest mechanism of that type is to have k,
the number of the initial clusters, vary with energy. This,
in spirit at least, is analogous to the way how KNO viola-
tions are explained in the three-fireball model. There is
another more interesting way how KNO-scaling violation
can occur in our model. If the underlying dynamics is al-
tered by the opening up of an important channel (see the
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discussion in Sec. II for an example when the flavor num-

ber F changes), or more dramatic still, by the complete al-
teration of the underlying dynamics. One might imagine
that ordinarily, some sort of hadronic tree diagrams
would be sufficient to explain the observed multiplicity
distributions. But if a deconfining phase transition
occurs, then surely we have to use qtmrks and gluons and
QCD to describe the dynamics afterward. This sudden al-
teration of the dynamics changes the evolution equation
for P„and hence causes a scaling violation. For this
reason multiplicity distributions may be a good tool to

provide a signature for the detection of a deconfining
transitibn in heavy-ion collisions.
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