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Class of stationary axisymmetric solutions of Einstein's equations in empty space
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%e present a stationary axisymmetric solution of the Einstein vacuum equations which could
represent the exterior gravitational field of a rotating mass. The solution possesses aB multipole mo-

ments, the Zipoy-Voorhees parameter, and two arbitrary parameters resulting from t~o rank-zero
Hoenselaers-Kinnersley-Xanthopoulos transformations.

I. INTRODUCTION

In the last years, one of the most usual methods for
finding exact solutions of Einstein's equations has been
the generation of new solutions from those already
known. We will use here the rank-zero transformations of
Hoenselaers, Kinnersley, and Xanthopoulos' (HKX) to
obtain a stationary axisymmetric solution with all mul-
tipole moments from a generalization of the static
axisymmetric Erez-Rosen metric by means of two rank-
zero HKX transformations. The choice of the seed
metric is based on the following physical considerations:
(i) It contains an infinite set of parameters which
represent, as we will see below, the mass multipole mo-
ments of an axisymmetric distribution of mass in the
Newtonian approximation; (ii} it reduces to the exterior
Schwarzschild metric in the limiting case that all the mo-
ments higher than the monopole moment vanish. These
two conditions on the seed metric are very important in
order to obtain a physically realistic solution. Dietz and
Hoenselaers3 found the general form of a stationary
axisymmetric solution derived from a static one with the
Ernst potential

Eo ——exp 2 g M„r " 'P„(cos8) (1)
a=0

where r and 8 are spherical coordinates, M„are constants,
and P„are the Legendre polynomials. This seed metric
does not satisfy condition (ii) given above since for
M„=O, n+0, Eq. (1) is the Ernst potential of the Chazy-
Curzon solution. However, at spatial infinity the asymp-
totic behavior of the seed metric presented below agrees
with that of Dietz and Hoenselaers.

II. SOLUTION
Let us consider the general static axisymmetric line ele-

ments in prolate spheroidal coordinates (X,Y,p },
I'

ds =o exp( —2%) exp(2y)(X —Y )

[(X'—1)+»l»+ [(1—Y')+r]r =o

y» ——
2 [X(X —1)+» —X(1—Y )%r

1 —F 2 2

X —F

(4)

—2Y(X —1)%»+r],

X —1
yr =

2 i [Y'(X —1)+» —Y(1—Yi)+r
X —F

+2X(1—Y )%»%r],

where qt» represents t)%/BX, etc. Solving Eq. (4) by
separation of variables, ' we obtain

ql= g q„P„(Y)Q„(X),
n=0

where q„are constants, and Q„are the associated Legen-
dre functions of the second kind for which we use the def-
inition given in Ref. 6. Taking qo ——1, q, =0, q2

——q, and

qk ——0 (k &2), we get from (7) the Erez-Rosen metric
after the coordinate change X~—X. The corresponding

y function can be calculated from Eqs. (5) and (6) by
demanding asymptotic flatness.

Note that if a solution (%,y) of Eqs. (4)—(6) is known
then (5%,5 y) with 5=const is also a solution (see Refs. 7
and 8). We call 5 the Zipoy-Voorhees parameter.

Let us now consider the seed metric (2) whose Ernst po-
tential Eo ——exp(2%) we choose in the form

where cr =const, and qt and y are functions of the coordi-
nates X and Y which are related to the canonical %'ey1
coordinates (p,Z, Q) by

p=cr(X —1)'i (1—Y )' Z =oXY (3)

The field equations for (2) turn out to be

—exp(2%')dt

dx dF
X2 $ l +2

+(X —1)(1—Y~)14)

(2)

Eo ——exp 25 g q„P„(Y)Q„(X)
II =0

i

where qo ——1, qk, k ~0 are constants and we let X~—X.
The interpretation of this static solution becomes very
simple when Schwarzschild-type coordinates are intro-
duced: X=r/m —1 and F=cos8. The asymptotic ex-
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pansion of the metric function q„gives exactly the gravi-
tational potential of an axisymmetric distribution of mass
in the Newtonian approximation. The correspondence
with the work of Dietz and Hoenselaers is thus establish-
ed since for r »m, Q„(—X)=a„(m /r)" + ', with
a„=(—1)"+'n!/(2n +1)!!, and hence for 5=1, the
Newtonian multipole moments are M„=q„a„m"+'. In
the Newtonian approximation, the constant q~ can be
made to vanish by choosing the coordinate frame so that
its origin coincides with the center of mass of the body.
However, we shall leave q~ arbitrary here for the sake of
generality.

Applying two rank-zero HKX transformations to the
Ernst potential (8) and performing the coordinate change
X-+—X, one arrives at the new Ernst potential E given

by (see Refs. 3 and 9)

E =exp(25qr)d /d+, (9)

where

(X+Y)(P„+)»——(1+XY)P„(Y)[Q„(x)]»

+(1—F )Q„(X)[P„(F)]„ (14)

—Q„k )(X)] (n & 1),

(X+Y)(P„+)r ——(1+XY)Q„(X)[P„(F)]r
+(X —l)P„(Y)[Q„(X)]»,

for n &0. Using recurrence relations for the I.egendre
functions, the general solution of Eqs. (14) and (15) can be
written in the form

P„+=(+1)"po+—(+1)"Q((x)+P„(Y}Q„)(x)
e —1—g (+1)"P„k(Y)[Q„k+)(X)
k=1

0= g ( —1)"+'q„P„(F)Q„(X)
n=1

with

a=a, (X'—1)'-'(X+Y}2s-'

d+ ——(X+1) '[X(1 Ap)—+i Y(A+p),
+(1+Ap)+i (A, —p)],

(10) with

1 (X+YP
pa+ ———ln

X —1

The Ernst potential (9) corresponds to the stationary
axisymmetric line element

dX dY
ds =tr f ' exp(2y)(X —F2}

X —1 1 —F

Xexp 25 g ( —1)"q„P
@=1

(12)
+(X'—l )(1—Y')d4}'

f(dt —to—d p) (18)

p=a2(X —1)' s(X —Y)2s ~

P

Xexp 25 g ( —1)"q„P„+
a=1

(13)

Here a~ and a2 are the two arbitrary parameters intro-
duced by the two rank-zero HKX transformations, and

P„+ is the solution of the differential equations

where f, y, and co are functions of X and Y which can be
determined from the Ernst potential (9). To carry out the
calculations of the metric functions we use the algebraic
method of Yamazaki, ' Cosgrove, " and Dietz and
Hoenselaers. 3 The resulting metric functions are (for this
calculation we use the algebraic computer language'
azDUcE 3.0)

f=2R (1+cosr)L+ X—1

X+1 exp(25%)+4 sins(XN +YN+ )

exp(25%)

'5—1

X—1
exp( —25qr )+(1—cosr)L X+1

'1—S '5—1

co =E&+cr sinr[5p+2Y(1 —5}]——( I+cos~)M+ exp( —25%)+ (1—cosr)M
0' X—1 X—1

X+1 X+1

(19)

+Zsinr[x(A, —p, )(1—F )+F(1—g p )(X —1)] (20)

exp(2y) =E2exp(25 y)R /(X —1),

with

(21)

L+ =(1—Ap}[(x+1) —Ap(x+1) ]
+(A, +p)[A(1+F) +p(1+ Y) ],

M+ ——(X'—1)(1—Ap) [A +p+ Y(&—p) ]

(23}

R =(X —1)(1—~) —(1—Y )(~+p)' (22) +(1—F )(A, +p)[1—Ap+X(1+Ay)], (24)
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N+ ——(A, +p)(1+Ay) . (25)

Here E&, E2, and v., which have to be chosen so that the
metric is asymptotically fiat, are constant parameters
determined by a, and a2. The function P is defined by

P= g ( —1)"q.p. (26)

where p„ is the solution of the equations

(ps )x = —2(1—I')Qs(»P's(I')] Y

X =(r a)lcr, I'=cos8—
and giving special values to the parameters of the metric
(18)—(21), we obtain the following already-known metrics.

Schwarzschild ( m =mass):

ai ——a2 —v=O, 5=1, q„=O (n &0),
Ej ——0, E2 ——1, o=m .

Zipoy-Voorhees: '

ai ——a2 ——r=O, q„=O (n &0),
K) ——0, E2 ——1 .

Erez-Rosen:

cx) =cx2=T=0, 5= l~ g] =0~ q2 =q

qk ——0 (k &2), ICi ——0, E2 ——1, o=m .

(p„)r ——2(X —1)P„(F)[Q„(X)]x.

Using recurrence relations for the Legendre functions, we
obta111

p„=— (1—I' )[P„(I')]r[Q„+i(X)—Q, i(X)]
2

2lf +1
(29)

Finally, the function P of Eq. (21) is the solution of the
differential equations (5) and (6), where 4 is given by Eq.
(7) with X replaced by —X and the condition

lim P(X,Y)=0,
X~ co

which ensures the asymptotic flatness of the seed metric,
is satisfied. The structure and properties of the general P
function will be presented in a forthcoming paper.

The metric (18)—(21) possesses the following parame-
ters: q„which can be interpreted as parameters determin-
ing the Newtonian mass multipole moments, a) and a2
which follow from the two rank-zero HKX transforma-
tions, and the Zipoy-Voorhees parameter 5, which gen-
eralizes each solution to a one-parameter class of solutions
by taking different real values. Performing the coordinate
transformations

Hoenselaers-Kinnersley-Xanthopoulos

q„=O (n &0) .

Kerr-NUT' (Newman-Unti- Tamburino) ( a =Kerr pa-
rameter, b=NUT paraineter):

a, =a —a2, a2 ———,
' [a+(a2—8cr2)'~2],

q„=O (n &0), 5=1, Ei ———2a,
F2=1, 0' =Ptf —8 +b

+b(a 8cr—)'~ 3m—o
COS'P =

m +b
30' cos'p+ Nfslnv'= +

m +b
for special values of the parameters (cf. Ref. 9).

Quevedo-Mashhoon:

5=1, qi=O, qi=q, qk=O (k &2) .

In conclusion, the metric given here can be interpreted
as a nonlinear superposition of the static seed solution
with all Newtonian mass multipole moments and a Kerr-
NUT solution.

Let us now explain briefly some physical properties of
the static seed solution which lead us to consider it as
describing the exterior gravitational field of a deformed
mass. The solution is asymptotically flat and corre-
sponds, in the Newtonian limit, to the gravitational poten-
tial of an axisymmetric matter distribution with all mul-
tipole moments. A preliminary investigation of curvature
scalars shows that the spacetime region exterior to the hy-
persurface X= 1 ( r =2m) is apparently free of singulari-
ties. This agrees with our interpretation since the surface
of a realistic astronomical body is expected to lie outside
r =2m. Furthermore, these conclusions are expected to
hold even when the body rotates (and the NUT parameter
vanishes).

An important characteristic of the gravitations field of
the rotating deformed mass is the set of relativistic mul-
tipole moments. These would have to be determined ac-
cording to m invariant prMcription such as that of

eroch and Hansen. ' ' Preliminary calculations indi-
cate that these inoments consist of the Newtonian mul-
tipole moments plus relativistic corrections. A more de-
tailed determination of the physical properties of the gen-
eral solution, especially the explicit calculation of the mul-
tipole moments of the rotating source in terms of the pa-
rameters prment~ here, rem~us a teak for the future.
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