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Transverse-polarization effects in e+e collisions: The role of chiral symmetry
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Electrons and positrons in storage rings have natural polarization which is perpendicular to the
beam direction. Effects of the transverse polarization to azimuthally integrated cross sections are
studied. In the standard model, the polarization does not affect the cross section up to a correction
proportional to the electron mass, which is negligible at high energies. This fact is closely related to
the chiral symmetry of the standard model. It is not necessarily true if there are new interactions
beyond the standard model. Polarization effects in composite and supersymmetric models are stud-
ied in detail. New particles such as scalar bosons and excited electrons in composite models can give
nonzero polarization effects. In supersymmetric theories, the transverse polarization is useful to
probe the mixing of the scalar-electron states. The nonvanishing effects are connected to the break-
ing of the chiral symmetry by the new interactions.

I. INTRODUCTION

Electron-positron collision experiments' have been
one of the most important and fruitful fields in high-
energy physics over the past ten years. The center-of-
mass energy has increased from 3 GeV at Frascati's
ADONE to 47 GeV at DESY's PETRA. Throughout
these energies, the mass of the electron trt, =0.5X10
GeV is practically negligible. It is an excellent approxi-
mation to treat electrons as massless particles. In this
limit positive-helicity electrons (and negative-helicity posi-
trons) completely decouple from negative-helicity elec-
trons (and positive-helicity positrons). They behave as if
they are unrelated two Weyl fermions.

It is well known that the guiding magnetic field of
storage rings can produce nearly complete transverse po-
larization of the beams through its coupling to the mag-
netic moment of electrons (by the emission of spin-fiip
synchrotron radiation). 6 The maximum value of the
possible polarization amounts to be Po ——8/5v 3 =92.4%.

Betun polarization has been observed in many storage
rings. It has provided a very accurate calibration of the
beam energy by the resonance depolarization method, giv-
ing precise determination of particle masses: P at
Novosibirsk's VEPP-2M (Ref. 8), f and g' at VEPP-4
(Ref. 9), Y, Y', and Y" at VEPP-4 (Ref. 10), the Cornell
Electron Storage Ring (CESR) (Ref. 11), and DESY's
DORIS (Ref. 12). The beam energy was measured at
PETRA (Ref. 13) with a fractional error of —10 s. At
SLAC's SPEAR, azimuthal asymmetry due to the polari-
zation' has been observed in the reactions e+e —+e+e
and Is+Is (Ref. 15), inclusive hadron production, ' and
jet-axis distribution. ' Similar effects at PETRA were
also reported. '

A transversely polarized electron state is a linear com-
bination of two helicity states. Transverse polarization is
thus a manifestation of the tiny electron mass which
causes a transition between left-handed and right-handed
electrons. This property of transverse polarization is quite
unlike longitudinal polarization, which selects one of the

two helicity states.
Effects of transverse polarization have been calculated

for a great variety of processes ranging over pure @ED
(Refs. 19 and 20) and neutral-current ' processes, ex-
clusive and inclusive2 hadron production, jet cross sec-
tion, 2s io W ~air production, i' Higgs-boson production,
and so on.si

For instance, the cross section for e+e ~p+p in the
presence of transverse polarization to the lowest order in
QED is

2

(1+cos28 Psin~8—cos2$ ),

where 8 is the polar angle of p, with respect to the e
direction, P is the azimuthal angle of p relative to the
polarization direction, and P is the magnitude of the po-
larization (we take the polarization of electrons and posi-
trons equal and opposite). The extra term proportional to
P has a cos2$ dependence. After integrating over the az-
imuthal angle, there remains no trace of polarization.

A remarkable fact is that this disappearance of the
transverse-polarization effect—the special form of the
transverse-polarization dependence —is a property which
is common to (almost ) all calculated processes in e+e
collisions. Polarization-dependent parts of the cross sec-
tion always have a factor cos2$ (or sin2$ in few cases),
where P is the overall azimuthal angle. There remains no
effect of the polarization in the P-integrated cross section.
This fact makes it possible to use the calculation of unpo-
larized cross sections in comparing experiments with the
theory even if the beams are polarized.

%'e should stress that this is not a general consequence
of I.orentz invariance since the polarization vectors of
electrons and positrons are correlated with each other. On
the contrary, if the e+ and e spin vector directions are
averaged independently, we get the unpolarized cross sec-
tion as we wil1 see in Sec. II.

Besides numerous calculations of specific processes, we
can find a few general studies of the transverse-
polarization effect. Baier and Khoze considered the to-
tal cross section of electromagnetic processes and eonclud-
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ed that "the total cross section of an arbitrary process
coincides, accurate to the terms of order m, /E2, with the
cross section for unpolarized particles" if the final state
contains one or more particles with mass ~~m, . Kheifets
and Khoze wrote down the general form of the angular
distribution for two-particle production via s-channel
photon exchange and sho~ed that the transverse-
polarization-dependent term has a cos2$ dependence.
They related this fact to the helicity conservation at high
energies. Avram and Schiller studied the exclusive pro-
cess e+e ~multihadron for arbitrary final state within
the one-photon-exchange approximation and noted that
any (t-averaged distribution does not depend at all on the
transverse polarization of the beams. Tsai ' also con-
sidered the effects of transversely polarized beams on in-
clusive hadron production and some exclusive reactions
including the Bhabha scattering and e+e ~yy. He
gave an explanation of the appearance of the cos2$ factor
in the polarization-dependent part by appealing to time-
reversal and parity invariance and the neglect of radiative
corrections.

These existing explanations are, however, limited to
parity-conserving processes and only applicable to reac-
tions involving electromagnetic and strong interactions.
We are unable to tell if it continues to be true where the
weak interactions play an important role. More specula-
tive reactions wIth new particles predicted by supersym-
metry or composite models are also out of these con-
siderations. Moreover, it is not clear whether the con-
clusion is unaffected by the inclusion of radiative correc-
tions.

In a recent paper (hereafter called I) I proved that
transverse polarization has no effect on the azimuthally
integrated cross section for any process in e+e collisions
to all orders in the standard model if the electron mass
can be neglex:ted. (We refer to this statement as the null
theorem in the following. ) The proof presented in I was
based on an analysis of the y-matrix structure of the am-
plitude. Although the proof was rather simple, the phys-
ics behind the manipulation was not very clear.

In this paper I will give a new proof of the null theorem
in terms of helicity amplitudes. It turns out that the
theorem is the consequence of the approximate chiral
symmetry of the standard model. In the limit of massless
electrons, the global "electronic" chiral symmetry which
rotates the left- and right-handed electrons differently
guarantees that the theorem holds in all orders of pertur-
bation theory. Violation of this theorem is solely due to
the electron mass and the tiny Yukawa coupling of the
electron, and, hence, is negligible at high energies.

So far almost all experimental facts can be explained by
the standard model, a gauge theory with the SU(3)
SU(2)(U(1) gauge group. However, there are theoreti-
cal expectations that the standard model may not be the
whole story —the weak mass scale G~ '~ -300 GeV
should be associated with some "new physics. "

Two extensively studied directions are composite
models and supersymmetry. In these models the null
theorem does not hold in general. The transverse polari-
zation can be used for probing the chiral structure of new
interactions.

This paper is organized as follows. In Sec. II a general
discussion of kinematics in electron-positron collisions
with transverse polarization is presented and the
azimuthal-angle dependence of the cross section is ex-
tracted. It is convenient to work with the "reduced" cross
section which is the square of the amplitude. The relation
of this quantity and the cross section is given in Appendix
A. The cross-section formula for beams of arbitrary po-
larization is provided in Appendix B.

In Sec. IH we define the electronic chiral symmetry in
the standard model and present the proof of the null
theorem in the standard model based on symmetry con-
siderations. As explicit examples, the amplitudes and the
cross sections for the processes e+e ~p+p, e+e
~e+e, and e+e ~yy are given in Appendixes C—E.
The electron mass is retained so that we can see the viola-
tion of the theorem due to the explicit breaking of the
symmetry. The process e+e ~yy is particularly in-
teresting since the electron mass is essential to keep the
forward and total cross sections finite.

Sections IV and V are devoted to the study of new

physics models: compositeness and supersymmetry.
Whether the theorem holds or not depends on the chiral
structure of the model. If the chiral symmetry can be ex-
tended to the new particles and interactions, there remains
no effect of transverse polarization. The formation of a
spinless resonance gives a nice illustration how the
theorem is violated. Excited electron interactions are also
discussed in Sec. IV. In Sec. V the extension of chiral
symmetry for supersymmetric models is discussed and the
production of scalar-electron pairs and photino pairs is
studied. The effect of transverse polarization depends on
the structure of the scalar-electron mass matrix and the
gaugino masses. It is shown that the mixing between
scalar-electron states can be probed using the beam polari-
zation. The detailed result for these processes is given in
Appendixes F and G. Section VI includes discussions and
a summary.

It is to be noted that the phase convention of the helici-
ty amplitudes in this paper follows that of Jacob and
VA'ck.

II. GENERAL FRAME%'ORK

Although the results in this section are rather well
known, it is convenient to review them for use in later sec-
tions and to establish our notation.

A. Electron polarization states in quantum mechanics

The space of spin- —, particle polarization states is a
two-dimensional complex vector space. Disregarding the
irrelevant overall normalization and phase, the polariza-
tion states can be characterized by two real parameters.
The direction of the expectation value of the spin vector
(S) in the rest frame completely determines a pure state.
The magnitude of (S) is fixed for spin- —,

' particles:

~
(S)

~

= —,'. Any mixed state (or rather, mixed ensem-

ble) can be described by allowing the magnitude of (S) to
vary. The polarization vector is

P=2&S&.
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A state with
I
P

I
~1 may be regarded as a mixture of

two pure states with &S) parallel and antiparallel to P.
Note that these properties are specific to spin- —,

' particles.
For particles with spin& 1, expectation values of higher
moments (quadrupole, . . .) are needed for complete label-

ing of the state. The magnitude of &S) varies even for
pure states.

where X is the azimuthal angle of the positron polariza-
tion and h the helicity of the positron. (Note that the pos-
itron direction is in the negative z axis. )

The state vector of the electron-positron system is the
direct product

IX,X) = —,'( I+ —&+e'x I++ &+e"
I

——
&

S. Transversely polarized e+e states
+ei(x+7)

I
+ ) ) (2.4)

I 8,X)=cos—
I

h =+ ) +sin —e'
I
h = —),8 x

2 2
(2.1)

where h denotes the electron helicity. Restricting our-
selves to the purely transverse-polarization case, 8=m/2,
we have

To describe the initial spin states in e+e collisions, we
choose the helicity states as the basis, which is natural and
convenient at high energies. We work in the e+e
center-of-mass frame, and take the electron momentum
direction as the z axis. As our discussion will be in terms
of ampHtudes, it is convenient to consider pure states
only. The case of incomplete polarization can be treated
simply by taking a weighted average after squaring the
amplitudes.

A transversely polarized electron state is a superposi-
tion of the two helicity states with equal weight. In gen-
eral, the state vector of an electron with the polarization
vector in the direction (8,X) (8,X being the polar and az-
imuthal angle in the rest frame, respectively) can be writ-
ten

where
I
+ —) =

I
h =+ ))3)

I
h = —), etc. These states in

(2.4) span a two-dimensional subspace of the six-
dimensional spin space of the e+e system.

For the natural polarization realized in storage rings,
the polarization vectors of electrons and positrons are in
the opposite direction because of the opposite sign of the
magnetic moments. Setting X =X+m in Eq. (2A), we get

I
X,X+~)= —,'(

I + —
&
—e"

I
++ &+e"

I

——
&

e2xI +)) (2.5)

&f I
2 l»X&= ,'(T+ +e—'~T+++e'xT

+ei{x+x)T (2.6)

C. Azimuthal-angle dependence of the cross section

The scattering amplitude from the transversely polar-
ized state in (2.4) to a fmal state f is

IX&= (e'x Ih=+)+ Ih = —&),
2

IX)= (Ih=+)+e' Ih= —)).
2

Similarly for the positron

g 2) where we used the notation

T, =&fITI+-&.
(2.3} etc. The cross section is proportional to

x(x,X)=—
I &f I

T
I X,X)

I

= ~( I
T'+- I'+

I ~++ I'+
I
T- I'+

I
T + I')

(2.7)

The relation between X and the cross section is given in
Appendix A.

It is possible to define the overall azimuthal angle P of
the final state f such that any angle between momenta of
final or initial particles is independent of )I). When the fi-
nal state is a two-particle state, we can choose )I) as the az-
imuthal angle of one of the final particles.

We are interested in the P dependence of the cross sec-
tion. Instead of discussing the P dependence directly, it is
simpler to study the X,X dependence since the latter can
be made explicit using (2.6). In fact, we can show that

I &0 . . IT I»x& I'=1&0=o IT Ix —O'5 —4& I'
(2.8)

from the rotational invariance with respect to the beam

I

direction. In other words, the rotation of the final state
by )I) is equivalent to the rotation of the initial state by

If we average (2.7) over X and X independently, we get
the unpolarized cross section

(2.9)

where

i=——'( I
T —I'+

I
T

I

'+
I

T I'+
I
T

(2.10)

Alternatively, this can be accomplished by averaging over
four initial states

I
X X &

I
X X &

I » X), and

I
—X,—X ) for fixed X and X
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—,'y y. ~
&f ~

T ~+X, +X& ('=X..~, . (2.1 1) III. THE STANDARD MODEL

A. Electronic chiral symmetry

X~i—X( —P, P+—n )

—2ig
)
——,

' ReT++g —2Ree ' T+ T

——,
' Ree '~[T+ ( T++ —T )

(T++ —T' )T—~] . (2.13)

Here we should keep in mind that the amplitudes T&~ are

to be evaluated at / =0.
When we average over P we obtain

X~)——X„„~i—2 ReT++T, (2.14)po unpo

which differs from the unpolarized cross section by the
last term. This term refiects the correlation between the
electron and positron spina [compare with (2.9)] and is the
only effect of transverse polarization to the azimuthally
integrated cross section.

Equations (2.10), (2.13), and (2.14) are our basic formu-
las which will be frequently used in the following sections.

When the polarization is not complete (as is always the
case for storage rings), the cross section becomes

+ —,'PRee '~(T+ T +T' T +)

, PRee '~(T+ T—+++T' T +), (2.15)

where P and P are the magnitude of the electron and posi-
tron polarization, respectively. (Their directions are set to
the natural directions in storage rings. The electron spin
direction is taken as the x axis, i.e., 4=0.) If P=P, we
have

Note that the unpolarized cross section is independent of
the final-state azimuthal angle P thanks to (2.8}.

For the naturally polarized initial state (2.5), the cross
section is proportional to

X(X,X+n)=X„„~)—, Re—T~+T —, Re—e ' T+ T

,' Re—e'"[T~ ( T++ —T )

—(T~+ —T' )T ~] . (2.12)

Interference terms of various helicity amplitudes in (2.12)
are the effects of transverse polarization which mixes the
initial helicity states.

Now we fix the direction of the electron polarization to
positive x axis, i.e., +=0. The P dependence can be expli-
citly extracted from (2.8) and (2.12):

The standard model has an (global) approximate elec-
tronic chiral symmetry:

11 ~8 ll, eg ~e eg

(all other fields remain intact). Here

(3.1)

and o; is a real parameter. The kinetic terms and gauge
interactions respect this symmetry. It is explicitly broken
by the Yukawa interaction

W= —h, enq) IL+H. c . (3.2)

and consequently, by the electron mass. (Here p stands
for the Higgs field. ) The magnitude of this coupling is
extremely small,

h, =2.83X10-',

and the chiral symmetry is virtually exact at high energies
whenever the electron mass can be neglected.

This symmetry allows us to assign an (approximately)
conserved quantum number —electronic chiral charge X,
to all particles. We may choose

+1 for ~n

—1 for et-, v„,e~+,

0 otherwise .

(3.3)

In the symmetric limit, we can identify this chiral charge
with the helicity quantum number.

B. The null theorem

Before entering into the discussion of the transverse-
polarization effects in the standard model, it is convenient
to introduce a classification of amplitudes (or rather, dia-
grams).

Take any Feynman diagram for a process e+e ~f. If
you follow the fermion line starting from the initial elec-
tron, you either arrive at one of the final fermions (if any}
or return to the initial positron. We call the former a
scattering type diagram -and the latter an annihilation type-
diagram. See Fig. 1. In the standard model, if the final
state contains no electron or electron neutrino, all possible
diagrams are of the annihilation type and we may call the
process an annihilation process.

Let us discuss the annihilation process first. When
there are no final electrons and electron neutrinos, the fi-
nal state has X, =0. The initial helicity states are eigen-
states of X, :

,' P Ree '~[T+ ( T++ —T —)

(T++ —T' )T +] . — (2.16)

0 «r ~+ —&,
~

—+),
X, = +2 for

~
++),

—2 for
~

——&.

Since Xe is conserved, we have the result

(3A)
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~pot = ~unpol (3.10)

FIG. 1. (a) Annihilation-type diagram; (b} scattering-type di-

agram.

T++ —T —0 .

In this case (2.13) reduces to

&p i= ~( I T+- I'+
I T-+ I')

(3.5)

——,'cos+ReT+ T + ——,'sin2$1mT+ T +,
(3.6)

and the P-averaged cross section

&~i= ~( I T+ I'+
I

-T +I')- (3.7)

This is just the unpolarized cross section. Thus we have
shown that there is no effect of transverse polarization for
the annihilation processes in ihe standard model once we

integrate over the azimuthal angle P. Moreover, P depen-
dence only appears as the form of cos2$ or sin2$. In
most cases of interest, the amplitudes in the lowest order
have a common phase at /=0 and there are cos2$ terms
only. In fact, sin2$ terms are T odd and there is no
lowest-order contribution.

For partial polarization the cross section becomes

-'(
I
T —I'+

I
T-

—,'P (cos2$R—eT+ T ++»n+ImT+ T +),
(3.8)

where P is the polarization of the electron and the posi-
tron (taken equal).

Now we turn to the case containing electrons (or elec-
tron neutrinos) in the final state. Typical reactions are the
Bhabha scattering e+e ~e+e and various two-photon
processes. The amplitude is in general a sum of an
annihilation-type and a scattering-type amplitude. The
same argument as above is applied to the annihilation
part. More consideration is necessary for the scattering
part.

If we do not observe the spins of the final-state parti-
cles, or even if we measure the helicities of the final parti-
cles, we can work with states of definite X, as a final
state, so there is no interference between T++ and T
since X, is conserved and the two initial states have dif-
ferent X, values. In other words, if (f I

T
I + + )~0 for

a final state f, the state has X, = +2, so

&f I
T

I
——&=o and»«v«» T»s we see that ihe

only possible interference is between the two I,=0 states

I+ —
& and

I
—+).

Going back to the cross section of (2.13), the above ar-
gument implies

We conclude that the effect of the transverse polariza-
tion to the P-averaged cross section in e+e collisions is
absent in the standard model provided (i) the electron
mass can be neglected, and (ii) the transverse polarization
of the final electrons (if any) is not measured. Both con-
ditions are satisfied in practically all measurable processes
in high-energy e+e collisions. This completes the proof
of the null theorem. Some examples including the viola-
tion of the theorem by the electron mass are discussed in
Appendixes C—E.

We conclude this section with a few comments. It is
evident that the theorem is exact in all orders of perturba-
tion theory (for m, ~0) since the whole standard-model
Lagrangian is invariant under the chiral symmetry. In
particular, unphysical scalar particles which appear in re-
normalizable gauges decouple from electrons in the mass-
less limit. Ghosts do not couple to electrons either.

The theorem applies even to reactions with the Higgs
particle in the final state. For instance, the reaction
e+e ~ZH (Refs. 48 and 32) proceeds via s-channel Z
exchange and t-channel electron exchange at the tree level.
The latter contribution, which violates the theorem, is ex-
tremely smaller than the former. Another reaction
e+e ~yH (Ref. 49) receives a contribution only propor-
tional to the Yukawa coupling at the tree level, for which
the theorem does not hold. However, the one-loop contri-
bution via s-channel photon and Z exchange, etc., which
respects the theorem, doininates the cross section.

IV. BEYOND THE STANDARD MODEL:
COMPOSITENESS

In the preceding section we saw that the null theorem is
the consequence of the electronic chiral symmetry of the
standard model. The theorem is not necessarily true in
general because of the anticorrelation between the e+ and
e spins. Breakdown of this theorem would indicate the
existence of new interactions. In this and the next sec-
tions we will examine several cases in which the theorem
is violated. In the following we discuss new particles and
interactionsN exp~t& in composite m&els. si 52 Super-
symmetry will be treated in Sec. V.

A. Spin-0 resonance

The simplest and most illustrative example is the for-
mation of spin-0 (scalar or pseudoscalar) resonance.
Motivated by the "radiative Z decay" events at the
CERN pp collider, ' experiments ' at PETRA
looked for spinless bosons which couple to electrons.
Spin-0 boson are also expected in composite models. As
pointed out in I, nonzero transverse polarization affects
the total resonance cross section.

Scalar (0+) case. Suppose the scalar coupling is of the
form

X~~ ——X„„~&——,Ree '~T+ T +,
and for the P-averaged cross section

(3.9) fseeS . ——
Helicity amplitudes for e+e ~S are given by

(4.1)
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T++ =T =2fsp,
(4.2)

T+ ——T +
——0,

where p is the electron momentum in the c.rn. system.
[The latter of (4.2) is due to angular momentum conserva-
tion. ) Using (2.10) and (2.13), we have

1+y5=f e e4+H. c.
2

=v 2f(eLex@+ettet4 ) . (4.12)

X~p i=2fs'p'= 2fs'(s —4m, '} (4.3)

(4A)

Here s is the e+e c.m. energy. Thus the cross section is
exactly zero for complete polarization. This is in contrast
with the standard-model cases. If the polarization is fi-
nite the cross section is proportional to

2fs p (1 P) . —

Pseudoscalar (0 ) case. The interaction is

Wp i'fpe} 5eP .

Helicity amplitudes are

(4.5)

(4.6)

T++ =2ifpE, T =—2ifpE,

T+ ——T + ——0,
(4.7)

where E is the electron energy. The unpolarized and po-
larized cross sections are

Xunpol 2fp E 2fp s2 2
(4.8)

X~)——2X (4.9)

Unlike the scalar case, the polarization makes the cross
section twice as large as the unpolarized one. For partial
polarization we have (1+P ) times the unpolarized cross
section. The breakdown of the null theorem may be un-
derstood in terms of symmetry. The scalar coupling (4.1)
or (4.6) inevitably violates the electronic chiral symmetry.
There is no choice of X, values for the spinless particle to
preserve the symmetry. (In any case we cannot assign a
nonzero X, charge to a real scalar field. }

These results show that the PETRA experiments
should be reanalyzed if there is finite transverse polariza-
tion. The polarization would make the bound for spin-0
resonance weaker for scalars, stronger for pseudoscalars.

Inspection of (4.4} and (4.9) shows that if we have both
a scalar and a pseudoscalar of the same masses and cou-
plings, the polarization effect is canceled for rn, ~0:

It is obvious that the chiral symmetry is preserved (for
m, ~O) if we assign X, = —2 to 4. This symmetry as-
sures the disappearance of the transverse-polarization ef-
fect as in the standard model. (See Fig. 2.)

If this scalar couples not only to the electron but to all
quarks and leptons, we should extend the chiral symmetry
ta include all fermions. The symmetry is broken by the
fermian masses, particularly by the t-quark mass. It in-
validates the null theorem by introducing interference be-
tween X,=+2 and —2 states. For example, the cross
sections for e+e ~tt via s-channel 4 exchange (assum-
ing universal coupling) are

X„„~i——6f H (1—2m, /s),

X~,=X ~,+12f'e'm, '/s

=6f2%2,

where

(4.13)

(4.14)

2=
(s —M )+M I

(4.15)

(4.16)

and M and I' are the mass and the total width of the sca-
lars. The polarization effect disappears for m, ~O as the
chiral symmetry is restored.

Since m, is not small, ' the chiral-symmetry-breaking
effect influences the scalar spectrum. The two spinless
states are no longer degenerate and split into a scalar
and a pseudascalar mass eigenstate. In fact, if M &2m,
and M &/2m„ the widths of the two particles become dif-
ferent [compare (4.2) and (4.8)]. The real part of the self-
mass is affected differently even if M ~2m, . If the mass
difference of the two states are nat much smaller than the
widths, it may be possible to observe the transverse-
polarization effect.

Another interaction of the scalars generally expected in
composite models is the coupling with two phatons. In
the case of a single spinless particle, the polarization ef-
fect is the same as in the resonance formation cross sec-
tion. An interesting case we will analyze below is the
chiral-symmetric case. The interaction Lagrangian is
given by

2Xp.,—X p.,
—f s, (4.10)

where f =—fs fp. The scalar sector in ——this model in fact
respects a chiral symmetry. If we define the complex sca-
lar field

e„ FL FR

1

2
(S +iP), (4.11)

e+
L FR

the interaction can be written
FIG. 2. Diagrams for e+e ~a ferrnion pair via "chirality-

conserving" scalar exchange.
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2 gS 3/2

T.-+-=T--= '"
2(s —M2)

1 l

p p

Here we used the notation Tz~ ', with A, ; the helicity of
the photons. In addition to these, we have QED contribu-
tions to the amplitudes T+ and T + (see Appendix E).
There is no interference between the two. The finite-
width correction must be included in (4.17) near the reso-
nance.

It can be seen from (4.17} that the transverse-
polarization effect vanishes if p =p' {then T++
= T++ =0) or p = —p,

'
( T++++——T =0).

Is there any symmetry for the case
~
p, [

=
[
p'

~

to as-
sure the null result? At first sight there seems to be no
"chiral" symmetry since the electromagnetic field is self-
conjugate. Nevertheless, it turns out that the Lagrangian
actually possesses a continuous symmetry for the above
two cases. For }u=}u', the Lagrangian (4.16) can be cast in
the following form:

4P q~"'+H. c .
4 2p

Here we have introduced a complex tensor

1P pv= (Fqv iFpv )—v2

(4.18)

(4.19)

The interaction (4.18) is invariant under the transforma-
tion

(4.20)

Thus we are able to extend the chiral symmetry to include
the interaction with photons. It is clear that the symme-
try allows us to assign X,=+1 for W„ thereby guaran-
teeing the null result. Physically, W„„(W&„)corresponds
to helicity + 1 ( —1) photons. {The helicity of the photon
is completely Lorentz invariant unlike that of massive
particles. ) In the case p, = —p', P„„in (4.18) should be
changed to ~&„and the second equation in (4.20}becomes
P @~~8 P p~»

It should be noted that the symmetry of (4.20) is not a
symmetry of the total Lagrangian because the kinetic

where p and p,
' are parameters with a dimension of mass,

pg 68Fq„d——qA„d—+q, and F„„=, e—q„~i
The helicity amplitudes for the reaction e+e ~yy

coming from s-channel scalar exchange (Fig. 3) are

e2fg3/2 1 1
T++++ =T

2(s —M') p p'
(4.17)

B. Excited electron

Excited states of fermions are typical particles ex-
pected in composite models. Excited electrons are of in-
terest here because they have a direct coupling to electrons
(which could be the definition of excited electrons). Elec-
tromagnetic gauge in variance requires the lowest-
dimensional interaction of the excited electron e' with the
electron to be a magnetic-transition type. If we require
the parity invariance the interaction has the form

(EW"e+eW"E)F„„,
2A

(4.21)

term is proportional to P &~""+P„~&"tand is not in-
variant under the transformation in (4.20). The photon
propagator violates the symmetry. Therefore the symme-
try is effective for on-shell photons only. This is in ac-
cord with the fact that the concept of helicity does not
make sense for off-shell photons and the Coulomb in-
teraction enters into the game. For instance, the symme-
try is violated in the process ?'y~44 via (r an-d u-
channel} photon exchange. We obtain a nonzero result,
although the symmetry would forbid the reaction. Also it
is impossible to define a corresponding transformation
law for the vector potential A„and "minimal" gauge in-
teractions do not respect the symmetry.

Similar couplings of the scalar to other gauge bosons
( W+ 8',ZZ, Zy) are also expected [particularly because
of the SU(2)U(1) invariance]. The effect of scalar bo-
sons to the reactions e+e ~8'+8', ZZ with unpolar-
ized beams was studied by Tanimoto. Since the weak
bosons are massive, the extension of a chiral symmetry
such as (4.20) is not possible. The violation of the null
theorem is expected for these processes.

At higher energies, pair production of the scalars be-
comes possible (via t-channel electron exchange). There is
an essential difference between the single scalar formation
and the pair production. In the lowest order we have

T++ ——T =0 [compare with (4.2) and (4.7)]. The po-
larization effects vanish even if the chiral symmetry does
not exist. (However, if there are three-scalar interactions,
the above conclusion does not follow because the reaction
proceeds with s-channel scalar exchange. ) In general we
have maximal effects for an odd number of scalars, and
no effects for an even number. The scalar pair production
and the scalar-Z associated production (the latter via s-
channel vector exchange) for polarized beams were stud-
ied by Narison and %allet. ' They obtained only asyrn-
metries (terms proportional to cos2$) because of the above
reason.

FIG. 3. The diagram for the scalar-exchange contribution to
e+e ~yy.

where E denotes the excited electron field. This interac-
tion violates the chiral symmetry if the e* mass is finite.
[If it were negligible, it would be possible to assign the op-
posite chirality for eg~L ~

as ex ~L, ~. However, we know that
the excited electron, if it exists, is substantially heavy.
At s g&m, the symmetry becomes nearly exact, but we

also expect that higher-dimensional interactions than
(4.21} bimomes important. ] It is expected that the null
theorem is violated in reactions where e' is involved.

On the other hand, it has been argued ' that the suc-
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cess of the QED prediction for the electron and muon

anomalous magnetic moments puts a stringent hmit on
the coupling unless the excited lepton interaction is maxi-
mally parity violating. The interaction

[EW-(I y, }.+e~"(1+y,}E]F„„
2 2A

(4.22)

2 2

T++—,(1—cos8)sin8,
A t —M

2 $2
T—

++ ——,(1+cos8)sin8 .+ W' u —M"
(4.24)

The cross sections for longitudinally polarized beams ob-
tained from (4.24) and (E3) are consistent with the results
of Ref. 77. The latter has no chirality-flip amplitude
( T++ T=0) and——the null theorem holds as expected.
There exist chirality-flip amplitudes for the parity-
conserving case of (4.23). However, according to the fact
that T++++ =T:=0, there is no polarization effect for
the 4-averaged cross section.

Again, this is understood in terms of symmetry. The
interaction in (4.21) can be rewritten as

(EO es&~~+EO el W~~)+H. c .
2 2A

(4.25}

[W„„has been defined by (4.19)],which is invariant under

e {h)~~y{g,}

+ Ct'0SS8d

FIG. 4. Diagrams for the excited-electron contribution to
e+e ~yy. Helicities of the particles are indicated in
parentheses.

respects a chiral symmetry because the excited electron in-
teracts only with eL and ex+. For the rest of the section
we discuss a few examples of the e' effect.

Our first example is again the reaction e+e ~yy,
where the exchange of virtual e* contributes. The
standard-model prediction for this process is displayed in
Appendix E. The interaction of (4.16} or (4.17) gives an
extra contribution by t- and u-channel e' exchange.

The relevant diagrams are shown in Fig. 4. Nonzero
A, )A,2helicity amplitudes T&~

' at / =0 are the following. s2 For
the parity-conserving coupling of (4.21),

8 $
T+ = —T + = (1+cos8)stn8,

2A u —M'
2 2

T++ —— T++ =— (1—cos8)sin8, (4.23)
2A~t —M2

T++ e~s'~2M' 1 —cos8 1+cos8
++ P2 M4g M42

where M' is the excited electron mass. For the chiral
coupling in (4.22),

the transformation

81 ~8 81, 8g ~8 8g, P p~~8 (4.26)

This chir al symmetry prevents the appearance of
transverse-polarization effects. In fact, this symmetry can
be defined for general tensor interaction

[EW"(c dy—5)eF„„+H. c.]

[(c d}E—W"ex'&„+(c +d)Eol'"eL W„„+H.c.].
(4.27)

It is to be repeated that the symmetry in (4.26) is valid
only for on-shell photons. Note that the transformation
in (4.26} for W&„ is different from (4.20). If there are both
interactions (4.16} (with p, =p') and (4.21), we have non-
vanishing polarization effects.

In the large-M' limit, the leading term of the chiral
amplitudes [Eq. (4.24)] and the chirality-nonflip ampli-
tudes in the parity-conserving case [Eq. (4.23)] is propor-
tional to M' 2. On the other hand, the chirality-flip am-
plitudes in (4.23) have a M' ' dependence because they
are proportional to the mass term of the e' propagator.
In the cross section, however, the dominant term comes
from the interference of the chirality-nonflip amplitudes
and the standard-model contribution. The unpolarized
cross section for the parity-conserving interaction is

X ~~
——4e + ~ (1+cos 8)

1+cos 8 s'
I —cos~8 2A M'

$3

+2AM (4.28)

The last term is absent for the chiral interaction. This
term is unfortunately suppressed by a factor s/A com-
pared to the leading term Thus .the type of the interac-
tion cannot be distinguished from the unpolarized cross
section. Transverse polarization does not improve the sit-
uation because we have

$2
X~~—X ~~ ———4e cos2tt} 1+ 2

sin28
2A M

(4.29)

for both cases. Of course, longitudinal polarization can be
used to separate each helicity component and to determine
the tensor and pseudotensor coupling separately (see Ap-
pendix 8}.

Excited electrons can also have couplings with 8' and
Z bosons of the same type as (4.21) or (4.22). The effects
of these couplings to the processes e+e ~W+ W,ZZ
for the chiral couplings for unpolarized beams were con-
sidered by Tanimoto. If the coupling is not chiral, non-
vanishing transverse-polarization effects should be ob-
served since an extended symmetry such as (4.26) is bro-
ken by the gauge-boson mass.

Now we turn to the real production of e'. An experi-
mentally favored process is the single excitation e+e
~e'e (Fig. 5). In this reaction it is easy to see that the
chirality of the nonexcited electron is conserved and no
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FIG. 5. The diagram for single production of the excited
electron.

interesting effect arises from transverse polarization.
Pair production of e' receives contribution from two

sources (Fig. 6). One is the QED production via s-
channel y exchange, whose amplitudes are the same as
e+e ~p+p discussed in Appendix C (up to possible
form-factor and anomalous moment s effects). The other
contribution is the double excitation via t-channel y ex-
change. The latter amplitudes contain various helicity
components and transverse-polarization effects remain
after azimuthal integration. The results are not repro-
duced here since the expressions are quite complicated.

Other particles such as excited quarks and leptons (ex-

cept e') do not directly couple to the electron (as far as
there is no flavor-changing interactions). Their interac-
tions do not affect the proof of the null theorem in Sec.
III.

Leptoquarks, bosons with nonzero lepton and baryon
numbers, are expected in composite models and tech-
nicolor models, " as well as in some extended gauge
models. ss Electrons can become quarks by emitting a lep-
toquark boson. In the reaction e+e ~qq, which occurs
through s-channel y and Z exchange, leptoquarks give an
additional contribution through u-channel exchange. If
the interactions of leptoquark mass eigenstates are not
chiral, the breakdown of the null theorem occurs in the
following cases: (i) e+e ~tt by scalar leptoquark ex-
change; (ii) e+e -+qq by scalar and vector leptoquark ex-
change. Other reactions such as single leptoquark pro-
duction (via photon-leptoquark fusion) and leptoquark
pair production are examples where the chiral-symmetry-
breaking effect is not seen in the lowest order.

A color-octet "electron, " which can exist if leptons
are made of colored constituents, has a magnetic-
transition-type interaction with the electron by the emis-
sion of a gluon. This interaction can contribute to the to-

FIG. 6. Diagrams for the excited-electron pair production.

tal multihadron cross section through the reaction
e+e ~gg (via t-channel exchange). At higher energies,

pair production of the octet electron by gluon exchange
becomes possible. The effect of transverse polarization to
these processes is exactly the same as the case of the excit-
ed electron. (Single production is forbidden in this order.
It proceeds through the electron dissociation into an octet
electron and a gluon with photon exchange, for example.
No polarization effect is expected. )

Even if no new particles exist at reachable energies,
there is a possibility that some contact interactions of the
four-fermion type may be induced by preon dynamics.
They modify the Bhabha and fermion-pair-production
cross section at high energies. Experiments show that
the mass scale of this new interaction must be larger than
several TeV assuming the coupling constant is of the or-
der of unity. If those interactions are mediated by new

gauge bosons as is originally supposed, there is no
transverse-polarization effect because gauge couplings
respect chiral symmetry. If, however, there also exist in-

teraction induced by scalar exchange, the null theorem
breaks down in general.

In this section we saw that there are several examples in

composite models where the null theorem does not hold.
The origin of the violation is the scalar or tensor coupling
of the electron. In the special case of chiral coupling,
however, the chiral symmetry can be extended to the new

sector such that the transverse-polarization effect does not
appear. In fact, this chiral symmetry is required90 if we

demand the predictions of the standard model as the low-

energy effective theory should not be disturbed by the new

interactions. In this case the only remaining effect of
transverse polarization is via the t-quark mass, for in-

stance, in the reaction e+e ~tt by scalar exchange.

V. BEYOND THE STANDARD MODEL:
SUPERSYMMETRY

Phenomenology of supersymmetric extensions ' of the
standard model has been extensively studied in the litera-
ture. Electron-positron collisions ' ' is a good place to
look for new particles predicted by supersymmetry. In
this section we discuss the effect of transverse polarization
on reactions expected by supersymmetric models.

A. Chiral symmetry in supersymmetric models

In the standard model, the only interactions of the elec-
tron (for m, ~0) are the gauge interactions with the pho-
ton, 8', and Z. In supersymmetric theories, we have oth-
er interactions of the electron which are obtained from the
gauge interactions by supersymmetry transformation,
namely, the interactions with gauginos (photino y and W
and Z gauginos 8 and z3 and the scalar partner of the
electron (scalar electron e) or the neutrino (scalar neutrino
v) (Ref. 122). These are shown in Fig. 7.

These new interactions respect the electronic chiral
symmetry if the supersymmetry is not broken because we
can extend the global chiral symmetry so that it com-
mutes with supersymmetry. This symmetry is just the
phase rotation of the electron superfields.
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The mass term is invariant under the transformation in-
duced by (5.2)

ia-e&~e e eL~e '
eL (5.4)

7, z

FIG. 7. Gauge interactions of the electron (above) and their
supersymmetric counterpart (below).

Supersymmetry must be broken if it is to be realized in
nature as the known particles do not form supermulti-
plets. Whether the above chiral symmetry continues to
hold after supersymmetry breaking depends on the mech-
anism of the supersymmetry breakdown. The structure of
the scalar-electron mass matrix is crucial for the chiral
symmetry. Thus transverse polarization gives a tool to
analyze the mechanism of supersymmetry breaking.

Let us examine each of the new couplings. The cou-
pling with ur always respects the chiral symmetry because
the 8 couples to left-handed electrons only.

There are two ways to assign the chiral charge to the
other two couphngs. If the gauginos are light, we can
make the following assignment to these fermions:

+ 1 for yL, ,zL

—1 for y„,zg . (5.1)

+1 for e„,eI+,
—1 for eI,ef . (5.2)

Supersymmetry-breaking effects do not necessarily
respect the symmetry. The general mass matrix of the
scalar-electron sector is (assuming CP invariance)

Since the gaugino couplings are of Yukawa type, the
above chiral charges are opposite to those for electrons.
The gaugino mass terms break the symmetry. Although
the photino may be light, it is unlikely that the z mass is
rather small. Thus this assignment of the chiral charge is
not very useful except at very high energies where the
gaugino masses are negligible.

Another possible assignment is to rotate not the fer-
mions (gauginos) but the scalars (scalar electrons). This is
the natural assignment in the supersymmetric limit. In
this limit the two scalar-electron states ez and eI are dis-
tinct particles with no transition between them for
m, ~O. (Our notation is such that e a is associated with
ea and ez+, and soon. ) The conserved chiral charges are

only when p=0.
In the parity-conserving case

~
ma

~ =J mI, (, the two
mass eigenstates are equal mixtures of e~ and eI, , one
with scalar, the other with pseudoscalar coupling to the
electron. (We will call these states ez and ez in the fol-
lowing. ) The violation of the chiral symmetry is in a
sense maximal and we expect to see the effect of trans-
verse polarization, which will be discussed in the follow-
ing subsections.

On the other hand, if
~

ma —mLJ &&p, the mass
eigenstates are approximately e~ and eI and the chiral-
symmetry breaking is small. In minimal models with
minimal particle content and soft-supersymmetry-
breaking terms induced by N =1 supergravity, p /mII z,

is proportional to m, . The mixing angle is thus very
small. This pattern is usually assumed in phenomenologi-
cal studies so far.

Incidentally, the anomalous magnetic moment of the
muon gives a constraint' on the superpartner spectrum.
The constraint is stricter for the nonchiral mass matrix of
scalar muons. However, it depends on the gaugino masses
and the mass splitting of two scalar-muon states as well as
the mixing angle. The electron g —2 gives much weaker
bounds.

S. Scalar-electron pair production

Scalar electrons, ' as charged particles, can be pro-
duced via the coupling with photons. While other scalar
leptons and scalar quarks can also be produced in this
way, there is another mechanism for scalar-electron pro-
duction: I-channel gaugino exchange (see Fig. 8). Actual-
ly there are four diagrams, with y, Z, y,z exchange.

Various aspects of this reaction have been stud-
ied 92, 103, 107, 113,115,116,118,119 IQ particular transverse-
polarization effects were considered by Chiappetta, Soffer,
Taxil, and Renard and Sorba. " However, all studies as-
sume the scalar-electron mass eigenstates are eq and eL.
Although SchiHer and %ihner" treat the general mixing
case in polarized e+e annihilation, they limit them-
selves to the production of other scalar leptons and scalar
quarks only.

In this section we study the reaction e+e ~e+e
for the chiral and parity-conserving cases. As our interest
lies on the transverse-polarization effect, we make some
simplification. Diagrams with Z and z exchange are
neglected because their structure is rather similar to the
diagrams with y and y exchange. %e compare two eases
e+e ~e jf eII and e+e —+es+es. Although our re-
sults are thus only applicable to the case

2m~,

—a�(s)

eL

Pgg P

P PBI

(5.3)

FIG. 8. Diagrams for scalar-electron pair production.
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+j 5 r-. .
2

(5.5)

For the parity-conserving case,

W=e(ey ez+ jees —ey&yep+yy5ee i ) .

The helicity amplitudes for e+e «ez+e„are [for
/=0 (Ref. 125)]

S
T~+" ———e Pii 1+—, sin8,

Tx"+ ——e Pii sin8,

T» —T~~ —0,
(5 7)

where pa —1 —4m, /s, t'=t —m- . The cross section

1s
T

&'PR' . , S
sin 8 1+ 1+—,

16s t'

2

+2Pi 1+—, cos2$ . (5.8)t'

The polarization-dependent term vanishes after P integra-
tion as expected.

The amplitudes for e+e «e s+ eq are

T+ = T+ = —e'P, 1+——', sine,t'
(5.9)

S P72-

T++ ——T = —e t'

with Ps ——1 —4m,— /s. Note the existence of the

chirality-flip terms. The cross section is

2 '2
do &~s i. z s

Ps sin 8 1+, (1+P cos2$)
dQ Ss 2t

&i/s &2in- and vs «Mz, m,—, the qualitative

behavior is expected to be generally applicable. The am-

plitudes for other final-state combinations are presented in

Appendix F.
We assume the following interactions (those are

prescribed by supersymmetry up to the phase convention}.
For the chiral case,

—1+ys, 1 —y~ = 1 —y5~=vie y eex+e ye~ —y eeL
2 2 2

de' ~&s, . , Zs s'2 2

Ps sin 8 2+ —,+ +2t'2

C. Photino pair prodgciion

The next process we examine is e+e «y y (Refs. 98
and 95). Although this reaction is experimentally relevant
for the case of massive decaying photino' only, it can
serve as a simple illustration of the scalar-electron mass-
mixing effect.

The reaction occurs through t-channel e exchange (see
Fig. 9). In this subsection we give the results for the lim-
iting cases: (i) s «m, «m,— (chiral case) and (ii)

s «m- «m (parity-conserving case). More com-
es e&

piete treatment is done in Appendix G.
The helicity amplitudes for case (i) are

T++——e~, (1+cos8),

(5.11)

T+ ———e (1—cos8} .sP
2Pk-

Here P =1—4m- /s. Other amplitudes vanish. The
y

null theorem holds obviously. Since only one initial-state
contributes, there is no cos2$ term either. The cross sec-
tion is

(1+cos 8) .
do asP

Sm, ' (5.12)

The threshold rise is rather slow.
For case (ii) we have

(5.10')

The last term of (5.10') has an S-wave threshold behavior
and is isotropic. This rapid raise at the threshold is
another signal of the eg-eL, mixing.

Gluck and Reya' found similar behavior in the reac-
tion e e ~e~eL, as also may be seen in Appendix F.
However, as noted by Kobayashi and Kuroda, ' that
rapid rise is obscured by the lower-threshold reaction
e+e «e g e q (or e z+ e I ), and, hence, rather difficult to
observe (if m,—~m,—). On the contrary, in our case the

rise is at the lowest threshold (the same is true for e ~ ep
if m,— & m,- ) and the S-wave behavior is significant.

ST7T-
2

(1 P)—(5.10)

The last term survives after P integration and directly in-
dicates the violation of the chiral symmetry.

The two cross sections have a different behavior even in
the absence of the transverse polarization:

da " &'Pz, . , Zs s'
Pxsin8 2+ —,+

dQ 16s FIG. 9. Diagrams for photino pair production.
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T++ —T ++e—2 (1+cos8),
2p7l-

T++ =T++ ——e (1 —cosg),sp
2

(5.13)

T++ =™:: , s(1—P)= —8 22p72-

z s(1+P)
T++ =T++ =e

2ptl-

da a2sP

16m~
+pzcoszer'

-z z+P2 +p sin Hcos2$
.
y' (5.14)

with y =v s l2m-„. This is different from (5.12) in

several aspects. The null theorem is violated here since
the parity-conserving Lagrangian does not possess the
chiral symmetry. Note, however, the violating term van-

ishes for s »m„. This is due to the other possible chiral

symmetry for massless photinos discussed in Sec. VA.
Also, the threshold rise is more rapid than (5.12). At
threshold we have the maximal polarization effect

Q s
~
(1+P') (5.15)

16m,—

VI. CONCLUSION

Transverse po1arization has a unique position in high-
energy e+e interactions, which is quite different from
longitudinal polarization. Longitudinal beam polarization
selects some of the initial helicity states. It enables us to
measure the magnitudes of each helicity amphtude and is
a powerful tool to study the weak interactions. On the
contrary, transverse polarization prepares a state which is
a linear combination of some helicity states. Its effect is
thus quantum mechanical in a sense and it gives us an op-

Similar results are expected for other gaugino pair-
production processes: e+e ~zy (Refs. 106, 104, and
127) or z z (Ref. 105). The chiral nature of the 8 coupling
precludes any violation of the null theorem for
e+e ~m+8 (Refs. 102, 105, 114, and 128). Chiap-
petta et al 'studied t.he polarization effects for these re-
actions. Their results obey the null theorem for they em-

ploy the chiral scalar-electron mass matrix.
Another important reaction of this type is the radiative

photino pair production e+e ~yy y. It is a favorable
process to look for photinos and scalar electrons and has
been discussed by several groups. ' ' ""' Experi-
mental limits have also been obtained. ' Since the emis-
sion of a photon does not change the chiral structure, our
qualitative results for e+e ~yy is also applicable to
this process,

portunity to decide the relative phases of the helicity am-
plitudes.

Among the "elementary" particles we know, the elec-
tron is the lightest massive particle. Its mass is less than
10 times the 8'-boson mass which essentially sets the
scale of the masses of quarks and leptons. The near mass-
lessness of the electron is related to the nearly exact chiral
symmetry of the standard model. Any theory which su-

percedes the standard model should guarantee the small-
ness of the electron mass. The problem is more important
in those theories since they usually involve larger mass
scale(s) than the weak scale. One possible protection
mechanism is chiral symmetry. '

Chiral symmetry has an important consequence for the
transverse-polarization effect in electron-positron col-
lisions. Azimuthally integrated cross sections do not de-

pend on the polarization if the theory has chiral symme-
try which acts on the electron. In the standard model, the
degree of the violation of this null theorem is proportional
to the electron mass and negligible at experimentally
relevant energies.

Although chiral symmetry is respected by all the gauge
interactions, it is not obvious whether the other interac-
tions, if they exist at all, obey the symmetry. The stan-
dard model has a Yukawa interaction which breaks the
symmetry, but the effect is extremely small. New parti-
cles and/or interactions predicted in extensions of the
standard model can break the symmetry, as we saw in pre-
vious sections for composite models and supersymmetric
models. Thus the transverse polarization supplies a useful
tool to probe the chiral structure of new interactions.

The null theorem is exact in the standard model for
m, ~0. Whether the theorem holds for an extended
model depends on whether it is possible to define chiral
symmetry for the model. If chiral symmetry can be ex-
tended to the whole Lagrangian of the model, the null
theorem applies to that model in all orders of perturbation
theory. However, even if the symmetry does not exist, the
lowest-order amplitudes sometimes obey the theorem due
to some accidental reason. In these cases, we expect that
the theorem is violated by higher-order corrections.
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APPENDIX A: THE CROSS SECTION

du= Xd@„,1

2$
(A1)

Our discussion in the text is made in terms of the re-

duced cross section X for convenience. In this appendix
the relation between X and the true cross section is given.

For a reaction e+e ~f with f any n-body final state
the cross section is
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where s is the center-of-mass energy squared, P, the elec-

tron velocity P, =(1—4m, /s)', which can practically
be set to unity, and d@„ is the phase-space factor

tt 8 d p.
d@„=(2n.) "5 p +p —g p;

i=1 i=1
(A2)

Here p and p are the initial electron and positron momen-

tum, respectively, and p; is the momentum of the ith final

particle.
I give some explicit expressions of d4„ for small n

For n =1

X(1—r, +r, )(1—r, —r, )]'~', (A7)

where r i 2 ——m i 2/v s and m &,mi are the masses of final
particles. In the case m i ——m2, P is equal to the velocity
of each particle. The cross section is given by

do P
d cos8dg

(AS)

where P=2p/vs, with p the momentum of each final
particle:

P=[(1+r,+ri)(1+r& —ri)

d~, =2~a(s M—2),

where M is the final-particle mass, so that

(A3) APPENDIX B: CROSS SECTION
FOR ARBITRARY POLARIZATION

o=—X5(s —M ) .
S

The finite-width correction due to the decay of the reso-
nance can be written

In Sec. II we gave the cross-section formula for trans-
versely polarized beams. In this appendix the expression
for arbitrary polarized beams is presented.

The state vector of the electron polarized in the direc-
tion (8,X) can be written

d@i —— (A5)
(s —M )+M I

for s-M . Here I is the total decay width of the parti-
cle.

For n =2 behave

I 8,X) =cos—
I
h =+ )+sin —e'

I
h = —) .

8 . 8
2 2

Similarly for the positron we have

I
8 X) =sin —e'

I
h =+ )+cos—

I
h = —) .

2 2

(2.1)

(81)

d@2—— d0,
32

(A6) The (reduced) cross section is obtained from (2.1) and
(81}:

~=
I &f I

T I8,x;8,X) I'
= —,[(1+cos8)(l+cos8)

I T+ I
+(1+cos8)(1—cos8}

I T++ I

i

+(1—cos8)(1+cos8)
I
T

I
+(1—cos8)(1 —cos8)

I
T + I

+2(1+cos8)sin8Ree'»T+ T+++2(1—cos8)sin8Ree' T' T +

+2sin8(1+cos8)Ree'»T+ T +2sin8(1 cos8)Ree'»T++—T +

+2sin&sin8Ree'»+ 'T+ T ++2sin8sin8Ree"» 'T++T ] . (82)

This can be rewritten in terms of the polarization vectors P =(sin8 cosX, sin8sinX, cos8) and
P = (sin8 cosX, sin8 sinX, cos8}:

&=—'[( I T+ I'+
I T++ I

'+-I T--
I

'+
I
T +I '}+P.(

I T+-I'+ I T++ I

'—-I T--
I

' —
I
T +I'}-

+P.(
I T+ I' —

I T++ I

'+-I T-- I' —
I
T +I'}+P.P.(

I T-+ I' —
I T++ I

' —
I
T-- I'+

I
T +I'}-

+2P„Re(T T +T~+T +)—2PyIm(T~ T +T+~T +)+2P„Re(T+ T+++T' +)

-2P Im(T+ T+++T' T +)+».P.«(T+ T ++T'++T ) ».P,Im(T'+ T—+ T'++T -)-—--
—2P~p~lm( T T + +T++T ) —2PyPyRe( T+ T + —T++T )+2P,P„Re(T+ T++ —T T ~ )

2PgP Im(T+ T+~ ——T' T +)+2P P «(T+ T —T4-+T—+) 2—P—yP ™T+T T++ —+ —]——
(83)

Equation (83) is actually valid for partially polarized
be uns although it is derived for the complete polarization
case. This is due to the fact that the cross section is a
linear function of the polarization vector P (and P).

For annihilation processes (or processes with T++
= T =0) expression (83) is considerably simplified:

&=-, [(1+P,P. )( I T, I'+
I
T I')

+(P+P )(IT '' —
I
T I')

+2(P P PyPy )ReT+ T—
2(P„Py+PyP„)ImT+ T—+ ] .
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It is easy to extract the P dependence of the cross sec-
tion from (83}or (84) using the fact that T&& is propor-

tional to e'" '&. (Note that h, h =+—,'.)

(h)

APPENDIX C: e+e ~p+p

The null theorem is violated by the electron mass. The
lowest-order QED amplitudes and the cross section for
the reaction e+e ~p+p are presented here. Both elec-
tron and muon masses are kept finite. We can see the
nonvanishing effect of transverse polarization on the P-
averaged cross section for m, +0. The Z-exchange con-
tribution is also discussed. The absorptive part of the
propagator induces a sin2$ dependence which may be
used to measure the total width or the couplings of Z.

The diagram for the ]process is shown in Fig. 10. The
helicity amplitudes Tz~' [at /=0 (Ref. 131)] are given

by

T++——T ++———e (1+cosH),

T++ = T++ ———e (1—cosH),

4m a PP
1

10'= 1+
3s P, 2y„

1+ (1—P')
2V8

(C3)

If we take the limit m, ~0, the cross section does not de-

pend on P even if we keep the muon mass finite.
The inverse reaction p+p ~e+e at threshold is sen-

sitive to the muon polarization (we take m, ~0)

[2—PzsiniH( 1+cos2$)] . (C )10 4s ~

e+(h) p+, (h')

FIG. 10. The QED diagram for e+e ~p+p . Helicities of
the leptons are indicated in parentheses.

T+- ———T—++ ——e sin8,
Vp

2 1Tf+ ———T+++ = —e' sinH,
Xe

++ -- 1
T++ ——T++++ ———e' cos8,

Vp Ve

~here y„=v s /2m„and y, =v s /2m,
The cross section for finite polarization is

1+cos 8+ sin 8
aa' Q Py 2 1

0 4s Vp

+ (1 P)
2
—sin 8+ cosiH1 . 2 1

ye yp

—PiP„sin 8 cos2$

(Cl}

(C2)

At high energies, Z-exchange contribution to e+e
~p+p becomes important. For m, —+0, nonzero am-
plitudes are the following i2

T+ = —gz (u, —a, )(v& p„a„)H—(1+cosH),

T++=+gz (u-, —a, )u„9' sinH,
Vp

T+—= —gz (u, —a, )(v&+p„a„)H(1—cosH),

T++ ———gz (u, +a, )(v„p„a„)H(—1 —cosH),

T+-+ = —gz (v, +a, )u„9'sin8,
Vp

T:+= —gz (u, +a, )(u&+p&a&)H(1+cosH) .

Here

S
2s —Mz +iMzI z

where p&
——1 4m„ /s an—d p, =1—4m, /s. This result

is consistent with Godine and Hankey. z The total cross
section is

v =U& ———
4 +sin g~and gz ——e/sinHii cosHa,

1

Q~ =Q~ = —4.
The polarized cross section including both y and Z ex-

changes for the limit m„m& ~0 is

der a
dQ 4S

4a, ap s(s Mz ) —Su, a, u&a& S

sin Ha cos Ha (s —Mz ) +Mz I z sin Ha cos Ha (s —Mz ) +Mz I z

2U~ U~ s(s —Mz ) (u, i a, 2)(v„a—„)——I' 1+
sin Hq cos Hii (s —Mz ) +Mz Iz2 2 2 2 4 4sin H~cos 8~

2

sin 8 cos2$
(s —Mz ) +Mz I z

2Q~ Up sMz Ez+I' sin 8 sin2$
sin'8 «s'8 (s —M, ')'+M, 'r, '

2' V~ s(s —Mz ) (u, +a, )(u„+a„) S1+ 2 2 2 2 4 4 (1+cos~H)
sin H~cos Ha (s —Mz ) +Mz I z sin Hiircos 8~ (s —Mz ) +Mz I z

This is a standard formula, but an interesting point lies in the last term proportional to sin2$, which comes from the ab-
sorptive part of the propagator. It provides a new method to measure the Z total width by the use of transverse polariza-
tion. At the top of the resonance, the angular distribution becomes
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do' 2 2'2 2rZ 2~ 1+cos 8+O. 1 1 cos8 0—94.P sin 8cos2$+0.64P sin 8sin2$,0 Mz

where we take sin 8~——0.22.

APPENDIX D: BHABHA SCAl BARRING

The amplitude for the reaction e+e ~e+e has both annihilation and scattering contribution. The lowest-order
QED graphs are shown in Fig. 11. The helicity amplitudes calculated from these diagrams with the electron mass kept
finite are (at /=0; notations are the same as in Appendix C)

p2 1 —cos8

T +=T+ =e2+ — —+
1 —(1—cos8)

y2p2

++ ++Tg+ = —T++ = —T+ ——T +=e-
P2(1 —cos8)

—1 sin8, (Dl)

T++ =T =e'-—+ (1-cos8)++ —— 2 1 8 2 2 2P —cos y P y

T++ ——T =e — + (1—cos8)++ 2 1+~'
r' ' y'

where y=v s l2m, and p =1—4m, /s. These amplitudes are consistent with the results of Stehle. ' lt can be seen
that the chiral symmetry becomes exact at high energies. The amplitudes with initial and final states having different
chiral charges are suppressed by y

' for y~ ao [the third and last equations in (Dl)].
—I~, I

At high energies (Dl) becomes
r

T++=T ~+ =e2 —1 (1+cos8),
1 —cos8

T++ =T++ ———e2(1 —cos8),

++
2

T++ ——
) g

The cross section for finite polarization (for m, +0) is

do a 4(1+P2)
dQ 4s p

+P 2 2
—3+ —+pcos82 1 2(2+P') 1

y2 P2 1 —cos8

h

1 2 1 1
2+ 2

—8+ 4 +4 2+ +(1+p cos8)2

(1—cos8) P2 y4 1 —cos y'

(D2)

+P —
2 2 1

+ 2+ —+pcos8
y2P2 1 —cos8 y2

cos2$ (D3)

+P (1+cos8) cos2$
der a (3+cos 8)
d0 4s ( 1 —cos8)

(D4)

The result for P =0 agrees with Bhabha. '34

At high energies s ~&m, , we have a very simple ex-
pression:

This fact makes the process favorable for probing new ef-
fects. They have been discussed in Secs. IV and V. In
this appendix the orthodox QED results are shown for
convenience. The effect of the electron mass is also stud-

APPENDIX E: e+e ~yy
IN THE STANDARD MODEL

The lowest-order amplitude for the process e+e ~yy
comes solely from the QED diagrams shown in Fig. 12. FIG. 11. @EDdiagrams for the Bhabha scattering.
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+crossed

2

(1+P')+O(P) .
sp

In the forward direction

dQ e 0 sp [ 2( 1 +p2) +P2]

(E6)

(E7)

FIG. 12. The standard-model diagrams for e+e ~yy.

1

The helicity amplitudes T~ ' [at /=0 (Ref. 82)] with

m, +0 are

2

Ta%
A, )k~ —+ A. )A,2

2 &aa
1—P cos28

Here there is no contribution for chirality-conserving am-
pljtudes 2+ and T +. However, the polarization ef-
fect js negljgjbie at high energies. Despite the caution
noted by Bajer and Khoze, the total cross section does
not depend on the polarization up to O(m, /s) although
the contribution of chirality-nonconserving amplitudes is
suppressed only by a factor of lny:

g„,= (3—P )—ln —2(2—P )
fata 1 1+P
sP, P 1 —P

t++=—t ++——P(1+cose)sine,
—t++ =P(1 —cose)sin8,

~ j~~ Q
++ +++- -+

=t+++ =&sin28,
y

(E2)

3 —2P 3+2P
1

1+P
y2P2 2y4P3 1 P

APPENDIX F: SCALAR-ELECTRON
PAIR PRODUCTION

(ES)

,++,-- 1+P
++ —--——

7
1 —P 1= f'

y y (1+P)
The definition of p and y is the same as in Appendix D.
Note that Ii (h )=+ refers to + —,', whereas A,;=+ means
+1.

At high energies, we have much simpler expressions

In this appendix we list all amplitudes for various com-
binations of the reactions e+e -+e + e

1. Chiral case

The mass eigenstates are e~ and eq. The interaction
with the electron is given by (5.5).

For e e ~eL eL [all helicity amplitudes in this ap-
pendix are for P =0 (Ref. 125)]

T.==-T:.=-2"" "
+— —+ sin8

2 1—cose
(E3)

T+ = —e PL sine,LL 2

T +=e PL, 1+—, sine, (F1)

and other amplitudes vanish.
The cross section is

2
1 —peas 8+ 2

sin 8dtr a2 1 4 2P2 . 2

(1— ~s28)2 y'

P2 P2sin ecos2$—

2

sin 8—y'.

T", =T" =O,

da ~ a'PL' . , s
sin 8 1+ 1+—,t'

'2

+2P 1+—, cos24 . (F2)

For e+e ~e q+ e I (there is no photon-exchange con-
tribution since the electromagnetic coupling is diagonal;
this is no longer true for z exchange, however),

This is consistent with Page. '

We study several limiting cases. At high energies, we
have

da a 1+cos 8 —P cos2q
dQ s sin28

At threshold, the polarization effect is maximal

TLR TLE. TRI. o++ — + —— —+

a pL&m-„

d Q 4t'2

w~ere

Pta2 [1 (m, +m,— ) Is]———[1——(m,——m,— ) ls] .

(F3)

(F4)

(F5)
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FOI e 8 ~PL &g

T++ =2eRL
sm-

y
t'

Tgg. TRL T RL
O

d~RL d+tt
dQ dQ

(F7)

The results for e+e -+e f e L, are given in Sec. VB.
Note that the chiral charge [assigned as (3.3) and (5.2}] is
conserved in each reaction. Thus the null theorem holds
for this case.

The two cases give the same results as they should because
if the two masses are the same, the choice of the bases is
arbitrary.

APPENDIX 6: PHOTINO PAIR PRODUCTION

Here we give the results for the reaction e+e ~yy
without the approximation s «m,—. The relevant dia-

gram is shown in Fig. 9. Notations are the same as in
Sec. VC.

1. Chiral case, m «m

The helicity amplitudes for P =0 are

2. Parity cons-erving case

Mass eigenstates are eq and et. The relevant interac-
tion Lagrangian is given by (5.6). Results for e+e
~e f es are given by (5.9) and (5.10}.

For e+e ~e t}'e t

1 1
$ ~ ~

t' u'
y .

sin8,

r+-=-' 2s '-P- '+P (1+cos8),+ ? ts t

(Gl)

T+ ———T + ———e2pt 1+, sin8,PP PP
2t'

T +=-e s 1+P
+— 2 t'

w~ere

1 —P (1—cos8),
u

TPP TPP ~2++

do ~ dtr's
dQ dQ

t'=t —m- ~= ——(1+5tt Pco—s8),

o'=n —Mr ————(1+5@+Pcos8),
(62)

For e+e ~e f et

7'+ =T +
———e Pqt sin8,PS PS 2

I

T++PS PS 2

(F10)

where 5+ ——2(tn- rn 2)/—s T-he cr.oss section is
Fg

trzp3 (5a+sinz8) +5q2cos 8+y ~cost8sin28

dQ 2s [(1+5') —P cos 8]

do tr Psp, . , sS 2

Pst sin 8, (1 Pcos2$)—
Q Ss 2t'

(G3)

This is consistent with Ref. 98. There is no polarization
dependence.

sm-
+(1+P')

where pqq is defined by (F5) with I.,R -+S,P.
For e+e ~etI es

SP PST+y T+y

T++ — T++SP PS

do~ dM
dQ dQ

(Fl 1)

(F12)

(F13)

2. Parity-conserving case, m « m

The amplitudes are

T+ =T-+ =—e2s 1 —P 1+ (1+cos8),
u

T+ ——T + ———,e s, —,(1—cos8),-+ + ~ 2 1+p 1 p-
t' u'

++ ++T+— Tf+ T++

If the two scalar-electron states are degenerate, the sum
of the cross sections for e+e ~e + e becomes

T P

do a2P pz. q8 1
s s

dQ 4s tt

1 1 1= ——e s —— —sin8,t' u'
y

2$m-
+ t'

+P2 1+—, cos2$
S
t'

(F14}

++ i 2
— 1+cos8 1 —cos8

t
+

u
T

++ & 2
— 1 —cos8 1+cos8

t' u

where t'=t —m-, , etc. The cross section is
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da tzz p
dQ 4s

2 2

2P (5s+sin 8) +(1+5s—P cos 8) +P 5s cos 8+ cos 8sin 8
[(1+5s) —P cos 8] y'

+P
z -~ z +P sin 8cos2$

(1+5s) P—cos 8 y
z (G5)
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