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Black holes in two spacetime dimensions
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It is shown that the analog of the black hole exists in two-dimensional gravity. It is given by a
metric which solves the vacuum field equation (constant curvature) everywhere except on a singular

line. This geometry possesses an event horizon. There is as well an analog of Hawking radiation

with temperature proportional to the strength (mass) of the singularity.

The natural analog of the vacuum Einstein equations
with a cosmological constant in two spacetime dimensions
is given by the requirement of constant scalar curvature,

This has of course been evident for a long time, but only
recently has it been realized that one can derive (1) from a
local action principle. 'i This development has put two-
dimensional gravity on a firm footing as a dynamical field
theory.

The two-dimensional theory is extremely simple but
still rich in content and its formal structure is remarkably
similar to the one found in higher dimensions. One then
naturally asks whether there is an analog of the black hole
as well. It appears that this is indeed so as we show in
this paper.

The analysis will be first carried out for A=0 to grasp
more easily the central features and will then be extended
to A+0.

The most general stationary metric in two spacetime di-
mensions is also static and explicitly reads

ds =exp[2tr(x)]( dt +d—x ) . (2)

The field equation with a point source at the origin is

R (x)=4a exp( —a )5(x), (3)

where a is the strength of the source and has the dimen-
sions of an inverse length. The factor exp( cr) guaran-—
tees that the right-hand side of (3) is a spacetime scalar.

The general solution of (3) is given by

o(x)= —a ~x
~
exp{p)+p+yx,

where p and y are two integration constants. We will
first treat the particular case obtained by choosing these
constants in such a way that (i) t is the proper time along
the source world line (this yields p=O), and (ii) the gravi-
tational field is "spherically symmetric, " i.e., invariant
under the inversion x~—x (this yields y =0). Nonspher-
ically symmetric solutions are also of some interest and
will be briefly considered later.

If the absolute value of x were replaced by x itself in tr,

the metric (2) would be flat everywhere and could be
transformed to the standard Minkowskian form by means
of the coordinate transformation

a T=e sinh(at),

aX=e cosh{at)

(5a)

(Sb}

(a&0). The coordinates t,x which both run over the real
line, would then be Rindler-type coordinatesi associated
with an accelerated observer in hyperbolic motion (con-
stant acceleration a) in flat spacetime. They only cover
the quadrant of Minskowsi space bounded by the lightlike
line whose equations are X T=O, aX—&0. This line is
at aX=+ ao in the original coordinate system and is the
event horizon of the accelerated observer. (More precise-

ly, it is only "half" of the horizon but we will loosely refer
to it as the "horizon'* for simplicity. The entire straight
line aX=

~
a

~
T is in fact the future event horizon of the

observer, whereas the entire straight line aX= —
~

a
~

T is
the past event horizon. )

However, because o involves
~

x
~

instead of x, new in-
teresting features emerge and the solution (2} turns out to
possess nontrivial global properties very different from
those of flat, empty space. This happens only when a is
positive.

What happens in the case at hand is that the regions
x & 0 and x ~0 located on both side of the source's (time-
like) world line x =0 are still flat (in two dimensions, zero
scalar curvature implies vanishing Riemann tensor), but
must be patched together in an unorthodox fashion along
x =0. Accordingly, the gravitational field in two dimen-
sions does not show itself through local geodesic devia-

tions, but only through nontrivial global effects.
This can be understood by verifying that the 5-function

behavior of the curvature at x =0 means, in intrinsic
terxns, that the acceleration vector D„u of the source,
measured in a frame which varies continuously as one
goes from one side of the source world line to the other,
has a jump with a magnitude equal to 2a. Here, u is the
unit, future-pointing vector tangent to the world line and
D„u is its covariant derivative along itself. The jump in
the acceleration vector ("extrinsic curvature") is of course
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absent in standard Minkowski space and entirely accounts
for the new properties of the solutions.

To describe explicitly how the regions x ~0 and x ~0
are patched along x =0, it is convenient to perform the
coordinate transformation (5) for x ~ 0, and (5) with x re-
placed by —x for x &0. This coordinate transformation
has the following effects: (i) it maps the source world line
x =0 on the hyperbolic timelike line S defined by
a (X —T )=l, aX&0; and (ii) it maps both regions
x ~0 and x g0 on the same section of the Minkowski
plane bounded by that hyperbolic world line S. In that
section the coordinates X,T are l.orentzian.

One way of visualizing the resulting geometry is to cut
a fiat sheet of paper along a hyperbohc line and to keep
the part either to the left or to the right of the line [de-
pending on the sign of a (see below)]. The solution (2,4}
with p=y=0 is just represented by both faces of what
remains of the sheet of paper. One can go from one face
to the other continuously, by crossing the source world
line x =0.

The source looks exactly the same observed from both
faces, as either accelerating inwards or outwards with ac-
celeration

~

a ~, depending on the sign of a. This symme-
try is just an expression of reflection invariance x~ —x
and stands in sharp contrast with the Minkowski-space
situation, where an accelerated object is viewed differently
by an observer located to its right or to its left (the object
accelerates inwards from one side, outwards from the oth-
er}.

It is important to realize that the (timehke) line x =0
lies in the manifold, although the curvature is singular
there. Indeed, the curvature singularity is merely due to
our assumption of a point source, and disappears upon
smearing it, without changing the global structure of the
spacetime. An appropriate analog in four spacetime di-
mensions would be a thin shell of matter which is a physi-
cal object in spacetime, but on which the Einstein tensor
has a 5-function singularity.

The global features of the solution (2) are easily read off
from its description in terms of patches of Minkowski-
space sections. One finds the properties that follow.

When a is negative, the conformal factor
exp( —2a

~
x

~
) vamshes nowhere. This means that one

keeps (and duplicates) that side of the hyperbolic trajecto-
ry of the source which does not contain the lightlike hor-
izon X —T =0 (see Fig. 1}. The global causal structure
of this spacetime is not very interesting since it is just that
of Minkowski space. For this reason, the case of negative
strength a will be discarded from now on.

When a is positive, the conformal factor
exp( —2a

~
x

~
} vanishes at both x =+ oo. This indicates

that one now keeps (and duplicates) that part of Min-
kowski space which contains the source horizon (see Fig.
2). [The coordinate system (x, t) does not extend beyond
the horizon, but because the metric is regular there, it can
be analytically continued across the horizon to cover the
entire portion of Minkowski space to the left of the source
world line. ]

It is straightforward to see that the lightlike line
x =+ oo of Fig. 2 is an event horizon not only for the
source at x =0, but also for all inertial observers lying on

X=O

FIG. 1. The solution consists of the unshaded region and a
copy of itself. The point source is located at x =0 and is in hy-
perbolic motion. The original coordinate system (x, t) with
x y0 covers the section of Minkowski space to the left of the
source world line (unshaded region). The other half of the solu-
tion (x &0) is identical with this first half. Both halves are
glued together along the source trajectory.

the x ~0 side of the solution. Indeed, every signal these
observers would send to (or would receive from} the posi-
tive half x p 0, would have to cross first the source world
line x =0, for which one knows (and one easily checks on
Fig. 2) that the line x =+ ce acts as a horizon. Similarly,
the lightlike line x = —oo is an event horizon for both the

FIG. 2. The solution consists of the unshaded region and a
copy of itself. The point source is located at x =0. The original
coordinate system (x, t) with x &0 only covers the portion of
Minkowski space limited by the world line of the source and its
event horixon at x =+ 00. The metric is, however, regular at
x =+ 00 and can be analytically continued across this lightlike
line. The half of the solution to the left of the source is accord-
ingly the entire unshaded region of the figure. Because of the
symmetry x~—x, the other half of the solution (x ~0) is iden-
tical with the first half. It must be patched to the region x ~0
along the source world line.
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source and the inertial observers lying on the positive side
(x &0) of the solution. Given that there is a horizon, it
does not seem inappropriate to call our solution a black
hole, even though the source is naked since it stands in
front of the horizon.

The global structure of this black-hole spacetime can be
displayed by stretching the (X,T) coordinates in the vicin-
ity of the source so as to put both sides of the solution in
the same plane (see Fig. 3). This cannot be done, however,

by a conformal transformation since the lightlike lines
x =+ ao and x = —oo do not cross each other and,
hence, must be bent. This means that light rays are not
represented by straight lines at 45', and the interpretation
of the diagram is less direct than that of the standard
Kruskal coordinate diagram. By adding points at infinity
in the usual way, one can, however, get a Penrose diagram
with light rays at 45' to the vertical (see Fig. 4).

Incidentally we mention in passing another analogy
with the four-dimensional case, namely, the fact that the
strength a can be represented by a "surface integral" at
X =+oo,

2a exp(P) = —o'(+ 00 )+cr'( —oo )

and in that sense may be considered as the analog of the
Schwarzschild mass. Note that if

~

x
~

were replaced by
x in cr(x), the total "mass" defined by the right-hand side
of (6) would vanish, which would seem natural since the
solution reduces then to fiat empty space.

There is, however, a difference in this respect with the
Schwarzschild case; namely, there appear. i to be no com-
pelling argument to exclude either positive or negative a' s
[since the source of the gravitational field in two dimen-
sions is not the (0-0) component of the energy-momentum
tensor and has no definite sign].

FIG. 4. Penrose diagram for the a ~0 solution. The hor-
izons are the dashed lines.

Next, we observe that there is an analog of Hawking ra-
diation in the spacetime (2,4) with P=y=O and a &0.
This is verifieds by going to the Euclidean section of that
spacetime by means of the change t = ir, w—hich yields

dsz exp( ———2a ~x
~

)(dg+dx ) .

The metric (7) has a conical singularity at
~

x
~

= ao

unless one demands that r should be a periodic coordinate
with period

The need for a periodic behavior in the imaginary time is
most easily seen by making the change of variables

r=a 'exp( —ax) (x &0)

which brings the metric to the familiar polar form

Q&0
ds =dr+a rdr . (10)

PQ S t hOrIZO

of 8

future hor
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[The transformation (9) is appropriate for the x &0
section of the spacetime. This section is glued on the cir-
cle x =0 (r =a ') to a copy of itself corresponding to
x &0. In the x &0 region, one must replace (9) by
r =a 'exp(ax). )

It should be noticed that there is no conical singularity
to avoid when a &0 because the origin of the polar coor-
dinate system is not included in the Euclidean section in
that case.

From the period (8) one can read off the associated
temperature T as

z p
—i

2m
'

FIG. 3. Maximal analytic extension of the a g0 solution.
The lines x =+ ao and x =—ao are lighthke; x =+~ is an
event horizon for the inertial observer 8, whereas x = —0o is an
event horizon for the inertial observer A. More precisely, the
line x = —ao, t &0 together with its prolongation below the
t =0 axis is the future horizon of A (A can have no knowledge
of events occurring to the right of that line) whereas the line
x ~ —ce, t &0 together with its prolongation above the t =0
axis is A s past horizon (A cannot influence events occurring to
the right of that line). The original coordinate system (x, t) only
covers the shaded region,

Notice that contrary to the situation in the Schwarzschild
case, T decreases as the strength of the singularity de-
creases.

The relation (11) coincides with the formula obtained
by Unruh in his analysis of an accelerating detector with
proper acceleration a in empty fiat spacetime. This is not
surprising since the Minkowskian metric in Rindler-type
coordinates coincides with (2,4) for either x &0 or x &0
(but not for both). However, the key point in our analysis
is the presence of a source with given strength (having the
dimensions of an acceleration). This acceleration is an in-
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cr= —a( ~x
~
+x) a &0, (12}

one finds that the source x =0 follows a geodesic when
viewed from x &0, but is in hyperbolic motion with prop-
er acceleration 2a when viewed from the positive side
x & 0. As a result, the lightlike line x =+ ao, where the
conformal factor exp(2cr} vanishes, appears as an event
horizon for the inertial observers located at negative x.
We will not include here a detailed study of the metric
(12) and other possible solutions.

Last, we briefly comment on how our results extend to
the theory with a cosmological constant A. Again, the
elementary solution with a point source at the origin
[right-hand side of (1) replaced by 4a5(x)exp( —o)] is ob-
tained by patching sections of the de Sitter space (A &0)
or anti-de Sitter space (A&0) along curves of constant
proper acceleration a, in such a way that there is a jump
in the acceleration vector of the source world line as one
crosses it.

In the de Sitter case, one finds

trinsic characteristic of spacetime and not an arbitrary
number related to particular coordinates or choice of ob-
servers.

Furthermore, the presence of the source reflects itself in
the

~
x

~
in the exponent of (2), which implies in turn that

the global structure of the solution is not trivial since
there is now an event horizon for the "inertial, " i.e., unac-
celerated observers at infinity. (Note that the horizon of
the inertial observers is just inherited from the horizons of
the accelerated ones. ) Thus it appears to us that in the
present case the radiation with temperature (11) is an ana-

log of that found in the Schwarzschild spacetime. 5 Even
though the formula (11) has been derived in the static
coordinate system adapted to the source, inertial observers
also detect a radiation bath (whose precise temperature
and spectrum depend on the vacuum state just as for ac-
celerated observers and whose detailed properties will not
be discussed here).

Similar phenomena (occurrence of horizons) also
characterize the "nonspherically symmetric" solutions of
Eq. (3). For instance, with

with

sinhi[(
(
x

~

—xo)/p]
dr 2+dx

sinh (xo/p)
(15a)

a =p 'coth(xo/p) (15b)

when
~

a
~ &p '. The radius p is now given by —Ap =2

(see Fig. 5). The Hawking temperature turns out to be
equal to

T= (a —p )' for A&02' (16)

Fo, = —,
' e sgn(x)exp[20(x)] (18)

in two dimensions. Hence, the electromagnetic field ef-
fectively induces a cosmological constant equal to
( —e /8) in the Einstein equation (1). According to the

T= (a +p )' for A&0.
2m'

Equation (16) is valid only when a &p '. There is no
Hawking radiation when

~

a
~

&p ' because in that case
there is no event horizon since the accelerated observers
move along integral curves of everywhere timelike Killing
vector fields. Moreover, when a &0, the Euclidean sec-
tion of (15a) is everywhere regular as in the A=O case.
No restriction at all on a appears for the de Sitter case
(A &0). All absolute values of a are allowed because ac-
celerated observers have event horizons even in the limit-
ing case of vanishing acceleration, and both signs of a are
permitted because there is always a conical singularity to
avoid in the Euclidean section of (13a), even when a & 0.

It should be pointed out that the metric with negative A
also describes a charged black hole immersed in a A=O
background since the electromagnetic field Fi of a point
charge e reduces to

cosz[(
(
x

~

—xo)/p]
dt +dx

cos (xo/p)
(13a}

with

a =p 'tan(xo/p) . (13b)

Here, p is the radius of curvature related to A through
hp =2.

In the anti-de Sitter case, the metric reads explicitly

-, SOUI M,
r

with

cosh [( ix i

—xo}/p]
c& dt +dx

cosh (xo/p)
(14a)

a =p 'tanh(xo/p)

when the strength
~
a

~
of the source is smaller than p

and

FIG. 5. Penrose diagram for the a ~p ', A&0 solution.
The Penrose diagram for the de Sitter case (A ~ 0) is the same as
when a =0 and is not represented.
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above analysis, the two-dimensional charged black hole is
similar to its four-dimensional analog, since a horizon ex-
ists only when

~

e
~

&4a.
(Here, and before, we have set the "gravitational con-

stant" k appeasing in Ref. 1 equal to unity and we have
written the Maxwell Lagrangian as —,'E„+—"".Also, the
relative sign between the gravitational and Maxwell ac-
tions is taken here in such a way that the kinetic term of
the 4 field of Ref. 1, which describes gravity, and the ki-
netic term of the electromagnetic field are both positive.
However, because this P field is the conformal degree of
freedom of the metric, and because this degree of freedom
possesses negative kinetic energy in higher dimensions,

one might argue that one should couple gravity and
matter with the opposite relative sign. In that case the
charged black hole mould be equivalent to an uncharged
black hole in a 4 ~0 background, and no bound on

~

e
~

would exist. }
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