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Technical aspect in the light-cone gauge
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The validity of the operations q„0 and q„0 is examined in the light-cone gauge in the context of the

quark-quark-gluon vertex A„(p + q, p ).

I. INTRODUCTION

II. THE INTEGRAL I (p, q )

We begin by evaluating the integral l(p, q) in Eq. (2).
Use of the light-cone prescription3

1 k ~ n'
lim ~&0,

k ~ n a-o k ~ nk ~ n'+i&

n„= (np, n), n„" = (np, —n)

gives

(3)

The purpose of this Brief Report is to discuss in more de-
tail a technical aspect in the light-cone gauge concerning the
equality of the operations limp pg(q) and g(q) lp p, where

g (q) is a function of the external momentum q. The light-
cone gauge has recently been applied' to the one-loop quark
self-energy X(p) and the quark-quark-gluon vertex function
A„(q+p,p) which obey the Ward identity

q,A, (q+ p p) = —X(q+ p) + X(p) ~

as well as to the three-gluon vertex function' I'„~~(p,q,
—(q+p)). An important test of the light-cone formalism
is whether or not A„(q+p,p) and I'„~~(p,q, —(q+p))
reduce correctly to A„(p,p) and I'„'~~(p, 0, —p) in the limit
as q D. To answer this question, one must examine the
Feynman integral

l(p, q) =J d2"k[(k —p)2k n(k —q) n] ', n2=0, (2)

which occurs in the computations of both A„(q+p,p) and
I"„'„~(p,q, —(q+p)). Our aim is to show with the aid of
distributions that limp pl(p, q) = I(p, q =0).

%e must check if

i
d2"k lim [(k —p)'k n(k —q) n]

Consider first

= lim [RHS of Eq. (4)] . (6)q~o

d k[(k —p)'(k ~ n)2]
4 (n n')'

2
x f t +2imp n

n ~ n'p ~ n

2in p n'
( 4)2 0 (g)

n ~ n'p ~ n

and is seen to be finite.
Next consider the right-hand side of (4) where substitu-

tion of q 0 into the numerator and denominator gives
J —0/0. Since this naive approach leads to a wrong result,
we shall make use of the theory of distributions. To sim-
plify the analysis, we work with n„-(1,0, 0, 1)/J2,
n„' (1,0, 0, —I)/v2, and n n'-1, so that q n ~q- (qp —q3)/ J2 and q 'n~ q+ ( q+pq)/ 342, with q„
= (q p, q) . Accordingly, prescription (3) says that

1

[q n] + IN 0

mP 1

t

—in sgn(q+)S(q ),

and similarly,

d2"k lim [(k —p)2k ~ n(k —q) ~ n]4 y~0

d "k[(k —p) (k n) ] '~l(pq 0) . (7)

The integral on the right-hand side of (7) gives

/( )
2in'I'(a) —1)1 (2 —cu ) J ( )pq =

«~( )
pq

where

J(pq)=N(pq)/q n

(p q) = (p —q) n'[A (p, q)]" ' —p n [8(p)]"
A (p, q) = —2(p —q) n(p —q) n'/n n',

8(p) = —2p . np . n'/n n'

(4)

[q ]
(q+)'

q+q +i~

q iP —I 17 Iq + 15(q —)
q

(10)

where P stands for the Cauchy principal value. The expres-
sion 1/[q ] is a continuous linear functional over a suitable
space of test functions' @(q ). Hence 1/[q ] ~f is a dis-
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tribution which assigns to?ti(q ) the complex number

dq y(q )
f, 4

[q

tion d?,

lim = lim (q+f, g) =0;e, -o [q ] e, -o
in this sense

1= 't dq @(q )P
?

—i?r sgn(q+)@(0) . (11) [q-], (14)

Similarly,

(q+f. 0) = q+ J" dq W(q-)P- 1 —i m I q+ I y(0) .

Let us apply the above results to the expression J(p, q )
=At(p, q)/[q n] in Eq. (4). Employing the plus-minus no-
tation we deduce from (5) that

(12)
J(p.q)= (p+ —q+)[ —2(p —q )(p+ —q+)1" '/[q-]

We see from (11) that 1/[q ] is in general different from
zero and well defined in the context of distributions, while
the right-hand side of (12) implies that, for any test func-

—p+( —2p+p-)" '/[q l . (15)

Expansion of the numerator about (q+, q ) = (0, 0) yields
(~c2 and p+WO)

J(p, q)= [(p+)" '(p-)" '+(2 —~)(p+)" '(p )" 'q( —2)" '
[q ]

—(~ —1)(p+p-)" 'q+ —(~ —1)(2—~)(p+)" '(p-)" 'q+q-

+o(q ')+0(q+')]-
q—

Since q P(1/q ) = 1 and q 5(q ) =0, we have q /[q ] =1. Hence

J(p, q)=( —2)" '[(2 —o?)(p )" '(p-)" ' —(0? —1)(2—t )(p ) '(p

—(cu —1)(p+p )" 'q+/[q ]+0(q ) + 0 (q+')/[q ]], (16)

and
I

while

lim J(p,q) = (2 —0?)
+

( —2p+p )" '
q 0 p—

i

Finally,

[RHS f (4) ] =
q 0 n n'1 («?)

,
p-

~( 2 )
—? I?rP'i?

(17)
2 n'fl p'n

which agrees with (8). The limiting procedure q 0 gives,
therefore, consistent results for the integral (2), just as in
the axial gauge or planar gauge.

The crucial question is what happens when we set q =0
on both sides of Eq. (4). The left-hand side of (4) yields
the value [cf. Eq. (7)]

I (p, q = 0) = Jl d'"k [(k —p )'(k n )']-'
2lvT p'n
n n'p. n

[RHS of (4)] = = ' J(p, q =0)
n n'r (cu)

Using (14) and (16) we f?nd J(p, q =0) = (2 —~)p n"/p n,
so that

[RHS of (4)] q 0
P

«? 2
n n'p n

(19)

in agreement with (18). We have, therefore, demonstrated
that in the light-cone gauge

liml(p, q) =l(p, q =0)
q~ 0

(20)

III. THE VERTEX FUNCTION A„(q +p, p )

To complete the discussion, let us return to the quark-quark-
gluon vertex' A„(q +p, p), expressing it in the form

2

A„(q+ p,p) = g, 1'(2 —(u)(X„'+ X„'),
12+2 (21)

~ nlrb n~, Cd 2n. n' "
n n'

i

(q + p ) . n'[~ (p, q, m ) ] —p n'[~ (p, in

2n n' cI ' n

(21a)

(21b)
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~here

A (p, q, m) =8(p, m)
r

2p ~ np ~ n q n+Q n

n. n' p ~ n p n

8(p, m) =m —2p np n'/n n',

q ~ nq n

p ~ np ~ n'

(22)

vince oneself that

A„(q+pp)+q„A„(q+p p) = — X(q+p) . (24)8
Bg„

2

X(p) = g I'(2 —ru) [gr —2m —(pn'n+nn"~)/n n']
12m

(25)

A„(p,p )w —t)X(p)/Bp„. (23)

By differentiating (1) with respect to q„, it is easy to con-

nt being the quark mass and g the QCD coupling constant.
To be "safe" we have kept the ~ dependence in the conten-
tious, nonlocal component X„'.

The X„' term arises precisely from integrals of type (2)
[see also Eq. (4)], so that the arguments given between Eqs.
(2) and (20) apply here as weH. We see, in particular, that
limb. „'(p,q) = A~t(p, q =0) =0, so that lim A„(q+p,p)
-A„(p,p).

Our final remark concerns the relation

which leads to the inequality (23). This problem has also
been investigated by Bassetto and Soldati. ' We note in this
context that the equality A„(p,p) = —t)X(p)/t)p~ holds in

QCD in the axial gauge and in QED in a linear gauge.
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