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Ambiguities of the chiral-anomaly graph in higher dimensions
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We compute vector-current and axial-vector-current divergence relations for the chiral-anomaly

graph in 2n dimensions. %e demonstrate that ambiguities arising from (i) arbitrariness in the rout-

ing of loop moments in 2n-dimensional Feynman integrals, (ii) arbitrariness associated with the lo-

cation of y
"+' within y-matrix traces in dimensional regularization, and (iii) arbitrariness associat-

ed with the ordering of matrices within traces in dimensional reduction all lead to equivalent rela-

tions between vector-current and axial-vector-current divergences in the absence of externally im-

posed constraints of vector-current conservation and Bose symmetry. The anomaly is sho~n to re-

side in an alternating sum of current divergences. We also show that further ambiguities, associated
with the projection of less-than-2n-dimensional moments onto 2n-dimensional y matrices, occur
within dimensional reduction.

I. INTRODUCTION

The importance of the chiral anomaly in the develop-
ment of particle physics in the last 16 years can hardly be
underestimated. ' Recently there has been a growing in-
terest in the analysis of anomalies in higher spacetime di-
mensions. This is not only because of the constraints im-
posed on physical theories by the anomaly condition, 2 but
also because of the deep mathematical significance of
anomalies. ' Indeed, it has been shown that chiral
anomalies can be determined by differential-geometric
methods that entirely avoid evaluation of Feynman dia-
grams. ' Of course the chiral anomaly has been evaluated
in higher dimensions using diagrammatic techniques. '

However, such techniques invariably use regulating
methods that impose vector-current conservation and
Bose symmetry; the usual 2n-dimensional result is only
obtained after a priori imposition of these physical con-
straints.

Of crucial importance to the evaluation of the chiral
anomaly in four dimensions is the well-known fact that
naive shifts of the integration variable in more than loga-
rithmically divergent integrals are not permitted. (This
result has recently been generalized to 2co dimensions. ' )
As pointed out by Adler, there would be no anomaly if
such shifts were allowed; indeed, Frampton and Kephart's
evaluation of the 2n-dimensional chiral anomaly makes
use of finite surface terms which arise from such shifts.
They obtain the anomaly after imposing vector-current
conservation.

In this paper we demonstrate how regularization pro-
cedures in which naive shifts of integration variable are
allowed [specifically, conventional dimensional regulariza-
tion (CDR) and regularization by dimensional reduction
(RDR)) reproduce results obtained explicitly in 2n dimen-
sions (where n is an integer) from finite surface terms as-
sociated with shifts of integration variable in divergent

Feynman integrals. In particular, we examine V"A

(n+ 1)-agon graph ambiguities which occur in all three
procedures [i.e., 2n-dimensional integration, (2n +e)-
dimensional integration (CDR), and (2n —e)-dimensional
integration (RDR)] in the absence of constraints imposed
by Bose symmetry and vector-current conservation. It
will be shown that equivalent relations arise in all three
procedures graph by graph between vector-current and
axial-vector-current divergences. The anomaly will be
seen to reside in the sum of these divergences.

Such equivalence between these procedures for the VVA

(2 + 1)-agon (triangle) graph has already been demonstrat-
ed. Remarkably enough, this equivalence carries over to
any even dimension, as we will show. We stress that this
is true despite differing parametrizations of the ambigui-
ties inherent in each procedure. Indeed, each procedure
introduces arbitrary parameters associated with these am-
biguities. Since the number of parameters is n for a given

graph, and since there are n f graphs in the amplitude in
2n dimensions, the number of these parameters grows as
n Xn!. In 2n dimensions the parameters arise from the
arbitrariness in the loop momentum routing; this leads to
additional surface terms which contribute to vector-
current and axial-vector-current divergences. In 2n+e
dimensions (CDR), the obtained result depends upon
whether or not one chooses to anticommute y

"+'

through propagator traces prior to continuing to 2n+@
dimensions. ' In RDR one must (selectively) abandon
the property of trace cyclicity of Dirac y matrices; in this
case the ambiguity is associated with the choice of vertex
that may occur at the beginning of the ( n + 1)-agon trace.
As expected, the usual 2n-dimensional chiral anomaly is
obtained for choices in each of the three procedures which
are consistent with vector-current conservation. %%at we
find remarkable is that all current divergences in each
procedure are graph-by-graph equivalent. despite com-
pletely differing ambiguity parametrizations that have
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numbers of arbitrary parameters that grow faster than n!.
We shall use the following notation. We shall denote

by I . . . (qi, . . . , q„) the Green's function correspond-

ing to (0~ T(J "+'(0)J,(xi) . J (x„))~0} where

J„"+' denotes the axial-vector current gypy "+'g, and
J„denotes the vector current gy„P. All external momen-
ta shall be taken to be incoming; for J (x;) we shall use

q;. The basic V"A (n +1)-agon graph is shown in Fig. 1;
by momentum conservation g,". Oq/'=0. We shall

denote this graph by S,. . . (q„.. . , q„); the full ampli-

tude is given by

0 s
S . . . (qi, . . . , q );

0 n
pecans (a&,q;)

i.e., it is obtained by adding all graphs of the form of Fig.
1 with indices a; and momenta q; permuted
(i =1, . . . , n). Standard techniques for obtaining the
anomaly' 3' involve Bose symmetrization of the external
momenta and imposition of vector-current conservation

(q„"I'~ . . . ~ . . . =0; r+0); the anomaly is then obtained

by computing qo I ~ . . . ~ (qi, . . . , q„} in a procedure

that respects the aforementioned constraints. In this pa-

per we shall compute the quantities q, 'S . . . . . . and

qo'S~, . . . (qi, . . . ,q„) in each of the three procedures

previously mentioned without imposing Bose symmetry or
vector-current conservation. These quantities will be
shown to be equivalent in each procedure; from this the
equivalence of I . . . ~ (qi, . . . , q„} in each procedure

follows. Furthermore, we shall show that

n

1)qr~a . c pa a
r=0

pn

(2 )g i
cc)Pi'''Q P ql qual

ql

which leads to

g ( —1)'q,"I
r=O

pl. . . ~pn

(2~)n ~ipse
'

~npn

showing that the anomaly resides in the (alternating) sum
of the current divergences in each procedure. [Note that
the right-hand sides of (1.2) and (1.3) are automatically
Bose symmetric. ] When vector-current conservation is
imposed, we obtain, for (1.3),

a0 = -2 ~n
'qo ~a ~ ~ ~ a (ql& ' ~qn) ~ap a p ql qn0 n (2~)n 1 1 g I

(1.4)

which is the usual expression for the anomaly. Finally,
we shall also demonstrate that for n =2k + 1, the relation
(1.2) "splits" to become

qEr a, . a, pa2+, a„
r=0

e ' " (1 5)p

and
5

quar+1 al a2r+ lpa2r+2 ' ' az
r=0

The outline of this paper is as follows. In Sec. II we
compute the current divergence relations using 2 n-
dimensional integration variable shift techniques. Such
techniques have been successfully employed elsewhere in
perturbative field-theory computations such a pro-
cedure has been called preregularization. " In Secs. III
and IV current divergence relations are computed in CDR
and RDR, respectively. In Sec. V we demonstrate the
equivalence of the differing ambiguities and show that the
anomaly resides in the sum of the current divergences.
Finally, we summarize our work in a concluding section.

II. 2n DIMENSIONS

The V"A ( n + 1)-agon graph 5 . . . of Fig. 1 is given

~
ql

i=I

a (q» . qn)

d 2llk n

j=0
(2.1)

where k p is defined to be

k„"=(k+s)P+ g qJP (2.2)

FIG. 1. The generic chiral-anomaly graph in 2n dimensions.
(which is easily seen from Fig. 1), and kIi =(k +s)p.

The rth vector-current divergence is
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28 r —1 lg T —2 Jl

'qr Sao a .a„= f 2„Tr r'"" Il rajkj g Ya1kl ) g ) ajkj Ya, (kr g ) a(kl
j=0 l=r+1 j=O l=r+1

which straightforwardly follows from (2.1) upon using

q, =k, k—,

(2.3)

(2.4)

Although the quantity in (2.3) is the difference between two divergent integrals (diverging as k" +'), each term may be
computed separately as follows. First we use

(2.5)

to write the general form of such integrals as
!

(k+s) k+1+ gj,'qj p"
=(n —1)!f 2 f ff dx15 g x~ —1 (2"ie„,. . .„) . . ', z

'

l=o n(=o k+s+ g" 1+' lq x; D—(2.6)

where D is some Feynman-parameter combination of external moments. The expression in (2.6) is actually only linearly
divergent, because the e tensor cancels out all but one power of k in the numerator. Upon shifting
k"~k"~s"—g,".

, g', qlx;, the results of Ref. 5 give

d2nk n —1 s —1

=(n —()!(2"!e„,. . „) j ~.„ f 11dx, 5 X x —!
l=O =O

~ ~ ~n ~i pw-]i=1~J=1'&i Q1
' ' ' Qn-1

J

(k2 —D)"

1 n —1 s —1

+ „xI x~ —1
l=O =O

n i—s —g g qjx.
i =1j=1

Po
pl. . . pn-1' ' '0n-1

spop . . . p

(- ' 1~~" a. 1p. 1S q1 '''qn:1

since all other terms vanish upon contraction with the e tensor.
Using (2.7) in (2.3), we obtain

CX
I' po p&. . . pr-2( pr-1 pal+1 p~ —) pr+~ i pr+2. . . pal1

qr ao ar a„(,n 1
aop& r —Ipr-lary(pr+(' ' '

anpn t q 1 qr —2 (qr —1 qr qr qr+1 )qr+2 qn ]

(2.7)

We now parametrize the loop-momentum-routing ambiguity s& in terms of the external momenta:

(2.8)

s"= g A, q,". (2.9)

This is an n-fold ambiguity for the graph S~.. . a (q1, . . . , q„); there are n! such graphs, yielding a full n )& n!-fold am-
biguity in I ~.. . (q1, . . . , q„) in this procedure. Insertion of (2.9) into (2.8) gives

EXO CE~
'

CXg (2 )n 1 ~( ' ' ' ar (Prar~(Pr~( ' ' ' a((Pnq1 —qn "+1

where Wo =(—1) and A„,—=0.
For the axial-vector-current divergence we obtain

(2.10)

d "k n —1 n

2n 2" j=0 j=l

which follows from (2.7).

&a p" a p q1
' qn"(~1 —~n+I)

(2m)nn!

(2.1 1)
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III. 2n +e DIMENSIONS

In CDR, V 3 (n +1)-agon graph integrals are computed in 2e & 2n dimensions; we write co=n +e/2. No shift-of-
integration variable surface terms occur; ' instead, analogous to the (4+ e)-dimensional case, we require that y

"+'
commutes with the y~ s corresponding to (unphysical) dimensions 2n &d &2', and anticommutes with the remaining
yd's (d & 2n). Hence for physical momenta qn (qn =0 for a ~ 2n) and loop momenta k defined in 2n +e dimensions it
is easy to show that

( k+q) —lq 2n+1k —1 2n+ 1k —1+(k+q)—1 2n+1+(k+q) —1( 2 2n+1~)k —1 (3.1)

where e~ =[0(a&2n);kn(2n &a &2'}]. The last term in (3.1) is absent for co=n. If such a term were absent, then the
freedom to naively shift variables of integration in 2' dimensions for co+n would render all current divergences vanish-
ing. Consequently, all anomalous contributions to current divergences must arise from the last term in (3.1).

The presence of such a term implies that the basic V A graph of Fig. 1 has an n-fold ambiguity associated with arbi-
trary anticommutations of y2" +' prior to continuation to 2' dimensions. i 9 This arbitrariness may be parametrized ass

1~k
(qi, , q. )= f ~ [~.Tr(y.,y2" +'k-'y.

,k,-' y. k„-')+ "
+&, Tr( y~k-' y., k,

-' y. y'"+'k„'-y. k„')+ ~ -~ ~

+&nT«rnk 'rnkl '
rn r'"+'kn ')l

(3.2)

Although superficially it appears that there are ( n + 1) parameters 8;, these parameters must obey the constraint

(3.3)

since the normalization of S . . . (ql, . . . , q„}must not change upon continuation from 2n to 2' dimensions. This
yields an n-fold ambiguity for S . . . (ql, . . . , q„), and hence an n Xn.-fold ambiguity for I'~ . . . (ql, . . . , q„) in
CDR.

Computation of current divergences is simple because (a) anomalous terms can occur only when y
"+' is adjacent to

the y matrix which is contracted into the external momenta (all other terms vanish upon shifting the variable of integra-
tion), (b) all terms vanish unless numerator traces are quadratic in g (this will be understood momentarily), and (c) the
only other factors of e" present are in the loop momenta k". From this we obtain

~k
q,"S~.. .. . . ..=a, f Tr py.,k, '( 2r'""~}—k, ' g r. kl '

d k 1 r —1 n

raj
& j 17at~ 3a m3 & i Xa& I

n r —1 t n

+ g T gy, k,y'"+'~k, g y, ,k y.,s g y. k
t=r+2 j=O I =r+1 m =t+1

r —1 n

+ Tr ff y k)y'" 'e" g y,kl
j=0 I=r+1

(3.4)

where I' is given by

P= gk;
i=0

(3.5)

Using (2.5},we get
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0 ''ar ' 'an 2' p Op0 r —1pr —1 r+ lpr+1 npn

g ( —l)i+'k . k J 'k ~+' k„"(—1)"

~k
=2( —1)"+'8 (2"ie ~n)

(~ &2al p ii 1 r —l~r+r+l~r+i n+n2&)

due to the antisymmetry of the e tensor.
We can simplify (3.6) further in the ro~n limit using the 2@0-dimensional result 's'

r

d k ei im"
lim

(2~) (k —D)"+' (2n )i"n i

(3.6)

(3.7)

Only ez terms can give a nonzero result in (3.7); higher powers of e vanish for co~n. Hence we obtain

fg ( 1 )K+ 1
28r pn

Cr ao ~ ~ a a„= (2,„1 aOPi a —iP a +iP +l ~ a„P„'0 i 'Vn

2%~ 7l.
(3.8)

for the vector-current divergence on the rth index.
The axial-vector-current divergence is obtained in a completely analogous manner:

a0 280 pn
qo ~a . a (ql ' ' Ill)0 n (2~)tin i i i n n&ap ap 71 Pn (3.9)

IV. 2n —e DIMENSIONS

We now consider RDR, a procedure in which momentum vectors and loop integrals are computed in 2m ~ 2n dimen-
sions. ' As a result, y

"+' is fully anticommuting and naive shifts of integration variable are also allowed. In 4—e di-
mensions, the usual chiral anomaly is obtained by abandoning trace cyclicity of y matrices; departures from trace cyclici-

ty are proportional to e (Ref. 13). We will assume this ansatz in 2n —e dimensions; specifically, consider

Tr[y "+'(g h)e(y, s—' e'„,y b ] . (4.1)

If a, b, and c are 2n-dimensional momenta, the first Q could be anticommuted through y
"+' and then trace cyclicity

could be used to attach it to the other end of the trace. However, in 2rii ~2n dimensions this is not permitted; instead we
must anticommute the first 0 to the end of the trace s

Tr[y "+'(ir —&)izy e, e'„ iy bi]=a Tr(y "+'y,s'i g'„,y 0)—2a b Tr(y "+'y,ei e„,y bt)

+2b, Tr(yi" +'upi . 0)—2ci b Tr(y "+'uy, y, . &)

b'Tr(y—'"+' ry ie, e„,y )

Tr(y "+'y,ei. e„ iyp~ )+ Tr(y" +iiiy, ei .
g

(4.2)

where

a1p1 . anpnpn+1, 8=
pl . a„pnpn+1 a18 ala2 - . anpnpn+1 pie alpl * anpn pn+1

—=e . . . g —e . . . g +. +( —1) & (4.3)

A is an object antisymmetric in aO subscripts which precede 8; it vanishes in 2n dimensions. For the reduced metric
gt'2" i it is easy to show that '

(4.4)

Parametrizing the choice as to which vertex should begin the trace yields, for Fig. 1 (Ref. 8),
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d~"k
S~.. . (qi, . . . , q )= [COTr(y "+'y ko 'y P, '

y Ig„')+ ~ . ~

(2~) CEO

+C.T.(y'"+'y. I „-'y.P y.,I,-' "y.
n, 24/

= g I ~C,Tr[y'"+'(y.,a,-' . y. a„-')(y a,-'"y. a, ,-i)j.(2s )~ (4.5)

As in CDR, the normalization of S~.. . (qi, . . . , q„) must not change upon reduction from 2n to 2' dimensions, so

r=0

The vector-current divergence at the rth index is given by

d~k 1
q, 'S~ a a — ~ + CrTr[y (iver Irr —i)lrr ya Irnyago ya Pr —i](2m)~ & 8 r-1

(4.6)

(4.7)

since all other terms vanish upon shifting the variable of integration. Here I' is defined as in (3.5). If we employ (4.2)
in (4.7) we get

24)

'Vr ~ao 0. ~ ~a„2 p
Cr 2 l z z+~

'
n 0 r —1 r —1 p„ar+1 p~ao. p„ (4.8)

The antisymmetry in A means that the only nonvanishing contributions to (4.8) are for terms in the integrand numera-
tor that are bilinear in k and contain ks:

d~k kpks

(2ir)~ g n) 1+0(n —co)
(2m) "I (co+1)(2n —2@i)

(4.9)

Using this, (4.7) bixmmes

arS ( 1)r+1 2C, p pn' n"r 0 a, . a„ =
(2 in

~
op]

' ' '
r —~prar+~pr+] anpnq 1 qn

The axial-vector-current divergence is obtained by completely identical manipulations; it is

'S . . .
2cp pn

a, a„= („,n ~
aopi a &p a +ip +i a„p„q 1 qn

It is worthwhile at this point to mention a disturbing feature of the RDR procedure. Consider the quantity

Tr(y""uy.
, y., u).

Sy anticommuting y and y we obtain

(4.10)

(4.11)

(4.12)

~2n ~u,.ya,. a& ai —I +i+2 a2n ~i+ t ~i ~2n

(4.13)

where (2.5) has been used, an identity taken to be valid in the RDR procedure. " From (4.13) we see that the quantity in
(4.12) is skew symmetric in any adjacent pair of indices ai, . . . ,az„. Hence it is fully skew symmetric in a/I of these in-
dlcess and so

Tr(y "+'0„.. .„0)=K@,. . . (4.14)

By contracting both sides of (4.13) with the 2n-dimensional e tensor, it is easy to show that K = 2"ib, and so—
Tr(y "+'&„.. .„&)= 2"ib~e, . . . , — (4.15)

a result identical to that which would have been obtained had trace cyclicity been assumed.
This result is inconsistent with the ma»pulations used to obtain Eqs. (4.10) and (4.11). (Such an inconsistency has pre-
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viously been pointed out for the VVA triangle graph in Ref. 8.) This inconsistency has the consequence of rendering all
current divergences zero within the RDR procedure for the V A (n +1}-agon graph. As in the four-dimensional case,
the problem essentially is that the quantity

1A., " .,„,,e= „.[Tr(r'"+'rpr, . r,„re)+Tr(r'""rer, . r,„rp)l (4.16)

which can be nonzero (consistent with the chiral anomaly) if trace cyclicity is abandoned, vanishes if 2n-dimensional
y-matrix identities are employed in such a %'ay as to restore trace cyclicity.

In the following, we shall take Eqs. (4.10) and (4.11) to be the equations which give the current divergences as calculat-
ed in RDR, avoiding the aforementioned ambiguity.

V. EQUIVALENCE OF THE THREE PROCEDURES

From Eqs. (2.10) and (2.11},(3.8) and (3.9), and (4.10) and (4.11), we see that the current divergences in all three pro-
cedures are equivalent, and that the one-to-one mapping between them is

r+1 Ar —1=2' =2C

A1 —An+ 1=28o=2Co

(5.1)

(5.2)

Clearly one of the equations in this set is redundant; this follows from g„" 08, = g„" 0 C, =1. Consequently, we have

the general result that

N

q8~pa an ql~a&pa2 ~ a„+ ' ' ' +( 1}qr~a& a,pa, +& a„+ ' ' ' = g ( 1}qr~a& a,pa„& a„
r=0

(2 )n i aipi ' ' ' a p q 1 (5.3}

The right-hand side of (5.3) is 1/n! times the usual to-
pological invariant related to the chi.ral anomaly. ' It is
automatically Bose symmetric, despite the fact that Bose
symmetry was not imposed in any of the three procedures.
Hence the sum of all diagrams obeys

8

q5.
r=0

1 ps

(22r )nn!
cap a p ql '''qn

& (5.8a}

g ( —1)'qPI'
1 r r+1 er=0

2 p) p„
(22r)n 1 1 n ncap ap ql '''qn" '

Imposing vector-current conservation yields

pn
qual pa, a„=—(,n &a,p, a„p„ql

' '
qn

2'lT')
(5.5)

which is the momentum-space form of the chiral-anomaly
equation

21—a
B„J{3(x)=— e ' '"F . F

(22r)nn t 1 2 2» —1 2»
(5.6)

with F„„=B„A„—8+„in 2n dimensions.
There is a further relation that exists between current

divergences when n is odd. For n =2m + 1 we have

g (A2J+2 —A 2))= 1,
j=0
ns —1

( A 2l +3
—A 2l + i )+ ( A i —A 2&n + 1 + 1 )= 1

j=O

(5.7a)

(5.7b)

This implies that the sum of current divergences "splits"
into

q~r+ & a) ' ' '
a2&+ ]l4a2r+2 ' ' ' a»

r=0

1

(22r)nn / 1 1 » »
&a p ~ a p q [

' ' ' qn"

Note that relations (5.6) are not derivable in either CDR
or RDR. Without further assumptions, this splitting does
not carry over to I', . . . because current divergences tak-

en at odd-numbered vertices of Fig. 1 will mix with
current divergences at even-numbered vertices in the sum
over all diagrams (although for any individual diagram in
4m +2 dimensions "splitting" does hold; i.e., the sum of
the current divergences at the odd-numbered vertices is
equal to an invariant, and the sum of the current diver-
gences at the even-numbered vertices is equal to minus
this same invariant for any individual diagram, vertices
being numbered clockwise fram the r "+' vertex). How-
ever, if we impose Bose symmetry, then the q, th current
divergence is the same at any even- or odd-numbered ver-
tex. Hence

n

r=0

1 pn

(2~)n 1 1 n»&ap a pql '''qn"
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provided Bose symmetry is imposed.
Hence in 4m +2 dimensions, one could require either

vector-current conservation or axial-vector-current conser-
vation. This is in contrast with the 4m-dimensional case,
in which vector-current conservation must be imposed be-

cause the 2"+' (n +1)-agon graph is proportional to the
V"A (n +1)-agon graph in 2n =4ttt dimensions. This is
easily seen by anticommuting y

"+' through the propaga-
tors in 2n-dimensions; there are an odd number of vertices
(2m +1}and so there is a net y~" +' left over. Hence if
we require axial-vector-current conservation in the V"A

diagram, we will obtain an inconsistency when this con-
straint is imposed on the 3"+' diagram. In 2n =4m +2
dimensions, this argument no longer applies; the 2"+'
( n + I )-agon diagram has an even number of vertices, and
so it is not proportional to the V"A (n +1}-agon graph,
but rather is proportional to the V"+' (n+1)-agon
graph. No inconsistency is obtained by demanding the
conservation of the axial-vector-current (at the price of
obtaining an anomalous vector-current divergence). Of
course nothing prevents the imposition of vector-current
conservation [yielding the usual anomalous axial-vector-
current divergence relation (5.6)].

VI. CONCLUSION

We have demonstrated that ambiguities which arise in
each of three calculational procedures [y "+' location in
(2n +a)-dimensional integration (CDR}, matrix ordering
in traces in (2n —e)-dimensional integration (RDR), and
arbitrariness of loop-momentum routing in 2n dimensions
(preregularization)] yield equivalent axial-vector-current
and vector-current divergence relations in the absence of
constraints imposed by vector-current conservation and

Bose symmetry. This equivalence occurs graph by graph,
reducing a potential n Xn!-fold ambiguity to an n-fold
ambiguity in the full amplitude. The anomaly resides in
the sum of the current divergences of the full amplitude,
and is in fact "equally distributed" in each graph. In
4m +2 dimensions the current divergence sums "split" in
a given graph, as in Eqs. (1.5) and (1.6); if Bose symmetry
is imposed, this splitting carries over to the full ampli-

tude. Consequently, in 4m +2 dimensions either vector-
current or axial-vector-current conservation must be im-

posed, whereas in 4ttt dimensions only vector-current con-
servation may be imposed as is seen upon comparing the
V"3 diagram with the 3"+' diagram. Upon imposing
vector-current conservation, the usual anomaly relation is
obtained in either case.

The equivalent between RDR and the other two pro-
cedures holds provided that certain calculational routes in

the former [as outlined in Eqs. (4.12)—(4.16)] are avoided.
Otherwise, the anomaly can be legislated to vanish in the
RDR technique by a judicious choice of calculational pro-
cedures in this method. This would destroy the aforemen-
tioned equivalence and would be in conflict with previous-

ly established results. '
Finally, we close with a conjecture. The equivalence of

each of the three procedures investigated leads us to con-

jecture that all calculational procedures used to evaluate
the anomaly (perturbative and nonperturbative) contain
ambiguities which are equivalent, and that current diver-

gence relations are therefore also equivalent in all pro-
cedures (modulo inconsistencies in methods of the type
pointed out in RDR}. Indeed, it has already been demon-

strated that Fujikawa's method' for computing the
anomaly contains ambiguities. " Work on these issues is
in progress.
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