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The t expansion and SU(3) lattice gauge theory
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This paper presents the first results obtained by applying the t expansion to the case of an SU{3)
lattice gauge theory in 3+1 space-time dimensions. %e apply to this problem the same techniques

which have been successfully used in the analysis of the SU{2) theory. %e test their effectiveness

first on the one-plaquette SU{3) problem, and conclude that even a moderate series in t suffices to
reach the weak-coupling domain. %e then compute the t expansion of the vacuum energy density

to order t' and find from our analysis the behavior of this quantity as a function of the coupling
constant. From the same series we obtain the mass M of the lowest-lying 0++ glueball to order t .
Evaluating the string tension 0 to the same order we construct the ratio R =M /cr which allo~s us

to obtain a dimensional result for M which is consistent with Monte Carlo analyses.

I. INTRODUCTION

We present calculations of the ground-state energy den-

sity 8', the string tension e, and the mass of the lowest-
lying 0++ glueball M, for the case of a pure SU(3) gauge
theory in 3+ 1 dimensions. These calculations make use
of the t expansion, a nonperturbative calculational tool
that was introduced in Ref. 1 and applied to the SU(2) lat-
tice gauge theory in Ref. 2.

In Sec. II we recapitulate the basic elements of the t-

expansion technique and the methods that have been
developed for its analysis. We test these methods on the
one-plaquette problem in Sec. III. We learn from this ex-
ercise on a solvable SU(3) problem that a t expansion to
order 7 or 8 suffices to reconstruct the energy over the
whole strong-coupling domain and well into the weak-

coupling regime. Since the series for the mass gap is
shorter by two powers of t, its reconstruction in the
weak-coupling regime suffers from a large margin of er-
ror. Nonetheless the average of diagonal Pade approxi-
mants reproduces well the exact result.

The one-plaquette matrix elements are used as an input
into the calculation of the energy density in the (3+ 1)-
dimensional problem analyzed in Sec. IV. Evaluating the
series to order ts we have to add connected matrix ele-
ments that involve up to three neighboring plaquettes as
well as the six plaquettes that close on a cube. For the
calculation we use a diagrammatic technique which we
briefly outline in the Appendix. After obtaining the ener-

gy density we turn to a calculation of the mass gap M and
the string tension o. Both are calculated to order t . By
analyzing the ratio M /o we obtain a dimensional value
for the mass in the weak-coupling domain which is con-
sistent with Monte Carlo results.

II. THE t EXPANSION FOR SU(3)
IN THE STRONG-COUPLING BASIS

2

H = QE1 +x g(6 trU~ ——trU&~)
I P

(2.1)

where g is the coupling constant and x —=2/g . The link
operators Ei and Ut which appear in (2.1) are conjugate
quantum variables satisfying the commutation relations

g[Et' Ut ) = Ut&ir
2

(2.2)

H= QE1 —x g(trU&+trU&),
I P

(2.4)

which is related to (2.1) by an overall multiplicative and
additive constant.

In our analysis we employ the t expansion in the same
way in which it was applied to the SU(2) theory in Ref. 2.
Using the vacuum of the strong-coupling limit ~0), which
is the state aruiihilated by the color-electric field

Ei [0&=o, (2.5)

we define the energy function

(0(He-' (0) (2.6)
(Oi

t'ai

0)—
This function tends in the limit t~ ao to the correct vacu-
um energy. The Taylor series of this function defines the
connected matrix elements:

Intuitively, the operator Et' is the color electric fiux
operator associated with the link l, and trUy is the color
magnetic flux operator associated with the plaquette p.
The operator Uy is defined to be

Up ——U) U2U3 'U4 (2.3)

where the product of the unitary link operators Ut is tak-
en in the counterclockwise direction. In carrying out ex-
plicit computations it is useful to work with the operator

The theory we study is the (3+ 1)-dimensional SU(3)
lattice gauge theory defined by the Kogut-Susskind Hmn-
iltonian

2 a) t II

(H n+1)c+2„0 n!
(2.7)
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T

n —1 n
(Hp+1)c(y

~

Hn —p
~ y (2.8)

Here V is the total volume (number of plaquettes) of the
system. E is an extensive quantity and so are all the con-
nected matrix elements. It was shown in Ref. 1 that the
connected matrix elements for any Hamiltonian H and
trial wave function

~ $0) obey the recursion relations

(Hn+1)e (y ~Hn+1
~ y )

M(t)'
o(t)

(2.12)

Having obtained an algebraic series for both cr(t) and
M(t) we are in a position to construct one also for R.
This was used in Ref. 2 to compare t-expansion results
with Monte Carlo calculations. We expect this approach
to enable us eventually to calculate the hadron spectrum

by algebraic methods.

which can be used for their algebraic evaluation.
From the energy function one can extract both the vac-

uum energy and the glueball mass (first excitation). The
latter is given by the t~ 00 limit of the expression

(2.9)

The third quantity that we calculate is the string tension.
This is obtained by calculating the difference between the
ground-state energies of the sector with a string of length
L and the sector without any string. The tension o(t,g )

is defined by dividing this difference by the length L of
the string and taking the limit L ~ oo. Thus to calculate
tr(t, g ) we compute

r

( 2) l. 1 (OiS He ' S iO)
(

L (O~Ste t~S 10)

(2.10}

where the operator S creates a straight infinite string
along one axis; i.e.,

(L /2, 0,0)
S= ff Ut. (2.11}

I =(—L/2, 0,0)

All these quantities refer, of course, to values of opera-
tors defined for lattice @CD. To extract physical infor-
mation we have to study quantities which are expected to
scale in the continuum limit. Such a quantity is the ratio

g2
HOP —— HOP+

H, p
——4C —x [7(3)+X(3)],

(3.1)

(3.2)

where X(3) is the character of the 3 representation and C
is the quadratic Casimir operator of SU(3). These matrix
elements play a dominant role in the first few terms of the
t expansion. In this section we will evaluate them and
perform an analysis of the resulting series by the means
developed in Ref. 2. The results will then be compared
with the values obtained from the diagonalization of this
Hamiltonian on a finite Hilbert space. This way we can
check our methods of analysis on a solvable SU(3) prob-
lem. This will also give us an opportunity to establish the
approxiinate location of the crossover region from strong
to weak coupling and to see if the order to which we carry
out the t expansion is sufficient to reach into the weak-

coupling regime.
The calculation of the connected matrix elements

proceeds in a straightforward manner, by first calculating
moments of H, p using standard SU(3) properties, and
then inserting them into (2.8). Thus we find the t expan-
sion:

III. THE ONE-PLAQUE i T'E PROBLEM

All the connected matrix elements which correspond to
diagrams in which the magnetic term x (trUp+trUp ) hits
one and the same plaquette p can be simply evaluated by
considering the one-plaquette Hamiltonian

t3 64E, (t g ) = + t (2x )+———x ( —3x + 16)—— x ( —3x +8)
2 2! 3 3! 9

t4 2+—, x (135x —2304x +4096)+ (3.3)

We replace the variables g and x by a new variable y =2/g . The energy takes then the form of a double series:

2 4t t4
E»(ty)=3y ——y + y ( —3y +32)+ y (3y —16)+ y (135y —9216y +32768)+

2 24 27 10368
(3.4)

We have calculated all terms of this series up to t s. In so
doing we had to evaluate the operation of H» on nine
different SU(3) characters, corresponding to the represen-
tations 1,3,6,8, 10,27, 15,15',24 and their complex conju-
gates.

For the calculation of the one-plaquette problem we can
employ a better method than the t expansion, i.e., diago-

nalize the Hamiltonian. Figure 1 shows the results of the
diagonalization of H» on a nine-dimensional Hilbert
space spanned by states corresponding to the SU(3) char-
acters mentioned above. To make sure that these results
describe correctly the features of the one-plaquette prob-
lem and do not suffer from the truncation of the Hilbert
space, we repeated this exert. ise with a 12-dimensional
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FIG. 1. Results of the diagonalization of the one-plaquette

Hamiltonian.

Hilbert space into which we added states corresponding to
the representations 21,35,42 and their complex conju-
gates. All results remained stable over the range of
0&y&4 depicted in Fig. 1. These results include the
ground-state energy E,~, the mass gap (i.e., the difference
between the two lowest eigenvalues of H~) and the
specific heat defined by

C=- d E (3.5)
2

M&L+2, L+M &X—1 . (3.6)

N is the degree of the polynomial which we use for the t
series of E.

Once the D-Pade procedure is carried out we are left
with some function of y which we can compare with the
results of the diagonalization. Such a comparison is car-
ried out in Fig. 2. Here we plot several D-Padh approxi-
mants to E~ and compare them with the correct answer.
All agree very well with the energy in the strong-coupling

The latter peaks around y=1.8. This may then be natur-

ally interpreted as the transition point between the
strong-coupling region (low y =2/g ) and the weak-

coupling region (high y). It is important to realize that
the truncated Hilbert space that we have used was suffi-
cient to cover this transition region. Our aim in the calcu-
lation of the (3+ 1)-dimensional problem is to obtain a
faithful description of the physics beyond the transition
point. If the t expansion of (3.4) can reproduce the
features of these curves past this point, we have some
chance of extracting physical results from a t expansion
to a similar order of the vacuum energy density in 3+ 1

dimensions.
We use the D-Pade method' to analyze the t expan-

sion of the vacuum energy. To form an (L/M) D-Pade
approximant of E one integrates from t=0 to t = oo an
ordinary (L/M) Pade approximant of dE/dt. L and M
are the respective powers of the polynomials in t which

appear in the numerator and denominator of the Pade ap-
proximant to dE/dt. They are constrained by the condi-
tions

~ 0 i I

0 i ~ 8 I ~ 2 i ~ 6202428323640

FIG. 2. Comparison of four different D-Pade approximants
of the one-plaquette energy with the correct result (dashed

curve). Numbers represent the values of L and M (powers of
the numerator and denominator) of the corresponding D-Fade
approximants. The abscissa is y =2/g'.

region and start to deviate from it after passing into the
weak-coupling domain. Yet, even there, they outline
correctly the range where the energy lies. Figure 3 draws
a similar comparison between the second y derivatives of
these curves: all display the same behavior in the cross-
over region.

The (L/M) D-Pade approximants displayed in these
two figures are the ones corresponding to the highest
values of L +M which are also consistent with one anoth-
er. The approximants (1/5) and (2/4) have some singular
behavior at low y values and were therefore excluded. All
the approximants show a tendency to increase faster than
the correct curve in the weak-coupling region. This prob-
lem was solved in Ref. 2 by using a D-Pade analysis of
dE/dy which is then integrated over y to serve as an ap-
proximant for E. Moreover, since dE/dy has to be non-

negative, this procedure has a natural cutoff, i.e., the point
where the approximant to dE/dy vanishes. Using this
procedure we obtain Fig. 4. The new approximants do

1.2x
LJ

1.0
LJ
4J
0
M

.8 1.2 i.6 2.0 2 & 2. 8 3. 2 3.6 &.0

FIG. 3. Specific-heat curves for the same approximants that
are displayed in Fig. 2. Notation is identical.
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FIG. 4. Comparison of several integrated D-Pade approxi-
mants to dE/dy. When the approximant to dE/dy turns nega-
tive this function is assumed to remain zero and its resulting
curve for E becomes flat. The approximants based on the t
series of order 6 or 7 fall short of the correct values in the
weak-coupling region of the one-plaquette problem although
they are successful in the problem in 3 + 1 dimensions.

not increase any more like the ones in Fig. 2. In fact they
fall below the exact curve. Hence, the dE/dy procedure
is not very successful in the one-plaquette problem. It
should be noted that the one-plaquette problem is dif-
ferent in this respect from the (3+ 1)-dimensional prob-
lem. The latter has a tendency to a much sharper cross-
over between the strong- and the weak-coupling regions.
This can be seen, e.g., in Fig. 1 of Ref. 4 which shows a
comparison between the energy curves for these two cases
in the SU(2) theory. In our analysis of the (3+ 1)-
dimensional problem we will therefore prefer the dE/dy
procedure after all. We will see that it leads to results
which lie appropriately below an upper limit for the ener-

gy density that can be derived at g=O, whereas the direct
D-Pade approximants to E violate this limit beyond the
crossover region.

Finally let us test the t-expansion analysis of the mass.
Since we expanded the vacuum energy to order t we can
obtain from (2.9) a t expansion for the mass to order t .
In trying to reconstruct the exact result from the t series,
we found that the diagonal Pade approximants, evaluated,
at asymptotic t, gave better results than the D-Pade pro-
cedure. In Fig. 5 we compare the (2/2) and (3/3) approxi-
mants, together with their average, to the exact result for
the mass. We see that although deviations occur near the
crossover region, the average of the Pade approximants
lies close to the correct curve for quite some range of y,
we11 into the weak-coupling region.

FIG. 5. Comparison of diagonal Fade approximants (evaluat-
ed at t=1000) to the mass gap of the one-plaquette problem.
The curve denoted AV is the average of the (2/2) and (3/3) ap-
proximants.

the Hamiltonian on a single plaquette. To these we have
to add the connected matrix elements that rise from the
repetitive action of the Hamiltonian on neighboring
plaquettes. All such diagrams that appear up to order x
are depicted in Fig. 6. These diagrams represent only the
magnetic part of the Hamiltonian. Every box represents
ti( p + Ut) and the number denotes how many times the
same operator hits the same plaquette. In addition to
these magnetic terms one has to take into account the
electric terms (i.e., Casimir operators). By applying the
electric part to the various links one can obtain contribu-
tions to all powers of t. Although the lowest possible
power of t for any diagram of order x" is n —1, we find,
in general, that the first nonvanishing contribution to the
connected matrix element occurs for n + 1 or more; i.e.,
at least two operations of the electric term are needed. An
exception to the rule is the cube diagrain, for which the
connected matrix element coincides with the vacuum ex-
pectation value. In the Appendix we outline a diagram-
matic method of calculation which takes into account the
effect of the electric terms and allows us to set up an algo-
rithm for calculating the matrix elements for each dia-
gram.

x'

IV. THE SU(3) THEORY ON A CUBIC LAl I, ICE

%e are now ready to apply the tools described in the
previous sections to the SU(3) theory defined on a cubic
lattice in 3+ 1 dimensions. We can make use of all the
connected matrix elements calculated for the one-
plaquette problem. They represent the repetitive action of

FIG. 6. Diagrams needed for the t expansion. Each square
represents the operation of tr U~ + tr U~ on a plaquette, and the
number shows how many times the same operator was applied
to that plaquette. The figure contains all diagrams which in-
volve more than one plaquette at the given order of x.
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The quantity that we calculate first is the vacuum ener-

gy density 8'. This is defined as the energy per plaquette,
so that the first few powers of t coincide with (3.3). The
two expressions start to deviate from one another at order
t due to both the x diagram and the cube diagram of
Fig. 6. %'e have carried out the calculation to order t
(i.e., H ). To obtain 8'(y) we can use (I./M) D P-ade ap-
proxirnants up to I +M=7. Since we deal with a prob-
lem in 3+ 1 dimensions we use the procedure of apply-
ing the D-Pade method to d 8'/dy and integrating the re-
sults in y to obtain the curves for 8' which are presented
in Fig. 7. The integration is stopped at the point where an
approximant turns negative, since dS'/dy should be a
positive-definite quantity. Hence the point at which a
curve of 8' turns constant is where the approximant failed
the positivity condition. The curves plotted in Fig. 7 were
those for which this range was the largest. They are con-
sistent with one another for quite some range inside the
weak-coupling domain.

In the weak-coupling limit the SU(3) problem turns into
a gauge theory of eight independent gauge fields on each
link. Using the harmonic approximation one can obtain
therefore the value of I'(yahoo)=6. 368. This number
should serve as an upper limit on N'(y). Figure 7 is con-
sistent with it.

The specific-heat curves for the same three approxi-
mants that are plotted in Fig. 7 are shown in Fig. 8. All
curves peak between y=1.5 and 1.7. This should there-
fore be identified with the crossover region between strong
and weak coupling.

Using the t expansion of the vacuum energy to eighth
order, we can derive one for the mass out to sixth order in
t This .technique was tested for the one-plaquette prob-

/
l

/

L
8 '. 8 r'. ( =, 0 .". . ", 3 c~ 3, i.

FIG. 7. The energy density as reconstructed from D-Pade ap-
proximants to dE/dy. Shown are {0/6), {0/7), and {1/6) approx-
imants, represented by a line, +, and +, respectively. Results
should be compared with an upper limit of 6.368.

lem, where we concluded that the average of the approxi-
mants gave a fair description of the true mass. Here we
are dealing with a physical problem for which we can
start to be more ambitious and try to derive a value of the
mass in dimensional units. To achieve this we have to
calculate first a t expansion for the string tension. Once
this is done we form the ratio R =M /o This r.atio
should scale in the weak-coupling limit, and from it we
can obtain a prediction for the mass. Since we have an
expansion for the mass to sixth order in t, we need a com-
parable expansion for the string tension. We obtain the
following result:

o(t,g )= [ —, +x ( 32t /27+11—6t"/27 —76t /9+25562t /2187)

x(20t —/27 1172t —/405+21754t /3645)+210x t /405+70x t /162) . (4.1)

To get a feeling for the information containei in this
series we compare the results of two diagonal Pade ap-
proximants (applied to Bo/By, evaluated at asymptotic t,
and integrated in y) to the strong-coupling perturbative
expansion to order x presented by Kogut. This is
shown in Fig. 9. All curves agree all the way down to
y=1.5. Near y=2 the strong-coupling expansion turns
negative. This is another (and independent) indication of
the location of the crossover region. Clearly the tension
has to remain positive; however, it has to look very dif-
ferent from the curves shown here: it has to vanish
strongly in y. The fact that it is difficult to obtain such a
behavior was already discussed at length in Ref. 2.
Nonetheless, there is still a good chance that the ratio 8
will lead to a meaningful result.

The ratio R is constructed as a ratio of two t expan-
sions. This is then reordered as a single t expansion
whose coefficients are functions of y. Having an expan-
sion to order t we can, in principle, construct two diago-

A
h

(

2 i
I

I ! I i ! i !
. 8 i 2 1 8 2 0 2-4 2. 8 3 2 3 6 4. 8

v

FIG. 8. Specific-heat curves which are obtained by differen-
tiation of the dE/dy approximants ~hose integrals were
displayed in Fig. 7.
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FIG. 11. Diagrammatic notations for the link matrices U.
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FIG. 9. Comparison of {2/2) and (3/3) Padh approxirnants
for the string tension at asymptotic t with the results of strong-

coupling perturbation theory. The three curves are designated

by a line, +, and +, respectively. The strong-coupling curve
crosses zero in the crossover region.

their averages are very consistent with one another and lie
between 9 & R ~ 10 in the region around y =2.

We expect the curves obtained from the t expansion to
develop an envelope that displays a steep descent in the
strong-coupling region and settles into a constant in the
weak-coupling regime. Interpreting the plateau of Fig. 10
as corresponding to this scaling result we conclude that
the mass of the 0++ glueball is predicted by this analysis
to lie around 3v o =1.3 GeV. It is encouraging to note
that in this first algebraic evaluation of the mass gap in

SU(3) we obtain a result which falls within the range af
values derived from numerical Monte Carlo analyses (a
recent summary of results was presented in Ref. 6}.

nal Pade approximants, af orders (2/2) and (3/3). The
latter turned out to have a singular y behavior; however,
the (2/2) approximant displays a plateau araund R =10.
An even more stable result is obtained by applying the di-
agonal Pade (evaluated at asymptotic t, e.g., t=1000) to
dR/dy and then integrating it in y. These two curves are
displayed in Fig. 10 together with two other curves that
were obtained from D-Pade analyses. The D-Pade pro-
cedure was also applied to dR/dy. Shown are the aver-

ages of the (0/4) and (1/3)—as well as the average of the
(0/5} and (1/4) D-Pa—de approximants. Although the
separate D-Pade approximants show a wider dispersion,
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APPENDIX: DIAGRAMMATIC SU(3)
CALCULATIONS

In this appendix we outline the method that we use for
calculating the matrix elements. We use a diagrammatic
language that incorporates the SU(3) properties of the link
variables and the topological structure of the cubic lattice.
It bears some similarity to the methods that were put far-
ward by Cvitanovic and by Mandula.

Our basic link element is the 3X3 unitary matrix Ub

8.

C) 4,
J

1 6 I 8 2 0 2 2 2 4 2 6 2 8 3, 0
Y II ~ It II

FIG. 10. Four different approximants to 8 =M~/a which
exhibit scaling behavior. They are (2/2) Pade for 8, {2/2) Pade
for dR/dy integrated in y [designated (2/2)y], the average of
the (0/4) and (1/3) D-Pade (for dR /dy) designated by AV5, and
AV6 designating the average of the {0/5) and (1/4) B-Pades.
AV5 and AV6 include information of the t expansion to order
t and t, respectively.

rI )
Jl Ii +

FIG. 12. Application of the Casimir operator (represented by
a ring) to link matrices and their products.
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FIG. 13. Decomposition of products into irreducible repre-
sentations of SU(3).

which is an element of SU(3). Following Kogut and
Susskind we represent it by a vector which lies on the
link with which U is associated. This notation is shown
in Fig. 11. If the arrow points along a positive direction it
represents U, and if it points in a negative direction it
represents Uf. Arrows which are attached to one another
imply the obvious operation of matrix multiplication as
shown in this figure. A closed loop will therefore
represent the trace over the corresponding product of ma-
trices. In our calculations we have to evaluate matrix ele-
ments of products of such closed loops. These loops are
generated by the magnetic term of our Hamiltonian, and
are modified by the operation of the electric term, which
is the sum over the quadratic Casimir operators of all
links.

The link element Ub is, in fact, a representation of
SU(3) XSU(3). The two different SU(3) groups are associ-
ated with the two vertices on the two ends of the link.
The notation that one uses in the electric term of the
Hamiltonian refers to just one set of these SU(3) genera-
tors. By convention it is chosen to operate on the left (or
low) end of the link. This is the choice implied by the
basic algebraic equation

[E,U]= U .
2

(Al)

(A2)

This is represented by a ring around the vector in Fig. 12.
The two other equations on this figure show what hap-
pens when the double commutator acts on an exterior
product of two U matrices associated with the same link.
Thus the second diagram shows the effect of acting on
Ub Ud . The result is that the same object is returned with
a factor of 3, but, together with it one obtains —5d5i, .

One can use the results of the Casimir operation to
decompose the exterior product into irreducible represen-
tations of SU(3). Figure 12 shows cases corresponding to
the direct products of 3X3 and 3X3. Using the known

The effect of the Casimir operator is given by the double
commutator

FIG. 14. An algebraic system created by two neighboring
plaquette operators (tr U~ or tr U~~) which is closed under opera-
tion by the Casimir of the common link.

eigenvalues of the Casimir operator one obtains the
decomposition shown in Fig. 13 which corresponds to

3x3=8+I, 3x3=3+6.

There are several ways to proceed with the calculation.
One may start by decomposing a given set of products of
loops into a set of orthonormal states which behave as ir-
reducible representations under SU(3) rotations of every
link. Once this decomposition is given, one can either cal-
culate every order of the electric term separately, or calcu-
late all orders at once by using the perturbative approach
(Sec. V in Ref. 1). The latter is also particularly useful to
obtain the strong-coupling perturbation-theory result from
the same calculation.

We found it easier to use an alternative approach.
Starting with a given set of products of loops we note that
by applying the electric term one obtains the same dia-
grams as well as new ones. After several applications of
these Casimir operators this set of diagrams closes. An
example is shown in Fig. 14. Here we insert the results of
Fig. 12 between two neighboring plaquettes. These dia-
grams, as well as their complex conjugates, are all the
ones one needs for calculating the contributions of order
x~ in Fig. 6. All orders of the electric term are now well
defined. By evaluating the norm of—and the overlap
between —the different diagrams, one obtains the neces-
sary input to the calculation. This is the method we have
used for diagrams of order x and higher. Once the alge-
bra for a given set of diagrams was defined, we have
manipulated it by using the REDUCE computer language
to compute a11 the orders in t that we needed.
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