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Within a mean-field approximation, we show that the topological excitations of the three-

dimensional XF model (vortex loops} break rotational invariance below the critical temperature.
The onset of long-range order shows up as an orientational transition of the vortex loops perpendic-

ular to the direction picked out by the mean field.

I. INTRODUCTION

The plane rotator model

PH= —Ko g cos(8; —8J), n. &8;—&n.

Z= I gdP„(r) g exp
J„(,r)

loops only

g lei.~.~A'i. (r) l'1

r, ljl.

+ 2mi g J&(r)P&(r) . (1.2)

has been the focus of much interest both in field
theory' and statistical mechanics over the past de-
cade. 8; represents the angular deviation of the classical
planar spin at the ith site of a hypercubic lattice in d di-
mensions, while (ij ) denotes nearest neighbors, counted
once. The model has a symmetry under the change
8; ~8;+2n;m. . It has an interesting topological structure
related to this symmetry, the detailed nature of which de-
pends on the dimensionality of the lattice.

In two dimensions (2D} the topological excitations are
vortex points. These are circular deviations of 8, centered
at some point and falling off slowly, across the lattice.
They exist in addition to the spin-wave collective modes
that are small oscillatory deviations of 8. The unbinding
of topological excitations of opposite sign drives the
phase transition in two dimensions, where long-range spin
ordering of the conventional type is forbidden. '

In three dimensions (3D) by contrast, long-range order
does exist. Below a critical temperature, the spins lock on
average in a common direction. This is the spontaneous
breaking of a global (rotational} symmetry. The topologi-
cal excitations in the 30 XY model are vortex loops that
correspond to toroidal configurations of spins. "

In this paper, we consider the general question of the
interplay between long-range order (LRO) and the topo-
logical excitations of the 3D XF model. How are the vor-
tex loops affected by the transition and how do they parti-
cipate in it? Are vortex loops alone sufficient to describe
the transition? '

The most convenient framework for discussing these
questions is in terms of a Hamiltonian directly describing
vortex loops, rather than the spin Hamiltonian of (1.1).
The most direct way of extracting the topological Hamil-
tonian is by the "dual transformation"' ' variables
J„(r),$„(r) defined on the bonds of a dual lattice. This is
a lattice penetrating the original lattice and displaced by
half a lattice spacing in each direction. The original site
variables 8; are integrated out. The two representations
are exactly equivalent descriptions of the same model.
The partition function has the form

The partition function is analogous to that of a current

J„(r) linearly coupled to a vector potential P„(r) but with
a pure imaginary coupling constant. The current and the
vector potential are topological in nature.

Continuing the analogy, the topological dipole moment

M&(R} of the current loop can be defined, and the
discrete curl of the vector potential is a magnetic field
B„(r). It is more convenient to work with this set of dual
variables I B„(r),M„(R)I.

Since LRO is most directly seen in the mean-field ap-
proximation, the questions raised previously take the fol-
lowing form: How does one do mean-field theory in
terms of M„(R),B&(r) variables'? How are topological ex-
citations affected by long-range order (LRO)?

These questions are also relevant in another context. A
much studied ' ' generalization of (1.1} describes a
matter field 8; minimally coupled to a gauge field A;~.
The Hamiltonian has the form

PH= —Kog&, icos(8; —8 —eA; ) .

For the charge e =0, this clearly reduces to the XY spin
model of (1.1). Monte Carlo simulations have been used
to study the full charge-temperature phase diagram. '

Our investigation corresponds to the temperature axis
e =0.

The e =0, T axis can be related to the T=0, e axis
by a variation of the dual transformation. ' Hence, our re-
sults are of relevance to this 3D lattice gauge theory. We
elsewhere investigate the behavior of the vortex loops for
e &0 in the rest of the phase diagram.

In this work we perform the simplest symmetry-
breaking truncation on the Hamiltonian in dual M&(R),
B&(r} variables. This might be termed "topological
mean-field theory. " The vortex loop, or circulating topo-
logical current is characterized by a strength, size, and
direction of circulation. This is related to the magnitude
and orientation of M„(R).

We find a (mean-field) transition that involves the onset
of orientation of the very smallest vortex loops. The topo-
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logical dipole moment M&(R) perpendicular to the plane
of the loop, tends to line up with others below a critical
temperature T„so that (M„(R))=0. The orientational
transition involves the spontaneous breaking of a global
rotational symmetry, just as in the spin description. It
does not contradict Elitzur's theorem no local gauge
symmetry is broken. See Fig. 1 for a pictorial illustration
of this. The transition is like that of a dipolar ferromag-
net but with itinerant spins, M&(R) =0, +1.

The nature of the self-consistent solution is affected by
the pure imaginary coupling constant in the bilinear
coupling between the real variable M„(R) and 8„(r) F.or
the (8&(r)) =0 solution, one obtains the usual' flip in
the sign of the Biot-Savart law between the currents J„(r),
because the square of the pure imaginary coupling con-
stant is negative, i ~= —1. Then ferromagnetic tendencies
are forbidden and (M&(R)) =0. However, for T g T„
one finds the symmetry-breaking solution that lowers the
free energy, namely, (M„(R))&0 in a particular direc-
tion, with the auxiliary field (B„(r))&0 in the same
direction but pure imaginary.

The idea that topological excitations in 30 participate
crucially in a phase transition, has, of course, been con-
sidered by others. ' i The 2D Kosterlitz-Thouless (KT)
idea of an unbinding of vortex points has been carried
over in 3D to a picture of a sudden expansion of vortex
ring size at the transition. As mentioned, however, the
3D and 2D cases are qualitatively different: the 3D case
has LRO while the 2D case does not. The transition that
we find involving vortex loops is distinct from previous
ideas' and involves an orientation directly associated
with the onset of LRO both in the spin-spin correlation
and the M-M correlation. One cannot, of course, rule out
an independent KT-like size expansion transition at this
or other transition temperatures. This is discussed further
in the last section.

The plan of the paper is as follows: In Sec. II we state
the standard mean-field results in the spin representation
8;. In Sec. III this is rewritten in terms of discrete vari-
ables M„(R) and a continuous auxiliary field 8„(r) by a
dual transformation. A mean-field-like truncation is
made, and coupled self-consistency equations for (8„(r))
and (M&(R)) are obtained. These are solved close to a
transition temperature T, to obtain (M&(r) )
cc(1—T/T, )'~2. This T, is estimated. The lowering of
the free energy is calculated and turns out to be the same
as the standard mean-field result in Sec. II, indicating that

the original and dual lattice descriptions are equivalent.
This point is confirmed in Sec. IV by evaluating the long-
range spin-spin correlation (cos(8; —8k) ) in the dual rep-
resentation. It turns out to be proportional to
(M&(R)) ~(1—T/T, ) implying that spins are ordered
only if vortex rings do not tumble randomly about, as is
physically reasonable. The results are discussed in Sec. V.

II. SPIN VARIABLES ARE MEAN-FIELD THEORY

= —Ko g cos(8; —8~),
{Ij)

(2.1)

where ICO J/ks—T—and J is the ferromagnetic coupling
constant. Clearly (2.1) is invariant under the spin rota-
tions 8;~I9;+a.

We get the following symmetry-breaking average:

n.s; = ( cos8; )

d6I; —PH(e)
z —m . 2'l

The partition function is

n PH(8)—
277i=1

(2.2)

(2.3)

where n is a unit vector in the direction of spontaneous
magnetization.

The mean-field truncation of the weighting factor cor-
responds to a partition function given by

Eozw {cos8) 2

ZMF(I8I)=e ' g exp Eoz(cos8)gcos8;

—KozN(cos8) . (2.4)

Here the first exponent is the averaged Hamiltonian and
the second exponent in large parentheses is linear in the
fluctuations with a zero average. The number of nearest
neighbors is z =6 for a cubic 3D lattice.

Using the weighting factor of (2.4), the self-consistently
nonzero solution of (2.2) is found to be, for T ~ T„

1/2

(cos8;) =~2 1—T
(2.5)

In this section we outline the standard mean-field re-
sults for comparison later.

The XY Hamiltonian is

PH(8) = Eo g—s; s, (
~
s; i

=1)
&Ij&

FIG. 1. Schematic physical picture at transition: (a} For
temperatures above transition, loops tumble freely. Dashed ar-
rows denote topological moments of loops. (b} For temperatures
below transition, the (smallest} loops orient, on average.

where the mean-field transition temperature is

Tc =
~ =0-3333'

J '
KgT,

The free energy lowering from (2.4) is

136,I' T
N

'
T,

(2.6)

(2.7)
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III. DUAL UARIABLES
AND MEAN-FIELD THEORY

An alternative description of the XY system in three di-
mensions is in terms of dual variables J„(r),P„(r) defined
on the bonds of the dual lattice.

This is obtained by making a dual transformation' on
the partition function defined on the original 1: 'ce. The
weighting factor e ~ ' ' is Fourier analyzed and the 8 in-
tegrations are performed. These give a set of Kronecker 5
constraints on the integer-valued Fourier labels k„(i}.
The partition function of (2.3) is

Z= g exp Q V(k„(i)) ff 5g k (;) 0, (3.1)
Ik„(i)I i p

where e '"' is the Fourier coefficient of e ~ ' '. The
constraint can be satisfied as an identity by the introduc-
tion of integer-valued variables on a dual lattice. Using
the Poisson summation formula, the partition function
takes the form

Z =g' f gd((}„(r)exp g V(e„„i„hgi(r)}
IJI rp r,p,

+2niJq(r}gq(r) (3.2)

The prime on the sum in (3.2) denotes that the I JI vari-
ables form closed loops, obeying the constraint
ApJ&(r)=0. The integer-valued current variables J&(r)
are physical variables describing topological excitations of
the original 8 field while P„(r) is an auxiliary field vari-
able. [Note that (3.2) clearly differs from the contact in-
teraction model (3.1), that has also been called a loop
model. ' ]

The result (3.2) is formally exact. The weighting factor
can, however, be approximated by a Gaussian to give

Z=g' I gdP„( ) p — g[e„&P ( )]'
IJI rp r, p,

The spin-spin correlation function exhibits long-range
order for large separations:

&S, S,, &=&cos(8;—8k)& ~ &cos8;&
jr, —rk I

(2.8)

&cos8;& =2 1—
C

e„„i.,'(r)„g 5(—r—ro) Ji(r)
ro on

loop R

=X&R IL,i. Ir&&r
I Ji. &,

(3.6a)

(3.6b)

th
l lattice site~

potential interaction.
The Hamiltonian exhibits a continuous local U(1) gauge

symmetry, under Pz(r)~P&(r)+b„X(r). The ring con-
straint 6&J&(r}=0is thus seen as a conservation law asso-
ciated with this gauge symmetry. The Hamiltonian also
exhibits a global rotational symmetry P&(r)~R„„Q„(r),
J„(r)~B.„Q„(r), where R is an orthogonal matrix,
R =1. We make a mean-field truncation in terms of
variables M„(R) related to J„(r) by Eq. (3.5) below. Our
mean-field truncation breaks the second, global rotational
symmetry. This is as in the spin Hamiltonian case. The
first, local gauge symmetry is left untouched —rings
remain rings. There is no violation of Elitzur's theorem'
at any stage.

Carrying the electromagnetic analogy further, the circu-
lating topological current Jmay be regarded as producing
a topological dipole moment M„(R) defined by

M~(R)= —,
' g e~„x(ri)Ji,(ri) . (3.5)

r& on

loop R

Here R is a vector denoting an origin attached to, and la-
beling, the vortex ring. ri=ri(R) is a vector from this
origin to the site from which the current J(ri) emerges.
Notice that the previous site labeling J„(l}has been re-
placed by vector separation labeling J„(ri) for currents
leaving site ri. For an elementary loop, Fig. 2 shows the
relative components of J&(r), M„(R), with R at the pla-
quette center. We later find &B„(r)& is pure imaginary.
However the direction of this imaginary part is parallel to
M& and originates at the loop corner. J&(r) takes values
0, +1. Using (3.5), this gives M&(R) =0, + l.

Since M&(R) is a vortex loop variable that carries the
relevant information regarding the position and overall
orientation of the loop, we cast the thermodynamics in
terms of it. A formal inversion of (3.5) is required

Equation (3.5) can be written in an obvious Dirac bra-
ket notation as

M„(R)=&R IM„&
I

+2mi+Jq(r)P„(r)

(3.3)
Clearly the exponent in (3.3) contains an analogy to elec-
tromagnetism, with an auxiliary field

B„(r)=e„„i„bPi(r) (3.4)

playing the role of a magnetic field. Then in (3.3) one has
a Hamiltonian

(2%0) ' Q„„B„(r) 2~i Q„„J„(r)P„(r)—
with a field energy and a J.A-type current vector-

FIG. 2. Topological current loops centered at R with respect
to the origin 0 and parallel to the plane of paper. The topologi-
cal dipole moment Mc', R) will point out of the plane of paper
and is located at R. The topological current J„(r) has a sign
convention as shown.



33 TOPOLOGICAL EXCITATIONS AND LONG-RANGE ORDER 3005

The operator L„ is formally

1L = e (rop) +5(ro —rop)
fp

(3.7)

and has matrix elements as in the large parentheses of
(3.6a). Then formally

~ J„)=L„, '
~
M„) and we find,

from (3.3), that

where L defines an operator with matrix elements as in

the large parentheses above.
~
R) and

~
r) are position

kets such that they are eigenstates of corresponding posi-
tion operators:

Rop~R)=R~R), roper)=r~r)

(Here the dagger, or its absence refers to the use of bras or
kets as appropriate. } This will become important when
considering spontaneous symmetry breaking.

If (B„)=0, completing the square in (3.8) gives

Z~ g exp (2—m Eo) g M„(R}V„„(R,R')M„(R')
Im„l R,R'

(3.10)

where V», the interaction between the moments, is

V~„(R,R') = (R
i
Lq)„'(ebeb ) '))„L 'i „i

R') . (3.11)

In terms of the current variables I JI, (3.5) in (3.10) gives

B„'(r)Z=g f gdB„(r)exp —g
M rP r Ijf,

Z cc g'exp —(2m Ko)g J„(r)G„„(r,r')J„(r')
r, r'

(3.12)

+2tri gM„(R)

X U„„(R,r)B„(r)

(3.8}

where the interaction U„„(R,r} is the matrix element

(R
~ U„„~r) =U„„(R,r)

=&R l(Lp) '} (&)i 4)'} 'Ir&

The inverse curl operator (e)I„Q„) ' can be understood
from the Maxwell's equation VXB=4n J/c that has the
solution

1 f d i, J(r') X (r —r')

[r—r'/ '

Note that the interaction terms in (3.8) can, in an obvi-
ous symbolic notation, be written in two equivalent ways:

g J&(r)P&(r) =M&U&„B„
r, jtl

=BqUq~„=g P„(r)Jq(r) .

The inversion can be made in a gauge-invariant fashion, '

where G '» ——e&~~6~@~@h~. In coordinate space, the
Green's function is asympotically G&„(r,r')
=( I/4tr)(5„„/

~

r —r'
~

). Then (3.12) is seen to represent a
Biot-Savart-type current-current interaction, but with the
sign flipped' due to the imaginary coupling, as i = —1.
This agrees with the direct integration of (3.3) with

(P&) =0. Equations (3.10) and (3.12) have overall factors
from B integrals

Because of the sign flip, (3.10) and (3.12) tend to align
two vortex loops with J circulating in opposite directions,
i.e., with M —s antiparallel. Thus (M) =0. Going back
to (3.8), for (M ) to be nonzero, there must be an associat-
ed nonzero average of the auxiliary field, (B)=0. The
imaginary coupling constant plays a central role in the na-
ture of this symmetry breaking as explained below.

We formally regard the integrand of the partition func-
tion (3.8) as a "Boltzmann factor" describing two fields
B,M interacting bilinearly through a pure imaginary cou-
pling constant. If we consider a complex B plane and a
complex M plane, fluctuations in the high-temperature
phase occur along the real axes around the origin:
(B) =0, (M ) =0 as in Fig. 3(a).

Now suppose the physical variable M acquires a
nonzero real average value (M ) that lowers the free ener-

i ma g
jmag lmag

Qp
~ a

real real

mean
vat, u+

fAeaA

value 5

T~Tc
(a)

T ~Tc
(b)

FIG. 3. {a) T& T, fluctuations, in complex 8 and M planes about mean values (8)=(M) =0. {b) T &T, fluctuations about
nonzero mean values, (M ) real, (8 ) pure imaginary.
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gy. Then fluctuations occur along the real axis, around

this (M)&0 value [Fig. 3(b)]. The interaction term then
shows that 8 is directed by a pure imaginary mean field
through I2mi (M) UIB T. his will tend to force 8 in the
direction —i(M) U in the complex 8 plane since the
Boltzmann weight in Z will be increased. Thus, if M ac-
quires a real mean value (M), then iB acquires a real
mean value i(8). Then below T„ the situation of Fig.
3(b) becomes more probable.

Thus, because of the pure imaginary coupling, the solu-
tion of the coupled self-consistency equations that lowers
the free energy below T, has (M), i(8) both nonzero
and real. The partition function, and the term
exp(2iri(8) U(M ) ), are of course, real.

The symmetry breaking proposed is admittedly unusu-
al. But a detailed evaluation of the 8 integral overall fac-
tor in (3.12) also shows that 8 must be extended to com-
plex values, as done henceforth.

We now justify the symmetry breaking discussed by a

mean-field evaluation of the anomalous averages. Drop-
ping arguments and subscripts for simplicity,

(M)= —g f dBexp — g iB
i

M
M 2I( 0

Xexp 2—mi QB"U M (3.13a)

(8'&=—g fdBexp — g ~8 ~'+2~i gM'UB
M 2Kp

(3.13b)

with the partition function Z as in (3.8). A mean-field
approximation then amounts to approximating variables
by their averages, namely, 8 ~(B)", M~(M) in
(3.13a} and (3.13b), respectively. The partition function is
approximated by

Z=ZMF —exp 2ni g—&M & U&8 & g f ff dB exp
M

~

8
~

+277l g (MU(8) +(M ) UB)
0

(3.14)

(8.(r))'= (3.15a)

8, r exp — B„r+2mi M„R U„„R,r B„r
2Zp R,p,

Restricting ourselves to integer values J& ——0, +1 or M„=O, +1, the anomalous averages in particular symmetry-
breaking directions, (M& ),(8,), are

f —(1/2X ) ~a ~'( )
e " exp 2iri g(M&(R)) U&„(R,r)8„(r) 8„'(r)

R,p

exp +2rri g(8,(r) ) U„q(r, R)Mq(R) Mq(R)
M =0, +1 7;V

(M~(R)) =

M (R)=0, +1

r

exp +2mi g (8„(r)) Ut»(r, R)Mz(R)
1)V

(3.15b)

There are three solutions: (M ) = (8 ) =0,
(M ) — i (8 ), and—(M ) —+i (8 ). The first is the
disordered state, the second raises the free energy relative
to this, and the third lowers the free energy and is hence
preferred.

Notice that two conjugate forms of the interaction term
have been used, (3.13a) and (3.13b), before doing the ap-
proximation. The (M), (8) averages are, in fact, on the
same free energy lowering branch: if M is oriented by
+ i (8 ) then 8 must be oriented by —i (M )

For (M ) small, (3.15a}yields, with dominant contribu-
tions from (M ) on the same loop R (Fig. 2),

& 8„(r)) = 2miKO g—(M„(R') ) U„„(R',r}
R', v

fM/=

2 sinh 4rr'Ko y Up„(R, r) Ut»(r, R)
~

M
~

P) V

1+2cosh 4ir Kog U»(R, r)U»(r, R) M
~

r, v

(3.17)

Ko(T) g U„„(R,r)U„„(r,R)= (3.18)

so that the self-consistent solution obtained from (3.18) is

where (M&) =
~

M ~P, and ga is a unit vector. Since
Ko(T) ~ 1/T it is convenient to define a temperature T,
by

2~iK, g(M„(—Z) ) U„„(Z,r) . (3.16)
1/2 . ' 1/2

/Mf = — 1—

This is the pure imaginary solution conjectured above.
The real (M ) root is given by =0, T~T, . (3.19)
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The free energy lowering, from the partition function of
(3.14), is (eb } 8, = B,e„~,(r—r')„

4n „,
i
r —r'13 2m.

PhF 3 Tc 2 2 3 Tc-
M —ln 1+—cosh — M —l

4 T 3 2 T

Tl—
T.

(3.20)

(B„&= 2~—irC, U„„(M„&, U„„= 1

2m.
(3.25)

(3.24)

For the elementary plaquette, U„=5„„U»and (3.16) be-
comes

e„„,x„(B,& =2~iX, (J„& . (3.21)

This is of course the analogue of a Maxwell equation, and
can be obtained by treating the exponent in the weighting
factor of (3.3) as a Lagrangian, and varying with respect
to i)}„.

The vortex ring orients in a particular direction, and
moves freely with its plane perpendicular to it If .(M„&
is nonzero in the z direction, then (J~ & will have com-
ponents only in the x and y directions. J&(r) tend to can-
cel for all r inside the system and will be nonzero at the
surface, taken to be solenoidal for convenience.

In the thermodynamic limit, from (3.21), —i (B & is in
the direction of a field inside such a solenoid, namely,
along the z axis. [The most transparent way of seeing this
is to write (3.21) in terms of a vector potential
A(r) =Q, ,J(r)l

~

r —r'
~

with B=VXA.j
%e now estimate the transition temperature T, in

(3.18),

(3.22)

Here, as is imphcit in (3.9) and (3.6), the sum over r is
over the sites that participate in the loop labeled by R.
For the square elementary loop, from Fig. 2, we use the
convention' J&(r)=+1 for +x and +y directions. The r
label is from the start of the J„arrows, and R at the
center of the plaquette is taken as the origin. Since

1r~=ry= 2,

Thus the self-consistent (B&,(M&&0 solution is indeed
preferred. Note that the expression (3.20) is the same as
the mean-field result of (2.7) in the 8 representation.

The relation between the mean fields (3.16) can be
rewritten in a more familiar form:

Thus, approximately, the critical temperature T, for the
orientation of elementary loops is

8 J JT —— =0.377 .
3 kg' kgT,

(3.26}

This estimate satisfies the Myerson bound' for the XY
model of J /k' T; & 0.32. It differs slightly from the orig-
inal lattice estimate of (2.4), as the duality procedure con-
tains an extra Gaussian truncation and a continuum ex-
pression has been used in our estimate.

As far as larger loops with N links are concerned, it is
easy to see that M-X, L '-N, and so T, -N
The transition temperature is lower for larger loops: it is
the smallest loops that spontaneously orient themselves
first, as depicted in Fig. 1. The transition is somewhat
analogous to the isotropic-to-nematic transition in liquid
crystals.

IV. CORRELATION FUNCTION
AND LONG-RANGE ORDER

h, hp cos8;kXe'

The spin-spin correlation function (S;Sk &

=(cos(8;—8k)& exhibits long-range order below T, as
noted in (2.8). We have seen above that in the language of
topological excitations, the spin-ordering transition is an
orientation of the smallest vortex rings. Continuing this
analysis, we do a dual transformation on the correlation
function that can be written as a (nonunique) projection

a'
(cos8;i, &

= ln J g d8;exp Ko g cos8;J
i k i &ij &

M, (R)= —,
' [-,' (+1)+—,

' (+.1)+(——,
'

)( —1)+(——, )( —I)]

(3.23)

InZ(h), 8~J
——(8; —8J ) .

i k
(4.1)

Thus the effect of L„ctai nogn a unit magnitude J in the
XY plane is to produce a unit M in the perpendicular z
direction, exactly as in a magnetic dipole moment of a
square current loop. (Of course, these are topological
current and dipole variables here. )

Similarly, if we approximate (e& ~A ) by its discrete
analogue, then for a point r at the lower right-hand corner
of the square loop, for 8 of unit magnitude

(Although all possible projections must be equivalent,
with the exact form, they need not agree after some gen-
eral approximations. ) Now cos8;k can be written in terms
of nearest-neighbor phase differences 8„, by adding and
subtracting neighboring phase angles along some path
from site i to site k. The weighting factor in Z(h) is thus
a periodic function of nearest-neighbor phase angles only,
and can be Fourier analyzed and dual transformed as be-
fore:

Z(Ii)=g I gdB„(r}exp 2ni QM„(R}U„„(R,r}B„
M r, p

(4.2)
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where the weighting factor is defined by the inverse transform,

U(n h]
+de;exp —i

Qadi„(i)8„(i)+Ko g cose +h;hkcose;k
l l (rs }

=I(„)(h)=I(o) (0)e (4.3)

hI
I(0) (0)

~

~
I

1S
I

~

h
~

~ ~~ C0S~t~~ ~
~

I~

~ ~

I~j+de; exp i—gn~(i)8„, (i) e ' " '" —1 exp Ko g coseJ
l * |,'ij&

f ff de;exp Kp g cos8;k

=-g n„,'(e.') ——,'h, h„y n..„,, (e„,e, , cose,„) .
&-}

"' (4.4)

=g n„(i)n&(k)(8;sine; ) (eksinek ), (4.5)

where it is convenient to switch to the vector compact no-
tation. Writing 8;=—,'(8; —8,. „-)+—,'(8;+8,. „-), where P
is the direction of some nearest neighbor, one obtains

For widely separated sites i and k, the second average is
nonzero if rs and r's' are in the immediate neighborhood
of i and k. Then

il n„' '(8 8 cose;k )
&~}
(r's'}

k

=g n„(i(n„tki ((„(vie„(r icos+ '((„(())
P l =i

ments M float about freely. However, their M vectors
point on average in a given direction, z, say. Thus the J
currents circulate in the same sense on each loop. Since
there is no preferred position, this corresponds to an exter-
nal J,„, circulating around every plaquette in all planes
perpendicular to z. Because of the cancellation between
neighboring plaquettes, one has a J,„, circulating around
the outer bonds of the system. If the system is taken as a
giant cylinder for simplicity, one has a giant solenoidal
current J,„, that produces an external dipole moment
M,„, in the z direction.

Starting from the partition function

Z= f gdP„(r)
r, IJ,

AI 1

I(0) (0) 2KO „„
h;hk

(cos(8; —8,. „-)) gn„(i)n„(k) . (4.6)

X g' exp
J„(r]

Q[a„,in', (r) ]'
0 r, p,

+2mi g[J&(r)+J&"'(r)]P&(r)

The correlation function of (4.2) then yields, with (4.1),

(cose;k ) = ——,
' (&„(i)&„(k)),

and dualing backwards, "one gets

Z =f ff d 8; g exp —Ko g[b &8(i ) 2irm&(i —)

(4.9)

where the average on the right-hand side is with respect to
the dual variables B,M.

Thus long-range order in the spin variables is associated
with long-range order in the auxiliary field 8 and hence in
the order parameter M. Using Eq. (3.25) we find

2 3 & 2(cose;k) = —2B =—Ko
2 T

2~bext(i)]2
IJ (4.10)

This is a Villain model in the original representation, b'"'
is an external field orienting the phase angles. Using the
asymptotic results for the Green's function

T T
=4KO 1—

T. T.
(4.8)

6 =(eb,eb, )
' —

i
r —r'

~

one has

The equivalence of the two orientational orderings is
further confirmed by introducing an externa1 dual lattice
field that breaks the symmetry and then reversing the
dual transformation" to see what it looks like on the orig-
inal lattice.

The physical picture of the ordered phase is as follows:
The elementary vortex loops with topological dipole mo-

1=ep~ph~
&pap~a&I .~~~

Jex(
(P=(.„pb, g /r —r'[ (4.11)
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Here 6„'"' is related to the solenoidal J&" in the same way
as a magnetic field is related to the current producing it.

I.et the solencid have length I. and radius a =I./2 and
%=1/ao turns per unit length where ao is the lattice
spacing: The field b'"' in the solenoid can be calculated by
standard methods. ' lt serves to lock the spins in a com-
mon direction.

With an origin at the axis midpoint, the field in
cylindrical coordinates, for large L, is

'2 r

b,'"'(p, z) =b;"'(O,z) ~J'"'X 1+ — +0
L 2

J'"'1Vpz/L . The first could be ga
2*

away by 8;~8;+ 'b,'"'(O,z')dz', just like a Galilean
transform V, ~V, +u that does not affect the essentials
of superfluidity. This establishes Z as a reference direc-
tion. The second term locks the spins, with a ZX plane of
rotation, say, to directions as in Fig. 4. The relative an-
gles of tilt are 58-1/L over a region Z„p&L. As
L ~ oo, the spins lock parallel over most of the volume. '

(The volume -L .)
One can also add an orienting field term —h gi cos81

to (2. 1) and repeat the standard dual transform argu-
ment. ' The h cos8I has the same periodicity in 2nlm. as
(2.1) and hence carries similar vortex behavior in it. Thus
one finds that h couples not just to small 8 deviations, but
also orients' vortex ring variables M.

From the above arguments, we conclude that the spin-
ordering phase transition on the original lattice is
equivalent to the vortex-loop-orientation transition on the
dual lattice. This is in the spirit of a conjecture by Halpe-
rin. '2

V. DISCUSSION

We have shown that the spin-locking ferromagnetic
phase transition of the 3D XY model is associated with
the orienting of elementary vortex rings, with topological
currents circulating in the same direction. We identify
the two transitions because (a) the (rotational) symmetry
breaking in the same, (b) the free energy lowering is the
same, (c) the spin-spin correlation function has long-range
order produced spontaneously if and only if the topologi-

f

7 f r f
f 0 C

I f

FIG. 4. Schematic picture of arrangement of spins equivalent
to the oriented loop state on the dual lattice. See text.

cal dipole moments have long-range order. An external
symmetry-breaking field in the dual representation also
produces long-range order in the spin representation.
(The estimated transition temperatures differ as the ap-
proximations made are slightly different. )

The physical picture is as follows: above transition
spins are disordered, and vortex loops, that are toroidal
configurations of spins, tumble about freely. Below a crit-
ical temperature, the smallest vortex loops orient with the
same sense of topological current circulation and with the
dipole moments lined up. The smail loops are otherwise
free to float about in space perpendicular to the picked
out direction (Fig. 1). Thus (cos8; ) =0 means an orienta-
tion of both the rotation-free part (or the spin-wave devia-
tions) and the spin toroids (which contain the periodicity).
The toroids are loose extended object-spin configurations
that may be hard to detect directly.

A Monte Carlo simulation to check this physical pic-
ture would be of considerable interest. One could start
from (3.8), allow for the imaginary coupling constant, and
look for i(8)&0, (M)&0.

A real-space renormalization-group calculation in terms
of the topological excitations starting from (3.8) would
also be of interest. One would expect a fixed point rather
than a fixed line. Monte Carlo investigations of the 3D
XY model have of course been carried out. ' ' However,
these have been of the 8 representations of (2.3),' and also
the representations of (3.1) and a different dual representa-
tion.

In 2D, when investigating the Kosterlitz-Thouless tran-
sition„a Coulomb gas picture corresponding to vortex
points is found to be useful in Monte Carlo simulations
since a single vortex point corresponds to a large configu-
ration of spins. The vortex unbinding transition is seen
explicitly by depicting the configurations of + charges. It
would be interesting if vortex loop orientations could also
be seen pictorially in simulations.

Monte Carlo studies of compact QED in four dimen-
sions ' have indicated that topological excitations
(monopoles in the case of four dimensions) are essential
for the phase transition and that the monopole density is
a suitable order parameter for studying the phase transi-
tion. ' Of course, the nature of the phase transition in
four dimensions may be quite different from three dimen-
sions as the model is suspected to be at its marginal di-
mensions when d =4.

Previous analyses of the role of topological excitations
in the 3D XF model have been inspired by the 2D KT
transition ' whose novel feature is that it is not associated
with long-range order. In the 2D KT transition, + vortex
pairs of disorder variables bind below a transition tem-
perature TKT. The size transition idea in 3D is to identify
the vortex ring diameter with the analogue of the + vor-
tex separation. A sudden size shrinking of the randomly
tumbling loops is postulated at a transition temperature,
i.e., T,~' TKT.' This approach has not yet been
developed further by a renormalization-group calculation
or even a mean-field truncation. As mentioned in the In-
troduction, the loop orientation transition discussed here
is associated with the onset of long-range order, and is
distinct from the size-change transition.
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However there is soine sense in which the spirit of the
KT analogy is fulfilled. First, since the vortex loops no
longer tumble about randomly stirring up the spins, some
freezing out of disorder variables does indeed take place.
Second, since the smallest loops orient first, at a given
temperature below T„ the lowering in free energy would
be largest for these loops. Thus an associated and subsidi-
ary size shrinkage along with the orientation transition
cannot be ruled out. A Monte Carlo check of these ques-
tions would be useful.

Finally, we note that although we consider an XF-type
model without a gauge field (charge e =0) here, the full
lattice gauge model ' may also be studied. Since the e
and T axes are dual to each other, one expects an orienta-
tion of topological excitations at a critical coupling con-
stant e,2. The explanation of the full e -T phase diagram,
within the mean-field approach, is a broader problem and
will be considered elsewhere. The topological viewpoint
might also be applicable to the liquid crystal nematic to
smectic A transition.

An analytic approach of this kind where topological ex-
citations are central, will also be useful in the context of
periodic QED in four dimensions where Monte Carlo
studies emphasizing topological excitations already ex-
ist. ' ' ' It has also been observed that topological

excitations effectively divide the configuration space of
the compact U(1) lattice gauge theory into separate six:tors
and that local Monte Carlo algorithms may have prob-
lems in moving from one sector to another and may pro-
duce misleading results. The utility of a theory where to-
pological excitations are central is obvious in the above
context.

Attempts to relate the bulk superfluid helium transition
at T~ to changes in vortex ring behavior were made much
ear1ier. is But since the core size g(T) diverges at Tt„, the
physical definition and identity of the rings at transition
is not entirely clear. A better physical realization of a 3D
XI' system, could be 3D N &(N &&X arrays of Josephson
junctions, where the lattice constant provides a core
length scale. Such arrays, in 2D, are currently the subject
of much interest.
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