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Renormalization of QCD in the presence of a nonvanishing vacuum angle and with a general

quark mass matrix is considered to all orders in a loop expansion. The generalized Landau gauge is

assumed. By incorporating the anomalous U&(1) %ard-Takahashi identity into our renormalization

procedure, we estabhsh (i) the nonrenormalizability of 8 and (ii) the validity of the we11-known for-
mula giving the vacuum angle change induced through quark-mass-matrix diagonalization to all or-
ders. We then show how the decouphng theorem applies to QCD with nonvanishing 8. Renormali-
zation of the QCD 8 term in the context of 1arger theories is also briefly discussed.

I. INTRODUCTION

Most physicists believe that quantum chromodynamics
(QCD) is the correct underlying field theory of strong in-
teractions. QCD is a renormalizable non-Abelian gauge
theory' based on the SU(3) color group and exhibits
asymptotic freedoms at the short-distance scale. The
latter property makes the (suitably arranged) perturbation
theory a useful tool for studying short-distance aspects of
the theory and the theoretical predictions indeed compare
quite well with high-energy experimental data. At a
long-distance scale, on the other hand, QCD is supposed
to be highly nonperturbative with the effective coupling
constant of order 1. Elementary fields of QCD, colored
quarks, and gluons, are thus not directly relevant for the
physical spectrum; they are permanently bound to form
mesons and baryons, and possibly glueballs, as the only
physically accessible asymptotic states. In the present
work, various issues related to renormalization of the
QCD vacuum angle will be our primary concern.

The (unrenormalized) QCD action is given by

+fg iy" t)„—igA„' 5ff —Mjf

+ g 'F& (A)F' (A) ~

327r' pv

where

F„'„(A)=B„A'„—d+„'+gf, A„A'„(a =1,2, . . . , 8),
1i; and f,b, are the 3X3 SU(3}-color generator matrices
and structure constants (normalized by tr( &11, }
=25,b, [A,'/2, A, /2]=if, b, A,'/2), respectively, and
'F" (A) = ,'O'" Fis(A) (with e—' =1). We follow the

metric and y-matrix convention of Ref. 5. The indices

f,f' (=1,2, . . . , Nf) denote quark flavors, and for the
flavor-dependent quark mass matrix M =(Mff ) we will
assume the general nondiagonal form (which may involve

ys)

M =M +M =M' '+iysM' ' (1.2)
1+y5 1 —y5

2 2

The origin of this (current) quark-mass term lies in the
theory of weak interactions. Note that the explicit form
of M depends on the quark field basis chosen in the flavor
space.

It should be noted that all free parameters of the
theory —gauge coupling g, quark mass matrix M, and the
vacuum angle 8—are intrinsically connected with sym-
metries or symmetry breakings characteristic of QCD.
The coupling g is of course related to the SU(3)-color
gauge symmetry; this exact non-Abelian gauge symmetry
plays a fundamental dynamical role in QCD by endowing
the theory with both asymptotic freedom and (probably)
quark confinement. The quark mass matrix M introduces
the explicit, but soft, symmetry-breaking terms for the
global SU(Nf )L X SU(Nf )tt XUz (1) flavor symmetries
(which are believed to be spontaneously broken via quark
condensates in the QCD vacuum}. The vacuum angle 8,
which determines relative phases for topologically distinct
gauge-field contributions to the QCD partition func-
tion, ' is related to the global Uq(1) via the Adler-Bell-
Jackiw anomaly. Namely, to describe the same theory,
the Uz(1) phase change for quark-field variables must be
accompanied by suitable translation in 6I. This implies
that, even with M =0, the global U„(1) becomes
anomalous since we are supposed to assign a certain
specific value for 8 to define our theory; this apparently
solves the q problem.

The connection between the global U„(1) and 8 may
also be characterized using the quark mass matrix. Given
a quark mass matrix of the general form (1.2), one may
wish to redefine quark fields suitably such that the result-
ing mass matrix, say
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may become diagonal and y5-free (i.e., real and diagonal
M'). Because of the Uq(1) anomaly, such quark-field
redefinition in the flavor space should be accompanied by
a suitable 8 translation. There is a well-quoted formula
for that:

8'=8+arg(debs') . (1.3)

In the quark-field basis where M is diagonal and y5-free,
a nonvanishing value for 8 implies P and CP violations
and the observed CP invariance to high degrees of accura-
cy in strong-interaction physics puts a very stringent limit
to its magnitude. Explaining "naturally" the vanishingly
small QCD vacuum angle still remains as one of the most
important theeretical problems (the strong CP problem).

In this paper we will consider anew renormalization of
QCD and some related issues, in the presence of the vacu-
um angle 8 (as an a priori arbitrary dimensionless free pa-
rameter of the theory) and for a general quark mass ma-
trix of the form (1.2). Does the vacuum angle 8 get renor-
malized just like any other free parameters in the theory?
Is the mass matrix M in Eq. (1.3) a bare one or a renor-
malized one'? Can we expect a simple formula such as Eq.
(1.3) to be valid to all orders in a fully renormalized
theory? These are some of the questions to which we
shall provide definite answers. We hope that our analysis
enhances our understanding on the physical role of the
vacuum angle 8 when higher-order quantum effects are
taken into account, especially in conne:tion with the
strong CP problem. In any case, it should be important to
have renormalization structure of any given field
theory —let alone QCD—fully understood; only then one
can formulate renormalization-group equations correctly.

We shall assume the loop expansion. Note that, unlike
strict weak-coupling perturbation theory, loop expansion
can accommodate in principle contributions due to topo-
logically nontrivial gauge-field configurations such as in-
stantons. Another point to mention is the gauge choice.
Recently some authors have discussed the 8-term
(non-)renormalization on the basis of the background-
gauge background-field method. + But, their discussions
depend rather crucially on the special characters of the
background-gauge background-field method. We shall
here work in more conventional gauge —the generalized
Landau (or covariant) gauges.

Throughout our discussions, strong emphasis will be
laid on the symmetry aspects of the theory, viz. , how soft-
ly broken or/and anomalous global symmetries of QCD
mentioned above, together with SU(3)-color gauge sym-
metry, can be implemented manifestly through renormali-
zation. This naturally leads to the simplest possible mul-
tiplicative renormalization scheme of QCD, and hence
also to simplest renormalization-group equations. In our
text it will be called the (M, 8)-independent renormaliza-
tion scheme, essentially an adaptation of Weinberg's
zero-mass renormalization scheme" to our purpose. It
turns out that the global SU(Nf )1. XSU(Nf )~-symmetry
considerations, in the form of appropriate Ward-

Takahashi (WT) identities, restrict counterterms to the
quark mass matrix to a very simple multiplicative struc-
ture in our renormalization scheme. Also, a careful use of
the U~(1) WT identity allows us to fix renormalization of
the 8-dependent term in the action; the vacuum angle 8 is
unrenormalized if one uses the properly renormalized
Pontryagin density to define the 8 term in the action.
Furthermore, on the basis of the renormalized U~ (1) WT
identity, we can establish that Eq. (1.3), with the mass
matrix M representing the renormalized values, is in fact
valid to all orders in the (M, 8}-independent renormaliza-
tion scheme. These will be discussed through Secs.
II—IV.

In Sec. V, we consider how the decoupling theorem'
works in the context of QCD with nonvanishing 8. The
decoupling theorem in renormalizable field theories states
that leading effects of virtual heavy particles (or, a bit
loosely, interactions confined to very small distance
scales) on low-energy physics of light particles are indis-
tinguishable from renormalization counterterms (involv-
ing light particle fields). Thus, virtual heavy-particle ef-
fects are suppressed (at low energy) by power, other than
possible readjustments of free parameters of the theories.
In most past works on decoupling, however, people have
not paid much attention to the 8 term in non-Abelian
gauge theories. It is clearly important to know (in con-
nection with the strong CP problem especially} what the
low-energy effective vacuum angle would be in compar-
ison to the high-energy value of 8 defined in the full
theory. We consider in some detail the case when the full
theory includes certain quarks with very large Lagrangian
mass terms [but of the general form (1.2)]. The low-
energy effective vacuum angle is determined by tracking
down symmetry constraints carefully.

Section VI is devoted to the summary and discussions
of our work. In the future, we hope to study various is-
sues discussed in this paper in the context of "larger"
theories [such as the standard SU(2) XU(1) X SU(3)
model] where the quark mass matrix is generated as a re-
sult of spontaneous symmetry breaking. Of course, as
long as QCD constitutes a part of low-energy effective
field theory from such larger theory, information obtained
in this paper would not become entirely irrelevant. We
shall briefly discuss some new problems arising in these
cases in Sec. VI.

II. THE 8 TERM IN LOOP EXPANSION
AND SYMMETRIES OF THE QCD ACTION

The Feynman path-integral language will be used to
study quantized gauge theories. Here the (c-number) ac-
tion plays the fundamental role. The gauge-invariant ac-
tion Sot given in Eq. (1.1) is singular and, as is well
known, the corresponding nonsingular action can be
found by adding a suitable gauge-fixing term and ap-
propriate Faddeev-Popov ghost terms to it. ' %'e shall as-
sume the generalized Landau gauge characterized by a
gauge-fixing parameter a. Then the full unrenormalized
action for the theory, froin which (unrenormalized) Feyn-
man rules may be read off, can be written as
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S = x —4F" A F~„A + f iy" ~
—igA~ off' Mff' ff' (8"A )

a2
2a

2—a X'(a„n„+gf. A„')X'+a g 'F~ (A)F„'„(A)
32

(2.1)

where X',X ' are Faddeev-Popov ghost fields. Here,

(g, iTI,X',X ') belong to elements of the Grassmann algebra
and A& are ordinary functions. At the front of the 8 term
we have inserted the loop-expansion parameter h, which
may be eventually set to 1 (after making the expansion).
The reason for providing the 8 term with an extra loop-
expansion parameter is to make the Uq(1) WT identity
look natural in order-by-order loop expansion. '

(Remember that sources of anomalies are one-loop spinor
diagrams. )

Before one starts to consider higher-order loop effects
with the action (2.1), one must face the following dilem-
ma: 'F" (A)F„'„(A) corresponds to a total derivative and
thus, in ordinary perturbation theory, it is difficult to dis-
tinguish the quantity

x F" A F~A
from zero. This of course reflects the fact that

'x 'F~ A F„'„A

may be nonzero only for Yang-Mills potentials of non-
trivial topological character. Does this imply that one can
study renormalization of the 8 term (or 8-dependent loop
corrections) only by explicitly considering quantization of
the theory around a certain, topologically nontrivial, back-
ground classical solution?" That we are very much afraid
of—we want to apply the power-counting method which
has long bo:n a standard tool for discussing renormaliza-
tion of quantum field theories developed around the trival
classical solution. It is now generally held that the renor-
malization structure of a field theory does not depend on
the classical solution (topologically trivial or not) which
has ben chosen to perturb around. The most well-known
example of this is the renormalization of spontaneously
broken gauge theories. ' So this should not be a real prob-
lem. Our problem is only that, if the theory is analyzed
with the perturbation theory developed around the trivial
vacuum solution [i.e., A&(x)=0] in mind, no distinction
between x 'F" A F„'„A and zero can be made
and thus it will be virtually impossible to determine the
8-renormalization structure. Below we shall describe a
simple way to overcome this fix.

The idea is very simple. %e may study the theory with
the 8 term in the action replaced by

J d xh 6(x)'F" {A(x))F'„(A(x}), (2.2)
32&

where 6(x) is an arbitrary (supposedly vanishing at
space-time infinity) externally given function. The theory
may be renormalized in the presence of this arbitrary
externally given (one may say background} function 6(x),
and only at final stage we may let (e is an infinitesimal
positive number)

6(x)~8e —& I~ I+ Ix I+ I~ I+ I
&

I
~ (2.3)

x 'F& A F~„A

which might be generated as purely higher-order loop ef-
fects even if one starts with 8=0? [For the moment,
disregard renormalization of Yang-Mills field strengths.
See Eq. (2.7).] This can be quite a delicate problem, and
we here elect to resolve the case by invoking the symmetry
principle: viz. , with 6(x)=0 and M =0, P (the parity)
should correspond to an exact symmetry of quantum
chromodynamics. This will be sufficient to guarantee no
subtractive renormalization counterterm proportional to

x FI'~ A F&„A rom higher loops.
The fact that 'F" (A )F„'„(A ) corresponds to a

dimension-four term will not put us in the position of al-
together reconsidering the renormalization procedure for
8+0. Upon integrating by parts, the expression (2.2} is
identical to

2—J a'x a g [a„6(x)]I~.~(A(x)),
32

(2.4)

where

&"(A(x))=2e'" (A'„BiAs+ , gf, I A'„AiAs) . (2.5)—

In other words, the term (2.2) can be rewritten in the form
of a superrenormalizable interaction involving the
dimension-three function, the Chem-Simons form IP(A).
Gauge invariance is manifest in the form (2.2) while the
form (2.4) stresses that it can be treated as a soft term in
(ultraviolet) power counting. ' Renormalization counter-
terms may not involve more than four powers of
R&{x}—:B&6(x). This simple observation tells us that the
8 term will have no effect on the coupling-constant renor-
malization or other logarithmically divergent renormali-

to make the connection with the physical vacuum angle.
Note that this procedure is gauge invariant and, in the
Euclidean path-integral description, will retain the topo-
logical character of the term

82'x 'F~" A F'„A
32&

intact when A&(x} describe topologically nontrivial field
configurations. With the expression (2.2) in the action, its
presence cannot be missed even if we use the loop expan-
sion developed around a trivial vacuum solution. This
procedure should be effective in finding renormalization
counterterms which depend on 8. But how about possible
subtractive renormalization counterterms proportional to
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zation counterterms of the theory. Hence the QCD P
function can be taken to be independent of 8; assuming
iiif & 16, QCD is asymptotically free for all 8. (But we do
not exclude possible 8 dependences in the running cou-
pling constant from finite-renormalization effects which

may include nonperturbative contributions. )

Possible counterterms to the bare action are constrained
by symmetries of the theory. We may here first state the
correct form of the renormalized QCD action [in the pres-
ence of an externally given function e(x)]. It reads

a
S= f d'x ——,'Z~~"'(A)W„'„(A) — (a~A'„)' Ya„—X'e„"X'+Z,qf ir 8 lg Z A

2
5ff' Z Mff' 1/Jf,

gg Z
+e(x)h 'P" W&„(x)—Z~(5X)B"(gfrpr5ff)(x)

32
(2.6)

where A&, P, g, X, and X now denote renormalized fields
(obtained through suitable rescaling from bare fields) and
we have defined

W„'„(A)=—a„A'„—a~„'+g,z'"f~A„'A'„,

=Bp5~+gttZ' fabeAp
(2.7)

ZF(5XWf—r"riff «)

[R„(x)=B„e(x)], (2.8)

where

(A)=26'"u(A„B„A + g Zir2f A+bA ) . (2.9)

There are some special features with our renormalized
action (2.6). Note that the bare-quark mass matrix is sim-

ply written as Z~M, with a single multipicatiue constant
Z~ renormalizing the full quark mass matrix M of the
general form (1.2). At the same time all renormalization
constants (Z, Y,gtt, ZF,Z~, 5X) will be assumed to be in-
dependent of M and 8. The idea behind it is the same
with the zero-mass renormalization scheme of Wein-
berg;" i.e., counterterms suitably defined with

In Eq. (2.6), M =(Mff') represents the renormalized
(and hence finite, by definition) mass matrix and
( Z, Y,gtt, Z~, Zst, 5X}are appropriate renormalization con-
stants which depend on specific regularization and nor-
malization conditions. [A set of convenient normalization
conditions are described in Eqs. (4.23a)—(4.23e}]. As will

become clear as we proceed, the counterterm 5X is related
to normalization of the Uq(1) current [via Eqs. (3.3) and
(4.23e)] and the piece proportional to 5X in Eq. (2.6) is
necessary only because we are here considering the theory
in the presence of an arbitrary externally given function
e(x). Aside from this term proportional to 5X, the renor-
malized action (2.6) is precisely that obtained from the
unrenormalized action (2.1) through usual rescaling of
fields A'~Z'~ A' f~Z ' f Q~ZF' if, X~Y' iX,
X~Y'~ X, combined with the replacements g~gtt and
M~ZMM. Note that the full e(x)-dependent terms in

Eq. (2.6) can be also written in a superrenormalizable
form, i.e., such as

2Z
~xR„x M& A x

32

M =e(x)=0 may be used to renormalize the theory with
general nonzero values for M and e(x). The (M, 8)-
independent renormalization scheme is especially con-
venient since we can here maximally utilize the softness of
given global-symmetry-breaking terms in renormalizing
QCD. If one wishes, connection to other renormalization
schemes can be made by performing suitable finite renor-
malization from ours. We shall discuss the meaning of
the 8-term renormalization implied by the renormalized
action (2.6) a short while later.

The form of the renormalized QCD action shown in

Eq. (2.6) will be justified in Sec. IV, to all orders in loop
expansion. Here, just accepting the form (2.6), we will

identify exact or approximate symmetries of this (c-
number) QCD action. First, we note that, after adding
the gauge-fixing term and the Faddeev-Popov ghost term,
the SU(3)-color gauge symmetry takes the form of the
Becchi-Rouet-Stora (8RS) symmetry viz. , we have
5S =0, under the variation

5A„'(x)=N„'blab(x)5co,

5X'(x)= , gttZ'~ f,b,X (—x)X'(x)5',

5X'(x) = ——Y 't} A( )x5 c,oa (2.10)

5$(x)=igttZ'~ X'(x)&of(x),
2

+ tZFgr5I ZwM~P T)f
+2tPO FASZMMA)

under the infinitesimal variations

54=ta T0 irsP TC iA—rA, . —

50= tea T tkP T—r5 tlri—PO. . —

(2.11)

(2.12)

In Eq. (2.12), (a,P) are arbitrary infinitesimal (Ny 1)-—
component real vectors, T denote a set of (Xf —1) trace-

5$(x)= igttZ' —P(x) X'(x)5',
2

where &o is a space-time-independent Grassmann num-
ber. In addition, we have following approximate global
SU(Nf )I, XSU(Nf )tt &&U„(1)flavor symmetries

5S= f d x( iZ~Q[ZM—M,a T]g.



CHOONKYU I EE AND P. Y. PAC 33

less (and Hermitian} Xf XNy fiavor matrices, and the in-
finitesimal real canstant Po generates Uq(1). With M set
to zero, all of these global transformations correspond to
exact symmetries of the action. Implications of these ex-
act or approximate symmetries of the c-number action on
Green's functions will be considered in the next section.

If we let 6(x) approach a constant 8 [in the sense of
Eq. (2.3)], the 6(x)-dependent part of S will turn into

d~x 8Ii '~""'(x)~' (x)
Sa Z,
327T2

pv

2Z
= f d'x 8I

' a„~~(~(x)) . (2.13)
32

%e have here made the assumption

x fyI'y5 f =—0,
which should be reasonable since, unlike P"(2 ),
\/ff y&ysgf is manifestly gauge invariant. It is possible to
"understand" why the 8 term gets renormalized in the
way shown in Eq. (2.13}; in Euclidean space-time,
(ga Z/32m ) 'P" P&„(x) may be actually identified
with the renormalized Pontryagin density. This can be ar-
gued as follows. From the form of the renormalized co-
variant derivative &„"=B„5 +HZ' f,s,A„[see Eq.
(2.7)], one can conclude that the so-called pure gauge
states in renormalized theory correspond to classical con-
figurations

=(g,z'"}-'U-'(x)—'. a„U(x),
2 l

with general SU(3)-color gauge transformation matrix
U(x). Then, under the restriction that gauge fields ap-
proach pure gauges at space-time infinity, one may natur-
ally identify the Pontryagin index (in renormalized theory)
with

x 'I'" P'„xgg Z
326

very reasonable to consider the parameter 8, normalized
as shown in Eq. (2.13) and without any further finite re-
normalization, as the true physical vacuum angle (i.e.,
that actually associated with relative phases between field
configurations of distinct topological character under so-
called "large" gauge transformations ).

Unfortunately, the above topological consideration to
settle the 8-term renormalization is difficult to implement
in the standard renormalization theory framework based
on order-by-order loop expansion. Many will regard the
above topolagy-based reasoning just as a wishful thinking
without real justification. In this paper a direct proof in
order-by-order loop expansion will be given, taking full
advantage of the anomalous Uz (1) WT identity which is
incorporated inta the renormalization procedure. The
fact that the Uz (1) WT identity can be used to fix renor-
malization of the Pontryagin density should hardly come
as a surprise; the Uz(1} anomaly is related to the Pon-
tryagin index through the Atiyah-Singer index theorem. 0

III. SYMMETRIES OF THE @CD
GENERATING FUNCTIONALS (%G' IDENTITIES}

In quantum field theories, various Green's functions
with an arbitrary number of external legs can be
represented collectively by appropriate generating func-
tionals. In this section we are interested in knowing what
kind of relationships exist for Green s functions, as conse-
quences of the exact or approximate symmetries of the
QCD action S. These are simply expressed through ap-
propriate WT identities for generating functionals. They
are very important for renormalization since these sym-
metry restrictions should be observed by a good renormal-
ization procedure.

We may first define QCD generating functionals for-
mally. The connected Green's function generating func-
tional, W(J&, ri, ri, P,(',T"',L'U, U,g», +5,M, 6}, is
defined by the relation

l
exp —8'

The index M is supposed to be a topological invariant
and, since Il&(G) =Z for a compact non-Abelian group G,
it may assume only integer values. Needless to say, it is
then difficult to imagine that the quantity M, quantized
by a topological reason, is subject ta any, infinite or finite,
renormalization corrections. ' This explains the expres-
sion (2.13). Furthermore, according to this argument, it is with

=N A&
' 7' exp

(3.1)

S'=S+ f d x Ai (x)J„'(x)+ref(x)gf(x)+Pf(x)re(x)+g'(x)X'(x)+X'(x)P(x)

+ YT"'(x)&&X {x)+Y , g&Z'~ L'(x)f b,X (x—)X'(x) i YgsZ' Uf(x) X'—(x)ff(x)

a—i YgaZ
' ff(x) X'(x) Uf (x)+Zz Zz/5„(x)pf (x)Y"Yspf (x)

+ZpZsrg g(x)Qf(x)i ysMff Qf (x) (3.2}
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Here, N is the normalization constant, S represents the re-

normalized QCD action given in Eq. (2.6), and Z„ is not

an independent renormalization counterterm but related
to 5X [see Eq. (2.6)] by

Zg ——1 —2NJh5X .

Note that, aside from external sources ( J',qf 7ff,P,(')
for elementary fields of the theory, we have also intro-
duced additional source functions ( T"',L ', U/,
Uf g 5„,g 5 ) associated with suitable composite fields to
facilitate our WT identity analysis. Among the source
functions, [ri/(x), rij(x), g (x),g'(x), T"'(x)] belong to
elements of the Grassmann algebra and the rest are ordi-

nary functions.
In studying renormalization structure, of more direct

relevance is the generating functional for one-particle-
irreducible (i.e., proper) vertex functions. Let us represent

it by r(A ~,g, f,X',X', TI,L', U, U, ps~, ps, M, 8). The
proper-vertex generating functional I' can be obtained
from 8'through the usual Legendre transform, ' i.e.,

(3.3)

I =8 — X J„'A~'+gf f+
(3.4)

where classical fields (A „',g/, f&,X',X') are defined by

A &(x)=58'/5J"'(x), g/(x) =5K/bri/(x)

Q/(x) = —58'/5iI/(x ),
X'(x) =5W/5('(x), X'(x) =—5W/5P(x) .

(3.5)

To avoid cumbersome notations, we shall henceforth drop
the tilde over classical fields (as arguments of the proper-
vertex generating functional); viz. , we shall just write

r(A&, Q, Q,X', . . . ) for r(A „',g, g,X', . . . ). Also note
that the %T identities in gauge theories take simpler
forms in terms of the modified proper-vertex generating
functional

r r+ (3.6)

Other than the two-point function of gauge fields, I
serves the same role as I .

For our purpose it is convenient to regard the function
8(x) and the mass matrix M also as kinds of external
sources; we may consider (functional) derivatives of gen-
erating functionals with respect to 8(x) or matrix ele-
ments of M' ' and M' ' [see Eq. (1.2)]. Usefulness of
mass derivatives (or expansion in powers of M) with gen-
erating functionals is closely tied up with the fact that all
the renormalization counterterms in our case are taken to
be M independent. Clearly, the relation such as

sr sr sr sr+ +5'�(x) 5Uf (x) 5Uf (x) 5' (x)

The ghost equation of motion

=0 . (3.9)

chosen to be M independent. Also, at this point, we want

to make it clear that we are interested only up to linear
terms in gz„(x) or g 5(x) with our generating function-
als. Hence, possible problems (e.g., renormalization} asso-
ciated with two or more insertions of the externally intro-
duced vertex P/y"y5$/(x) or f/iyPfyyP/(x) shall be
simply ignored. With regards to all the other sources [in-
cluding the mass matrix M and 8(x)], no such restriction
is imposed; we consider their arbitrary powers.

The generating functionals above should be interpreted
as those defined in a suitably regularized theory. If we

characterize regularization by a certain large parameter A

(e.g., 1/4 —n in the dimensional regularization scheme
or large mass parameters appearing in the Pauli-
Villars regularization), the renormalization constants
(Z, 1;ge,Z+, Z~, SX) will be appropriately chosen func-
tions of A. Symbolically, removing regularization from
the theory may be represented by the liinit A~no and
this is the topic of the next section. We shall not specify a
particular regularization scheme; for our purpose, it suf-
fices to specify conditions which a good regularization of
QCD should meet. First, in the limit A~ ao, all ambigui-
ties in the theory should be restricted to local Lagrangian
counterterms of dimension not larger than four. Second,
the generating functionals defined with the help of a good
regularization should realize various symmetries of QCD
in a proper way —it must obey various WT identities
given below, at least for sufficiently large A with
discrepancies vanishing like powers of 1/A in each order
of loop expansion. (In this section, however, we do not as-

sume finiteness of our generating functional themselves in
the limit A~ ao. ) Note that most commonly used regu-
larization procedures can be made consistent with these
conditions by incorporating, if necessary, suitable "im-
provement" terms ' in each loop order.

The WT identities for suitably regularized QCD gen-
erating functionals can be inferred by considering change
of path integration variables corresponding to infini-
tesimal transformations (2.10) and (2.12) with our path in-

tegral representation (3.1). The procedure is quite
straightforward when there is no anomaly, viz. , for the
BRS symmetry and the global SU(NI)L XSU(NJ }x sym-
metries. In terms of the modified proper-vertex generat-
ing functional I, the BRS WT identity reads

f 5r 5r 5r 5r8 x a5A"'(x) 5T„'(x) 5X'(x) 5L'(x)

f (s)
5g ( ) //5M") II 5M".' '

ff' ff'
(3.7)

sr
"5T„'(x)

5F
5X'(x)

(3.10)

or, using the generating functional 1,

4 &~
~ pi &~ (s]

5g (x) // 5M".' I/ 5M"'ff' ff'
(3.8)

will be valid only when all renormalization constants are

is also useful in studying renormalization. %'e may ex-
press the %T identities associated with the global
SU(Nf )1, X SU(N/ )it symmetries in terms of two separate
relations. The %'T identity associated with the diagonal
subgroup SU(NI)i of SU(NI)L )&SU(Nf )g [i.e., related to
the a variation in Eq. (2.12)] reads
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Jl d x {T')ff[(tlf {x)+((tlf(x){T')ff +Uf(x)(T')ff — (T')ff Uf (x)
f X 5|T[f (x) 5Uf.(x) Uf x

+([M[s', T'])ff' (s[ +([M T ])ff' (F)
——0, (3.11)

where I =1,2, . . . ,Nf 2 —1. On the other hand, the %T identity associated with the group actions along the coset space

SU{elf ) XSU(Nf )/SU(Nf )r [i.e., related to the p variation in Eq. (2.12)] reads

l d x — ys(T )ff gf (x)+((tlf(x)ys(T )ff —Uf(x)ys(T )ff
4 5I' 5I'

f X 5' (x) 5Uf (x)

ys(T')ff'Uf(x) i(I—M' ', T j)ff, ,
+i([M' ', T ])ff', ,

=0. (3.12)
5Mf[f.

Note that, to have Eqs. (3.11) and (3.12), the condition that all renormalization constants be M independent is absolutely
necessary.

In Eq. (2.12) the pp variation describes global infinitesimal UA(1} transformation, and it suffers from an anomaly in
the quantum theory. As for this anomalous UA(1), it suits our purpose better to have at hand the WT identity corre-
sponding to a general local UA {1) variation:

5$(x)= i Pp—(x)ysl[{(x), 5$(x)= —lg(x)ysPp(x) . (3.13)

The anomaly arises because the Fermi field integration measure defined in the presence of a background-gauge field does
not remain invariant (i.e., the Jacobian is not equal to 1} under the change of variables corresponding to Eq. (3.13}. Ex-
plicitly, for arbitrary given functions A&(x) [and 1)f(x},1)f(x}],take the quantity

r

a
N exP x 'ZP f lf p lg+Z Ap ff' Z~Mff' f'+Qf f+ fQf (3.14)

with N representing a suitable normalization constant needed to make the given path integral well defined. We shall as-
sume that this path integral is defined with the help of a SU(3)-color gauge inuarian-t (and preserving locality of the
theory in the limit A~ ([0 ) regularimtion. Then, as is well known, considering the change of field variables correspond-
ing to Eq. (3.13) with the path integral (3.14) leads to the following relationship (up to terms vanishing like powers of
1/A):

0 yi f[dd[[dd[ '—ZgB„[dyy&y, dy(x)[+2Z~Z~([yiyiMyy'lb/'(x)

N
iT)f(x)ysgf(x—) iltlf(x)ysrlf(x—)+ll gBzZ ~" ~ (X)

0

Xexp —f d x' ZFitlf ly Bp lgBZ Ap 5ff' ZMMff' 1tlf'+Qfff+Qf17f
I d

(3.15)

Under the condition on regularization which we have just stated, this relation can be shown to be unique and we may
here identify the term proportional to 'P F' P ~z„as the UA (1) current anomaly.

Based on Eq. (3.15), we can formulate the correct UA(1) WT identity which should be satisfied by the properly regu-
larized @CD generating functional. In Eq. (3.1), imagine performing quark-field integrations first. (This should be per-
missible for a suitably regularized expression. ) Separating S into two parts, namely, parts M[ and dari with all quark-
field-dependent terms in S included in Wi, we may then cast Eq. {3.1) in the form

exp —W =)[[['"f [dA„'][dX'][dX']exp &[(A„,X,X,J„,g—,g, T",L)

xi[1' f [df][dg] exp M2(A&, x,x, ily, [ly, g—,g, U, U, ps&, g 5)

where we have set N =N"N' and

a a
W, = f d4x ZFyf ly Bp lgBZ Ap I5ff' ZMMff' ff'+ Qf EFfBZ Uf X fpf

J

(3.16)

+If Qf l~gBZ
2

X Uf +ZFZA/sid tlf Y ysff+ZFZMffif 5Mff'4f' (3.17)
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(i /h)&2
With the amplitude N' f [dit][dg]e ', a relation similar to Eq. (3.15) can be immediately written down and that in
turn will lead to the following relation for W:

5W 5W . 5W+2"5g s„(x) 5g s(x)
—l 7if X)yS

5$'
ysgf(x)

5gf (x)

68' 58' 58'
i —Uf (x)ys + ysUf(x) +2Nf

5Uf(x) 56 x)
(3.18)=0

E5@

We have used the relation (3.3) here, and also made an assumption that path integrations over variables ( A„',X',X') in
Eq. (3.16) do not generate new Uz(1) anomalies other than the one already identified in Eq. (3.15). This latter assump-
tion can be justified in the regularization scheme using higher covariant derivatives. Equation (3.18) is the desired
Uq (1) current WT identity. In terms of the functions I', this Uz (1) current WT identity will read

"5g»(x) 5g, (x) 51lf(x)

i U—f(x)ys + ysUf(x) +2Nf =0 . (3.19)
5I 5I 1

5Uf (x) X g —/' —p

Note that we are accepting the Adler-Bardeen theorem for regularized QCD generating functionals. To prove the
corresponding result for renormalized QCD generating functionals, one must also establish finiteness of amplitudes in-
volved in the limit A~no. That will be considered in Sec. IV. We can also give the integrated form of the U„(1)
current WT identity. Especially, in our (M, 8)-independent renormalization scheme, we may combine the integrated
(over the space-time} version of Eq. (3.19) with Eq. (3.8) to deduce

f d'x— 5I" 5I" — 51 5I'
ysff(x)+Pf(x)Ys — Uf(x}ys —

U
YsUf(x)

f X 5$f(x) 5Uf(x) Uf x

2lMff' (s +21Mff' (p) 2lNf d x =0(p) 51 ~ (s) 51 ~ 4 51

5Mff} Mfff ' 56 x
(3.20)

g(x }~P'(x }=Cg(x },
()'j(x)~f '(x) =g(x)C,

U(x)~ U'(x) =C 'U(x),

U(x)~U '(x) = U(x)C

M M'=C 'MC

e(x)-e'(x) =e(x)—2Nf Pp,

(A„',X,X,T ',I.',y s„,~s: unchanged)

(3.21)

with general global Aavor rotation matrices C, C=yoC yo
parametrized as

This is the WT identity associated with global Uz(l)
transformations and the piece, 2iNf f—d x 5I /58(x),
here corresponds to the global U„(1)anomaly.

The regularized proper-vertex generating functional of
QCD should be consistent with various WT identities
given above. Among them, note that the %T identities
(3.11), (3.12), and (3.20), which are connected with global
SU(Nf )L, X SU(Nf ))t X Uz (1) symmetries, have been
given under the premise that all renormalization constants
are to be chosen to be M independent. Actually, the
meaning of these three WT identities is quite simple. In-
cluding also the trivial U(1) symmetry related to the fer-
mion number, they imply that the regularized QCD gen-
erating functional I'(A„', (l), (t),X',X', T"',L', U, U, g»,
g s,M, 8) or I should be invariant under transformations
of the form

C =exP(iap iysPp+i—a T iysP T)—,

C=exp( iap i—yspp —ia T —iysp T—) .
(3.22)

M ~M'= ypMyp, 6(x)~8'(x') = —6(x),
g(x) ~g'(x') =ypg(x),

g(x}-q '(x') =g(x)yp,

A"'(x) ~A'"'(x') = (A (x), —A "(x)),
g s(x)~g s(x') = —g s(x),

g ~s(x) ~g P(x') =(—g s(x),g s(x)), etc. ,

(3.23)

where x'"=(x,—x'). [Ghost fields (X',X') may be re-

[Here, real numbers (ap, Pp, a,P) need not be infini-
tesimal. ] This information will be able to tell us precisely
what changes are necessary for parameters of the theory
when we make a global rotation of quark field basis in the
fiavor space.

Finally, we wish to say something about the behavior of
our regularized functional I under the parity ( P)
transformation. We do not wish the regularization pro-
cedure to be a source of P violation in QCD—given
M =0 and 8(x)=0, we want P to be an exact symmetry
of QCD. In the ( M, 8)-independent renormalization
scheme this can be also easily implemented with the gen-
erating functional I (A„',g, g,X',X', T~,L', U, U,+»,
g s,'M, e); we may require that the functional I (or I ) be
a scalar under the parity transformation
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garded as either scalar fields or pseudoscalar fields as long
as parity transformation rules for ( T"', U, U) are assigned
consistently with those. ]

IV. PROOF OF FINITENESS TO AI.I.ORDERS
AND THE RENORMAI. IZED Ug(1) %'T IDENTITY

In the previous section, symmetries of properly regular-
ized generating functionals in QCD have been identified.
While observing those WT identities, we now wish to re-
move regularization, i.e., consider the limit A-mao in
order-by-order loop expansion. The freedom at our dispo-
sal is the choice of A-dependent renormalization constants
(Z, 1;ga,z+,ZM, SX). When the finite A~ao limits for
the regularized generating functionals can be secured by

exploiting this freedom, the resulting well-defined limiting
expressions are renormalized generating functionals of
QCD. Within order-by-order loop expansion, we shall
demonstrate below that well-defined renormalized QCD
generating functionals can indeed be constructed to all or-
ders if the six renormahzation constants are chosen judi-
ciously.

For this demonstration it is convenient to work with
the functional I . This is because, with suitable care re-
garding subgraph divergences, possible ultraviolet diver-
gences for the proper-vertex generating functional can be
always isolated as the space-time integral of local polyno-
mials in variables ( A„',Q, Q,X',X', TI,L', U, U, +»,
g &,M, 8) with net dimension not exceeding four. Our di-
mension assignments will be based on the following rule:

Variable

Dimension

Xs
0

a„',X',X',M, Z„=—a„8,g,„q,q, U, U

1 2

(4.1)

r= g lkr, .
k=0

(4.2)

Here one should not forget that renormalization constants
are also some power series in li and, in writing Eq. (4.2),
the lt dependences resulting from renormalization con-
stants are included. To calculate I up to l-loop order, it
will be sufficient to have the renormalization constants
(Z, F,ga, zF,ZM) expanded up to O(h ) and 5X up to
O(h' ') (for 1&1),i.e.,

l I
z z(')= g hkz, r r")

k=0 k=0
(4.3)

I / —1

g~'~= g l "g, „,. . . , 5X 5X'"—= g l '5Xk
k=0 k=0

with the lowest-order values identified to

These are dimensions to be used by us for ultraviolet-
divergence power counting. A noteworthy point here is
that we have assigned dimension 1 (rather than 0) to the
mass matrix M and also to R„(x)=B&8(x) [see Eq. (2.4)
and ensuing comments]; these dimension assignments in
fact naturally lead to the (M, 8)-independent renormaliza-
tion scheme. The presence of the dimension-0 quantity

g 5(x) will not complicate the ultraviolet power counting;
as should be evident from the form (3.2) for S', /q(x)
enters I always in the form of the dimension-1 quantity
g5(x)M. Another useful quantity is the ghost number.
We will assign the ghost number —1 to the field X, + 1

to (X,Ti, U, U), + 2 to L', and zero to the rest of vari-
ables. Then the functional I should clearly have the
ghost number 0.

The regularized functional I is expanded as a power
series in the loop-expansion parameter h (which may be
identified with 1 after making the expansion):

ZO=P~~ ~O=Px ~

ZF, O Pf~ ZM, O (4.4)

Z = g kkzk, ga ——g hkgak, . . . , etc. ,
k=1 k=1

and general k-loop renormalization constants
(Zk ~k gB,k ZF, k ZM, k 5xk —i) are suppos~
dependent of M and 8. Note that, because of the relation
(3.3), the Uq(1) current renormalization constant Z„ is
fixed in loop expansion as

ZA g lt ZAk
k=0

I
Z„'":—g hkZ„k —1 —2Nfh5X"

k=o
(4.5)

Zg 0= 1, Zg k = —2Ny5xk i (fol k & 1)

Let S""represent the expression obtained from S' [see
Eq. (3.2)] simply via the substitution (4.3) for renormali-
zation constants. In S*' ', one should not truncate the ex-
pression up to the I-loop order but keep every term ob-
tained through the substitution (4.3) with S'. (We shall
need S" '~ ~i+i~i ~ below. ) We may then use the nota-
tion 1 ' ' to indicate the suitably regularized modified
proper-vertex generating functional which is obtained by
using the action S' ' in place of S in defining generat-
ing functionals. The functional I '" may also be expand-

gB,O g~ 5X0—
327r'

Here, (pz, pz, p~, g, t) are renormalized (and thus finite) pa-
rameters of the theory and their explicit values depend on
normalization conditions chosen. [Only g, M, and 8 are
genuine fry physical parameters of QCD. Additional
free parameters (p„,pz, p&, t) introduced here will allow
one to treat finite-renormalization effects systematically.
Note that the unrenormalized action (2.1) is obtained if we
set pz ——pz ——p~ ——1 and t =0.] Formally we have
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ed in powers of ))I, viz. ,

r [I)~g, i.[I)~. . . ~s, ~a[.~)~I.I+&r[~)

There should be no subgraph divergences with I''I'+&

since it is based on the /-loop renormalized action 5""

Io=S'"'l (.)= +
2A

(4.7)

Here, in accordance with the above definition, S" ' is ob-
tained from S' via the substitution (Z, Y,gII, ZF, Zsi,
5X,Zq)~(pz, p&,g,p~, l, (g /32m )I, l). Beyond the tree
approximation, I becomes highly nonlocal and is very
difficult to calculate explicitly. Nevertheless, the
ultraviolet-divergence structure and renormalizability of
the theory can be studied systematically on the basis of
power counting and various %T identities. Below we
shall employ the usual iterative procedure.

This means that, with a judicious choice of (M, H)-

independent renormalization constants,

(k =1, . . . , /) (4.8)

the amplitudes I ( = I I', '} for k ranging from 1 to 1 have
been established to have finite A~ao limits. We then
wish to extend the statement to (I +1)-loop order. First,
we note that the ( I + 1)-loop amplitude I I+I may be writ-

(4.6)

Clearly, I'I,"=I"k for k (I. Here, we note that none of
the renormalization constants appeared explicitly in our
WT identities formulated in Sec. III—Eqs. (3.9), (3.11),
(3.12), (3.19}, and (3.20)—wr in the relations (3.8) and
(3.10). Then, naturally, those relations should remain true
even if I'I' takes the position of I'. Below we will thus
assume that, with I replaced by I' ', various %T identi-
ties of Sec. III and Eqs. (3.8) and (3.10) are satisfied at
least up to the (1 +1)-loop order in loop expansion; these
are our requirements for the "suitably regularized" gen-
erating functional I ' '. Also for any given l, the func-
tional I '" is supposed to be a scalar under the parity
transformation (3.23).

We now proceed to the construction of the renormal-
ized QCD generating functional. The functional I in the
tree approximation, I"o ( =I o '), of course requires no re-
normalization and is simply given by

a-=jd'x 51.o 5 51.o 5 5ro
5T' 5AI" 5L' 5X' 5U

+ +

5lo 5 5lo 5 5lo 5+ +
5A„' 5T„' 5X' 5L'

5I o 5 51 o+ +5' 5Uf 5' 5Uf

(4.11)

As is well known, ' ' the functional differential operator
P' obeys the nilpotency relation WP'=0. Exploiting this
nil3sotency, one can show that the local functional
I'I+ I d;„obeying Eq. (4.10) is necessarily of the form

r I",', „=G(A„',y, q,g,„,g, ,M, a„e)+~n . (4.12)

Here, G(A'„,P, g,g s„,g s,M, d„e) is a general, local,
Lorentz scalar functional (involving only variables A„', P,
P, gs&, ps, M, and B&e) which is invariant under the
(tree level) SU(3)-color gauge transformation

5A„'(x)=[8„5„+gp„'~f, As(x)]A'(x),

5g s„(x)=5/ s(x) =5M =5e(x)=0

nite A~Do limits; viz. , I I'+& may have only whole graph
divergences. From this fact and power counting, we may
conclude that divergent pieces of I I'+ i (denoted by
I'I'+I d;„}are restricted to the space-time integral of a lo-
cal polynomial in (A„',X',X', Q, P, TI,L', U, U,g»,
gs, M, B&e) with the dimension of each monomial not
exceeding four. [See our dimension assignments (4.1).]
We may then use the BRS WT identity (3.9), with I' in
the equation replaced by I '". Especially, using the loop
expansion (4.6) for I '", look at the terms proportional to
h +' from the relation. Since I" ik' for k (I have finite
A~ ao limits, it gives us the following constraint equation

(I)for ~ I+1 div.

~~ I+I div (4.10)

where
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function +s„(x) or g s(x) with our generating functional,
and the dimensionless qumtity /s(x) should be always
accompanied by M. On top of these conditions, we may
impose the global SU(Nf)1 XSU(Nf)a symmetries, i.e.,
use the WT identities (3.11) and (3.12) with I replaced by
1 'l'. This will lead to the conclusion that Eqs. (3.11) and

I

(3.12} should hold even if I there is replaced by the local
functional I'(l+ i d;„. [The Uz (1) will be considered
separately below. ] Also, 1 Ii+) ) d;„should be a scalar under
the parity transformation (3.23). The most general form
for the functionals G and Q, consistent with all these re-
quirements, can be easily recognized as

6 = J d x —,'a)+—)F" (pq' A)E„'„(pz' A)+bi+)P~iT)fiy" d„ig—p„' A„' ff(x)

cl+IpfitfMff'Pf'(x)+dl+)P~sp(x}ff) Ys Pf(x}+cl+)PJ'S s(x}PfiFsMff'4f'(x)

+rl+)8„8(x)E"(p„' A)+sl )P~((3„8)(x)itifX "fA'f {x) (4.14)

f1= I d x Iel~)L' (x}X (x)+fl+)(& &X'}(—x}Apx}+&i+)[Uf(x}ff(x)+itif(x)Uf(x)]I s (4.15)

where various constants (a)+i,bi+i, el+i, dl+), cl'+i, rl+i, sl+i, el+i,fi+i,hi+i), which may diverge as A~oo, do not de-

pend on the mass matrix M or 8. Power counting alone indicates that all these constants can be logarithmically diver-

gent as A-+ (N. Note that, in the expression (4.14) for G, pure quark bilineats without involving the mass matrix M ex-

plicitly are forbidden by the SU(Nf )L, X SU(Nf )a consideration.
Without any loss of generality, we may set I)i+ i ——0 in Eq. (4.15) since the terms proportional to hi+i from 0 are al-

ready represented fully in the expression (4.14) for G. Now, using Eq. (4.12), we have

r

~I+),div=G+ I d'x fl+)Pz{T &X'}(—x}(5,5ttt:+gp~'"fats A,'}X't:«}

5r'o
1/2 e b c

5I'()
fi+i .—A"'(»+el+i

& pzgp~ I '(x)f.l X (x)X'(x)+el+i . X'(x)
5A"'(x) 5X'(x)

{4.16)

With this expression, we may now use our last
constraint —the Uz (1) current WT identity (3.19), with I
replaced by I"".This will lead to the conclusion that Eq.
(3.19) holds with I'Il) d;„ in place of I . If we use the ex-
prsssion (4.i6} for I't'+t a„, that wttmtton implies that wa

may in fact identify

dl+i bi+i —2Nf——sl+), et+i ——el+i, rl+) ——0 . (4.17}

Note that, for the one-loop case where 51 (io)/58(x) is ex-
actly equal to the finite expression

['~" {P~'"A}~l:.(p~'"A} rp~(itifr—l rA')]

we obviously have 51 'l,d;„/58(x) =0 and ri ——si ——0.

Then, Eq. (4.17) says that di ——bi and ci ——ci. Beyond
the one-loop order, sl{l&2) cannot be set to zero (i.e.,
divergent as A-p co ) and hence dl for 1)2 will be in gen-
eral different from bl.

The last relation in Eq. (4.17), rl+ i 0, is esp——ecially re-
markable since it will immediately lead to the conclusion

51 (l)

finite as A~ (ta for all i =0, 1,2, . . . .
58(x) y=y=o

(4.18)

Equation (4.18) indicates that, as far as 8(x)-dependent
bosonic counterterms are concerned, the ( i + 1)-loop
counterterms coming from the 1-loop renormalized action
S ' ', i.e., the ( I + 1)-loop terms of the expression

( (l) )2Z(l)
d x 8(x)h [8'A —d"Al +g")(Z("}'~f A" A~][B A' —BQ'+g("{Z'")'~f AdA']

321r' 8 abc (Ntk p, v (4.19)

are in fact sufficient for the (1+1)-loop renormahzation
consideration. (For I = 1, this has been checked explicitly
in Ref. 29. Note that, up to the one-loop order at least,
gaZ'~2 is independent of the number of quark flavors al-
though gz and Z' separately do depend on Xf in a non-
trivial way . )

(I) «(I + 1) «( I)I l+),d.+(~ —~' ) l(i+i) i p=0. (4.20)

Having applied all symmetry restrictions we have on
I I+'i d;„, let us now go back to Eq. (4.9). As we let
A~ 00, a finite functional 1 l+, will be secured if we can
set
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~l+/ =Pr( f/+1+e/+1»

5X/ = s/+—1+5/o
327r'

Zg I+1—— 2'—5X/ .

(4.21)

By construction, these (l+1)-loop renormalization con-
stants will be independent of M and 8. On the basis of
the renormalized action (3.2},we have thus shown that the
existence of a well-defined A —+ ao limit for the functional
I can be extended to ( I + 1)-loop order.

This may be regarded as the renormalizability condition.
With the form of I" I'+1 d;„restricted as above, Eq. (4.20) is
indeed satisfied if we let our (1 +1)-loop renormalization
constants ( Zl + 1, Y/+ l,g// I + 1,ZF / + 1,ZM / ~ I,5X/, Zg I + 1 )

be determined according to
1

Z/+1 pA—( a/+1+2f/+1) gl/, /+1 —Yg I+1 ~

ZF, /+1= pub/+1~ ZMI+, 1 b/+1 c/+1 ~

Assuming loop expansion, we have so far presented an
iterative proof of renormalizability on the basis of our re-
normalized action S'. The renormalized QCD generating
functional can be set to the expression

1 ren ~ I kl ren
k

k=0
(4.22)

(I t/'" ——I /I, I k'"=—lim I /k"' for k & 1) .
A —+ oo

Clearly, I ""will possess the same symmetry properties as
our suitably regularizel functional I', viz. , Eqs. (3.9),
(3.11), (3.12), and (3.19) hold with I there replaced byI'"". They are appropriate WT identities for the renor
malized proper vertex-generating functional in QCD. The
six ( M, 8)-independent renormalization constants
(Z, 1;g//, ZF, ZM, 5X) may be chosen such that the follow-
ing normalization conditions (in momentum space) may
hold:

(1) I /A 1(P» P)/:. l M —=0 /5abpA ( lpvP PgPv) at P (4.23a)

I /~Jr/(P P) I
M=0=/5 bp// «P = (4.23b)

I'(4 ~1(P q "= P —q)/' '/j.
—
l M =o=/'p~ '

gfab [ri/ /(r q)/ + r—ii/ (P r} + r—
ii (q —P)x]

+(different tensor structure) at p =q =r = —p, (4.23c)

(iv) I t&~/(p,
—p) —ipse ipeM+O—(M ) at p = —pM~O

(4.23d)

X
(v) I (~p)(q;p, p'= —p q)

~ M o
—ip~5y"y——5 with p)=1 —h t at P2= —p~ .

5g 5„(—q)
(4.23e)

dpi'

dpi'

dp dp

dg dpi'
/ =@g), i =rq(g)pq,

dp dp

dM dp5=r (g)M v =5(g)ps .
dp dp

(4.24)

Here, [y„(g}, yr(g), P(g), y~(g), y (g), 5(g)] are
renormalization-group coefficients which become in-

(Here, for quantities given on the left-hand sides, setting
TI =L'= U= U=g» ps=8=0 —i—s implicitly as-
sumed. ) Note that we have chosen a (arbitrary) spacelike
momentum scale, p = —p, as our normalization point.

If one changes the value of /M, the values of renormal-
ized parameters (pz,pr, g,p~, M,p&) should be adjusted ap-
propriately to have vertex functions unchanged. In this
sense, renormalized parameters (pz, pz, g,p&,M,p&) are
really functions of p and the precise functional depen-
dences are expressed through renormalization-group equa-
tions:

dependent of M and 8 in the (M, 8)-independent renor-
malization scheme. Note that the value of the vacuum
angle 8, fixed by the action (2.6) [with the substitution
(2.3)], remains unchanged for different values ofpi

I ""is guaranteed to be invariant under the general fla-
vor transformation (3.21). Based on this, we can now es-
tablish the formula (1.3) as a relation valid to all orders.
Here, M [see Eq. (1.2)] should be taken as the renormal-
ized mass matrix which appears in our renormalized ac-
tion (2.6) and also in the normalization condition (4.23d).
Also, we emphasize that the parameter I9 should enter the
renormalized action precisely in the form shown in Eq.
(2.13), with no additional finite (multiplicative) renormali-
zation with the composite field

(gt/ Z/32m. ) *a""'W„' (x)

allowed. Given a quark mass matrix M of the general
form (1.2}, one can always make a suitable
SU(lVf )t, X SU(&f )// XUq ( 1 ) rotation on quark-field
basis such that the mass matrix in the new basis may be-
come y5-free and diagonal. If one does not wish to end up
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—iYIf(x)yqgf(x) iaaf(x—)y5rlf(x), (4.25)

J 5q(x) =Zp(1 2Nfh6X)ff—(x)yqysgf(x),

J 5'"(x)=ZrZ~ff(x)iysMff'1/~f'(x),

(4.26a)

(4.26b)

gg Z
W ""(x)= *P" (A (x)}P'„(A (x) )—

32. pv

Zf (5X)(P[gf(x)y„y5i)jf(x)] . (4.26c)

Formally, Eq. (4.25) is just a rearrangement of the relation

+[ZFkf (»ypy54f(»]

=2Z~Zrgf(x)i ysMff'Qf'(x)

gg Z ~+2Nfh 'P ""'(A (x)}P„'„(A(x)}
32

—i rjf (x)yqPf (x) i gf (x)y self (x—) .

(4.27)

with a different theory, such flavor rotation must be made
according to our transformation law (3.21). An elementa-
ry analysis tells us that, to obtain a y5-free and diagonal
mass matrix M'=C 'MC ' with flavor matrices (C,C)
specified by Eq. (3.22), we must assume

po ———(1/2Nf ) arg(de~). Then the transformation law
8'(x) =8(x)—2Nf po, upon making the substitution (2.3),
immediately leads to the formula (1.3). The formula (1.3)
should be thus exact to all orders since it is a consequence
of our symmetry transformation law (3.21). In case a
strictly massless quark exists in the theory, the vacuum
angle 8 is not physically meaningful (and may be set to
zero if one wishes) since the value depends on the (physi-
cally undistinguishable) chiral phase convention for that
massless quark-field variable.

Note that the Uz(1) WT identity plays a very impor-
tant role in our discussion. It may be thus useful to have
our properly renormalized expression for it translated into
the operator language. Looking at Eq. (3.18), it is easy to
see that our renormalized Uz (1) current WT identity cor-
responds to the operator relation

iH p„"(x)=2Jq'"(x)+2Nfh&""(x)

gauge, the set of operators [J5'„"(x),J5'"(x),W""(x)] de-
fined in Eqs. (4.26a)—(4.26c) are finite operators and Eq.
(4.25) indeed corresponds to the properly renormalized
form. [We must warn readers here that, in the context of
supersymmetric Yang-Mills theory, there exist some con-
troversies concerning the renormalized Uz (1) current
divergence relation and its compatibility with supersym-
metry transformations. In this paper, we shall remain in
(nonsupersymmetric) QCD and thus not worry about su-

persymmetry. ]
Using the operator mixing language, we shall here give

a quick reaccount on why [J5~&"(x),J5'"(x),Zf ""(x)] de-
fine finite operators. (In our iterative proof, this has been
implicitly incorporated. ) First, taking into account di-
mensions of operators and various symmetry restrictions,
it is easy to see that the three dimension-4 operators

[W(Qf (x)y„y 5' (x) ), itf (x)i y5Mff'Qf '(x)

'W""'(x)W„'„(x)], (4.28)

may mix only among them under renormalization. Actu-
ally, the first two operators in Eq. (4.28) are multiplica-
tively renormalizable (i.e., no mixing with other opera-
tors). The reason is as follows. The first in Eq. (4.28) is
multiplicatively renormalizable since the operator

pf (x)y&y5pf (x ) is so; gf (x )y&y&gf (x ) is the only
dimension-3, gauge-invariant, flavor-singlet, pseudovector
operator The o. perator g(x)iy&Mff pf (x) is multiplica-
tively renormalizable since (i) M is an external factor
[with dimension 1 according to Eq. (4.1)] and thus the
counterterms must be also proportional to M and (ii)

Qf(x)iy5Mff pf (x) is the only dimension-4, gauge-
invariant, flavor-singlet [in the sense of Eq. (3.21)], pseu-
doscalar [in the sense of Eq. (3.23)] operator which is
proportional to M. On the other hand, the operator

(x)P „'„(x)=—8'M„(A (x) ) may mix with
d (Qf(x)ypy5$f(x)) but Ilot wltll Qf(x)l ypfff'ff'(x).
This is because (i) &' of cPW„(A (x)}behaves also as an
external factor (just like M) and thus the counterterms
must be also of the form Bi'( ) and (ii) the set

I 8'M&(A (x)},P'(ff(x)y&ysgf(x)}] encompass all
dimension-4, gauge-invariant, flavor-singlet, pseudoscalar
operators which are of the form 8'(. ). Counterterms
for the three operators in Eq. (4.28) are further controlled
by the regularized U„(1) current divergence relation
(4.27) (which is just the Adler-Bardeen theorem). Equa-
tion (4.27) indicates that the dimension-4 operators,

Note that Eq. (4.27) can be regarded as the regularized
form of the Uz(l) current divergence relation (with the
Adler-Bardeen theorem ), and in Eq. (4.25) certain rear-
rangement has been made to write the relation in terms of
finite (i.e., suitably renormalized) operators. Equation
(4.25) is the generalization of the similar result obtained in
spinor electrodynamics. ' ' In non-Abelian gauge
theories, people have been uneasy in making a definite
statement (in other than the background gauge ) because
the finiteness property for the operator representing the
anomaly term has not been clearly established. In this
paper we have shown that in the generalized Landau

J 5 =ZFZ~pf(x)1 y5Mff'Qf'(X)

Ra Z
ZFpf(x)ypy5pf(x) 2Nfh Mp(A—(x))

32m2

(4.29)

having different structures [i.e., one proportional to M
and the other having the form 8"( . )], should define fi-
nite operators separately. Then the structures of finite

operators [Jz'"(x),W""(x)] shown in Eqs. (4.26a) and
(4.26c) follow immediately from the three observations:
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(i) i) (gf(x)y&ysgf(x)) is multiplicatively renormalizable;
(ii) "W""'(x)P&„(x) mixes only with i)i'(itif(x)y&y&itf(x))
under renormalization; and (iii)

gsz~
cP{ZF Pf (x)y„y 5' (x)} 2%—yh 'W""'(x)W&„(x)

32

corresponds to a finite operator.
In the renormalized Uq(1) current divergence relation

there still remains the connection to the Atiyah-Singer in-
dex theorem since, as we argued at the end of Sec. II, the
quantity f d x M""(x) may be identified with the Pon-
tryagin index operator in renormalized theory. Note that
this fixes the overall normalization of the term propor-
tional to "P""'(x)P„'„(x)inZf ""(x). Once the renor-
malized action is fixed to the form (2.6), the only ambi-
guity inherent with Eq. (4.25) is the finite renormalization
associated with the renormalization constant 5X; this will
affect the definitions of the operators [Ji'"(x),M""(x)]
according to Eqs. (4.26a) and (4.26c), but not the quanti-
ty f d x ..&"'"(x). If some of the quarks were massless
and could appear as asymptotic states, this freedom in
choosing 5X could be used in securing the correct Uq (1)
charge for isolated massless quarks [cf. the condition
(4.23e)].

Before closing this section, we may briefly comment
on the finiteness of the Pontryagin density

(gs Z/32m)'F" '(x)W&„(x) in the "zero flavor" QCD,
i.e., in pure SU(3) Yang-Mills theory. We have no such
thing like the Uz (1) WT identity to help us here. But the
operator (gs Z/32m ) 'W""'(x)P „'„(x) must be still a fi-
nite operator, given the facts that in QCD with Xf quark
flavors, (i) the operator Zf ""(x) defined in Eq. (4.26c)
corresponds to a finite operator for any Ef =1,2, 3, . . . ,
(ii) with boson external lines only and operator insertions
involving only boson fields, Feynman amphtudes for any
given loop order are polynomials in Xf (so that the ex-
pressions can be safely extended to the N/ Ocase), an——d
(iii) our operator M ""(x) can be identified with
(gs Z/32m ) 'W" (x)P &„(x) in the zero flavor (i.e.,
Xf——0) case.

At the moment, within the generalized Landau gauge,
we do not have a direct order-by-order proof demonstrat-
ing the finiteness of (gs Z/32m ) 'W" (x)W&„(x) in pure
Yang-Mills theory. (But, read our topology-based reason-
ing at the end of Sec. II.) Writing the Pontryagin density
as the divergence of the Chem-Simons form M"(A), one
may here think that a suitable BRS %T identity involving
the operator Pi""(A) may provide the additional informa-
tion necessary for the proof. (Note that the Cher-
Simons form possesses very simple gauge transformation
property. ') But it is not sufficient to establish the finite-
ness (for an arbitrary gauge-fixing parameter a};further
nontrivial properties unique to the Pontryagin density
have to be incorporated somehow.

V. THE DECOUPLING THEOREM AND LO%-ENERGY
EFFECTIVE 8 PARAMETER

The total number of quarks in nature are not known at
present. (By quarks we mean any elementary spin- —,

' fer-
mions to which color gluons couple. ) This is because

there is always a possibility that some quarks, with very
large Lagrangian masses (compared to the presently acces-
sible energy scale}, have not been seen yet in experiments.
It is also conceivable that certain quarks, even with rela-
tively light Lagrangian masses, have not been identified
yet because they are strongly bound by some superstrong
gauge interactions. Theoretically, the decoupling
theorem' of renormalizable field theories is relevant here.
Below we shall explain how this theorem applies for QCD
with nonvanishing 8 (in the generalized Landau gauge) in
case the full theory includes some quarks with very large
Lagrangian masses. In this discussion, weak-interaction
effects will be ignored completely and no attempt is made
to resolve the strong CP problem itself.

First, let us suppose that the full theory, with total Nf
quark flavors and some quarks quite heavy, is described
by the renormalized action S shown in Eq. (2.6) [with the
understanding that a substitution of the form (2.3) will be
made for e{x)at the end]. Since we can freely make glo-
bal flavor rotations of variables in accord with the
transformation (3.21), we may assume without any loss of
generality the quark mass matrix of the following form:

"Lf(light)

. (5.1)

0 m v A'f Lf (hea—vy)

Here, ( mL +,, . . . , mdiv ) are real and y5-free although the

mass matrix for light quarks, ML, may still have the gen-
eral form as assumed in Eq. (1.2). Relative to the external
energy scale (Eo) we are interested in, it will be assumed
that eigenvalues of the matrix Ml are smaller or at most
comparable to Eo while mi, &&Eo for h =Lf+ I, . . . , Nf
(:the heavy-quark flavors). When the quark mass matrix
takes the form (5.1), let us denote the vacuum angle of the
theory by 8 [i.e., when we make the substitution (2.3), this
8 value enters]. Other free parameters of the theory,
(pz, p&,g,p~, M, t), may be defined (as suitable functions of
the normalization scale p ) through the normalization
condition (4.23a)—(4.23e).

For studying very high-energy physics satisfying the
criterion Eo & m~'s, we could conveniently choose our
normalization scale at p —Eo . Here it would be quite
suitable to express various physical amplitudes using the
set of renormalized parameters defined through the nor-
malization conditions (4.23a)—(4.23e)—no large loga-
rithms, assuming cancellation of mass singularities, would
appear in the expressions. But, for physics at energy scale
Eo ~~mI, 's, setting the normalization scale at p -Eo
alone does not make our renormahzed parameters espe-
cially good choices; uncontrolled powers of In(mi, /p )

may still show up in the expressions for physical ampli-
tudes. The situation can be remedied by working with an
effectiue theory which is obtained by integrating out heavy
quark fields. This will be considered below.

Under the restriction gl, ——q~ ——0 for h =If
+ I, . . . , Nf (i.e., no external heavy quark legs), we may
write the connected Green's-function generating function-
al 8' of the full theory as
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l f f
exp —8'

h =L~+1

X exp —S'( &„,X,X,@i,pi )

i%I Q

+ g I d x ZFQ»iy" d„ig—&Z'~ A„' p»(x)
h =L~+1

ZFZ—»t f» m» g» (x ) 8(x—)hZF (5X)di'(p» yqy 5p» )(x )

Lg

+ I d'»"'&„'+ g (riiPt+Piril)+g'X'+X'P (5.2)

where S'(A&,X,X,gt, gt) denotes the expression left after deleting all terms depending on P» or g» (h =L&+1, . . . , Ng)
from the full renormalized action S [see Eq. (2.6)]. For Eo (the typical external energy scale) g& m» s, there exists in gen-
eral, 3 '3s to all orders in renormalized perturbation theory, an effective purely light-particle field theory action S such
that the above generating functional W of the full theory may be expressed as

L)

exp —O' =N A'
h 1=1

Xexp —S(A&,X,X,ft, Qt )

f
+ d x A Jp + 77I I+ I/I + g +g (5.3)

To provide the precise meaning to the right-hand side of
Eq. (5.3), one should specify suitable regularization and
renormalization procedures with the effective theory. If
one compares expression (5.3) with Eq. (5.2), the meaning
of "integrating out heavy-quark fields, " to obtain an ef-
fective theory (which is described by the action S), should
be obvious. Note that, in a sense, heavy-quark fields
behave like extra regulator fields. Starting from the full
theory described by the right-hand side of Eq. (5.2), S can
be constructed systematically by replacing heavy-quark
loop effects with effective local interactions involving only
light particle fields. 3 As emphasized in Ref. 35„ this pro-
cedure can be really looked upon from the viewpoint of
factorization and, because of that, we may here sensibly
talk about the low-energy effective field theory without
explicitly mentioning nonperturbative aspects of QCD.

In considering the effective field theory we shall not
worry about terms suppressed by inverse powers of
heavy-quark masses. Then, as a result of simple heavy-
mass power counting, ' ' S may be restricted to the
space-time integral of a local polynomial in
(A„',X',X',Pt, ft,ML, 8„8)with dimension not exceeding
four. In this power counting, dimension 1 may be as-
signed to the light-quark mass matrix ML and to 8„8(x).
These dimension assignments can be easily justified by

I

studying the change in large-m» asymptotic behaviors of
Feynman amplitudes (including heavy-quark propagators
as internal lines) as one takes (functional) derivatives with
respect to ML or R&(x)=8„8(x). (See Ref. 35.) Further-
more, there are restrictions on the structure of S from
symmetry considerations, i.e., from consistency with vari-
ous WT identities of the full theory. Especially, set

P»=P» ——U»=U»=0 (h =LI+1, . . . , Xy) in the BRS
WT identity (3.9) and restrict one's attention to the
SU(Lf )L X SU(Ly)R flavo transforrnations (involving
light quarks) with Eqs. (3.11) and (3.12)—those relations,
which coincide with the BRS and SU(Li)L X SU(L~)R
WT identities for QCD with L~ flavors, should be ob-
served by generating functionals of the effective theory.
From gauge invariance and SU(Li )L X SU(LI)R-
symmetry considerations, we can then only conclude that
the effective theory action S should take precisely the
form of renormalized action for QCD with L~ quark fla-
vors. Here, an implicit assumption is that regularization
procedures for the effective theory do not spoil the WT
identities. This is the content of the decoupling
theorem. '

Ignoring terms down by inverse powers of heavy-quark
masses, we may thus write
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S= x ——ZP" A W' A — A' —F

+ZF g fi iy" Bi& ig—iiZ' Ai'& 50 Z—M(Mi. )iP gP
1=1

—2

+8(x}h 'P ""'P &„(x)—Z~(5X}P'
32

f
g itiri, rsiti (x}
1=1

(5.4)

or

8=(1+C,}8+C,

(5.5)

with certain (ML, 8}-independent constants Ci, C2, In
Eq. (5.5), sources of having possibly nonzero values for
Ci or Cz are diagrams with some interxial heavy-quark
lines.

To specify the counterterms (Z, P,g~, Z+,Z 5MX) pre-
cisely, it would be natural to adopt the same type of nor-
malization conditions as used for the fully theory, i.e.,
conditions (4.23a)—(4.23e). For renormalized vertex func-
tions of the effective theory, let us thus assume that the
normalization conditions (4.23a)—(4.23e) hold with the
following replacements:

X) —+L,f,
(Pa &Px&g&pyps)~(pa &Px&g &Py&ps} &

(5.6a)

(5.6b)

M ~ML ——rMI

[r is a finite, (ML, 8)-independent constant], (5.6c)

where

~„'„(A)=B„A'„—BQ„'+HZ '~2f,s, A~sA'„,

~
i& =5i&5»&: +SBZ fabc A i»

and we may set 8(x)=8e ~~ l~ I+ ls'I+ l~ I+ I&I ~ (8 is the
low-energy effective vacuum angle). According to our
reasoning given earlier (near the end of Sec. II), the ex-
pression

d x 'P" ~'„(x)gg Z
32M

may be identified with the appropriately renormalized
Pontryagin index in the effective theory. The effective
theory has different renormalization counterterms, denot-
ed as (Z, F,gq, Z+,ZM, 5X), and possibly a new vacuum
angle 8; virtual heavy-quark effects of the full theory have
gone into them. Here, the heavy-mass power counting
guarantees that the effective theory counterterm s

(Z, Y,g~,Z~, ZM, SX) can be taken to be (ML, ,8) indepen-
dent and we may also set

8(x)=(1+Ci )6(x)+Ci

I

An arbitrary spacelike momentum value, p = —p, may
be again assumed for the normalization point. Of course,
precise values of (pz,p~, g,p@ps,ML, ,8) here should be
chosen such that, at energy scale sufficiently below the
heavy-quark threshold, the effective theory may repro-
duce the predictions of the full theory within our approxi-
mation. In general, (pz, p~,g,p&ps, r, C„C2) will be jven
as suitable functions of pz, pz, g, p~, ps, m~'s, and p . In
Ref. 34, the explicit formula expressing g in terms of g,
mi, 's, and p2 is given in the one-loop approximation. The
parameters Ci, C2 will be fixed to all orders in a short
while.

We may regard (p„,pq, g,p~,ps, ML, ,8) as free parame-
ters of the effective theory, obtained after integrating out
heavy-quark-field freedoms. As functions of p, they will
be governed by suitable renormalization-group equations.
Here, without much deliberation, one will recognize that
Eq. (4.24) will hold exactly under the replacements
(5.6a)—(5.6c). Also the parameter 8 should remain un-

changed as one varies p; viz. , the properly defined effec-
tive vacuum angle does not run. The reduction of the
quark flavor number, N~ +I.f, in ren-ormalization-group
coefficients has an obvious meaning —heavy-quark-field
freedoms decouple in low-energy physics. For processes
happening at typical energy scale Eo «m~'s, physics will
be best described in terms of the parameters

(pq, p~,g,p~,ps, ML, 8) normalized at p -Eo . [Here,
needless to say, only (g,ML, 8) have real physical signifi-
cance. ] For the description of physics at energy scale
Eo) mi, 's, the effective-theory parameters lose physical
meaning and one must go to our original set of parame-
ters (pz,pz, g,p@ps,M, 8) obeying the renormalization-
group equations (4.24) (with Nf quark flavors).

We now wish to show that our low-energy effective
vacuum angle 8 should have the same value as the origi-
nal vacuum angle (or the value relevant at energy scale
larger than mi, 's) 8, viz. , Ci ——0 and Cq ——0 in Eq. (5.5).
Technically it implies that given the piece

I d x6(x)h 'P" (x)W'„(x)ga Z,
32&

in the full renormalized action [assuniing the (M, 8)-
independent renormalization scheme], we have the piece

—2
gs Z

d x 6(x)h 'M ""'(x)M '„(x)
32&

[at M =0,8(x)=0]~[at ML, ——0,8(x)=0] . (5.6d) in the effective theory [based on the (ML, 8)-independent
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renormalization schemej. The proof is quite simple. We

may fix the constant Cz first by examining parity. The
proper-vertex generating functional based on the action
(5.4), say 1(A&,t/ii, gi,X',X',Mt, 8), will be invariant
under the parity transformation of the form [see Eq.
(3.23)]

apply the above conclusion. Explicitly, suppose that the
Lagrangian mass term for heavy quarks is given as

f 1+y5
ZF—Zst g gz(x) (MH }zt

I(} =I.I+1 2

Mt ~Mt ——ypML yp, 8(x)~8 '(x') = —6(x),
gi(x)~1(i(x') =ypPt(x), (5.7)

+ (~H )lib' 4'(x )
2

(5.11)
gt(x) ~f I(x') =P(x)y p,

Up to terms down by inverse powers of mt, 's, I is sup-
posed to yield the same low-energy light-particle vertex
functions as the functional I (A&,gf fjkf X X .M,
8)

~ & ~ p of the full theory. But, with the full renor-

malized quark mass matrix given by the form (5.1), it is
an immediate consequence of Eq. (3.23) that the latter
functional is invariant under

Mt ~Mt ypMt y——,p6(x)~6'(x')= —8(x),
i}'i(» 4'(x') =ypA(x»

4(x)~PHx') =4(x)yp,

(5.8)

QI(x)~g't(x)=e ' Pi(x),

Pt(x)~gt(x) =Pt(x)e
&5&0 &5&0

ML ~ML ——e ML e

8(x)~8'(x)=8(x)—2LfPp (I =1, . . . , Ng) .

(5.9)

But, to yield the same low-energy light-particle vertex
functions as the functional I ( A„,pf, 1(f,X',X ',
M, 8)

~ & ~ p, we know [as a direct consequence of Eq.
It

(3.21)] that I should be also invariant under

If ( t),xg ( t),xM JL: transform according to Eq. (5.9),
(5.10)

6(x)~6'(x) =8(x)—2LfPp .

Clearly, the two transformations will be compatible only
with C] ——0.

We have so far shown that no threshold effects show
up in the observed value of the QCD vacuum angle 8
with regards to the presence of heavy quarks, assuming
the quark mass matrix of the form (5.1) (i.e., diagonal and
y5-free in the heavy-quark sector). Stated differently, in-
tegration out quark fields with large Dirac mass term does
not change the vacuum angle. If large scales enter the
quark mass matrix in a different way, one should first
make a suitable flavor rotation in accord with our
transformation (3.21) to bring the quark mass matrix to
the form (5.1) and then, with the resulting vacuum angle,

Now, compare this with the transformation (5.7). Clearly,
only with Cz ——0 [and hence 8(x)=Ci8(x)],
I'(A„,gt, gl,X',X',ML, ,8} can be invariant under the
transformation (5.8}. To fix the constant Ci, we may
check the Uz(1) symmetry involving Lf light quarks. By
construction, I (A&, gi, 17t,X',X';ML, ,8) will be invariant
under [see Eq. (3.21)]

with certain nondiagonal mass matrix MH, and let the
given vacuum angle in this quark basis be 8. Then, after
integrating out all heavy-quark-field freedoins, we will
find the effective vacuum angle 8=8+arg(de~H ).

VI. DISCUSSIONS

In this paper we have established a renormalization
structure for QCD with nonvanishing vacuum angle 8 (to
all orders in loop expansion), assuming the generalized
Landau gauge. We have identified the renormalized Pon-
tryagin density and then proved nonrenormalizability of
8. Full global symmetries of QCD, including Uz(1), are
incorporated in the renormalization procedure and corre-
sponding WT identities valid for renormalized vertex
functions are given explicitly. A simple consequence of
our WT identities is the well-known formula (1.3) which
relates the quark mass matrix phase with the vacuum an-

gle (in a quark field basis leading to a y&-free mass ma-

trix); hence, the formula is established as a relation valid
to all orders. We have then studied how the Appelquist-
Carazzone decoupling theorem applies to QCD with non-
vanishing 8. Here, through a careful examination of vari-
ous symmetry constraints [including that from the
Uz(1)], we have been able to determine unambiguously
the low-energy effective QCD vacuum angle in terms of
parameters of the full theory (relevant at sufficiently high
energy).

Further extensions of our work are desirable. Especial-
ly, with QCD, quark masses appearing in the Lagrangian
should be considered just as externally given parameters.
But, in more extended theories including weak interac-
tions, Yukawa-type interactions between quarks and
Higgs fields can be a source of such quark masses. In the
context of such "larger" theories, at this moment we can-
not make definite statements concerning the 8-term renor-
malization and the global U„(1) flavor rotation with
quark field variables. The situation may actually change
depending on the status of Uz(1) (the P~ei-Quinn sym-
metry ) and CI' in the given larger theory. We shall ela-
borate below on this point to a certain extent.

Let us concentrate here on renormalization of the QCD
vacuum angle term in such a larger theory (assuming,
say, the generalized Landau gauges with color gluon
fields). [Note that, without settling this, one cannot make
a definite statement on the global Uz(1) phase change
with quark field variables, either. j As we explained in
Sec. II, the 8 term in the action can be always regarded as
a superrenormalizable term. Hence, regardless of the
theory in consideration, it should be possible to represent
its renormalizai form such as [cf. Eq. (2.13)]
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(6.1)

where

8ii ——ZI '8+Z2 ' (8 is the renormalized vacuum angle) .

(6.2)

Here, Z'~ ' and Z2 ' are possible renormalization counter-
terms which do not depend on parameters associated sole-
ly with superrenormalizable interactions in the theory
(e.g. , bare masses, 8). Now, the point is that (i) if (aside
from the vacuum angle term) CP happens to be a good or
softly broken symmetry of the Lagrangian, we may con-
sistently set Z~2 ' ——0 in Eq. (6.2) and (ii) if (ignoring the
anomaly contribution) the global Uz(1) quark flavor rota-
tion corresponds to an exact or softly broken symmetry
of the Lagrangian, we may consistently set Z'i '=1.

Spontaneous symmetry breaking, by having an asym-
metric vacuum, whether that is for CP (Ref. 41) or for
U„(1) (Ref. 8), will not affect these assertions.

For QCD [with a general quark mass matrix of the
form (1.2)] we have in fact both criteria satisfied and con-
sequently 8& ——8, viz. , 8 is not renormalized. [In our main
text we have invoked P (instead of CP) in setting Z2 ' ——0;
this is allowed since @CD is a vectorlike gauge theory. ]
Point (i) above is self-evident. On the other hand, point
(ii) may be established generally by following the more-
or-less same steps as we have taken for the QCD case.
The above two criteria should apply separately, viz. , CP

with the subtractive renormalization counterterms Zq '

and Uq(1) with the multiplicative renormalization coun-
terterm Z'~ '. When a given larger theory does not meet
these criteria, the situation —including physical interpreta-
tion for the vacuum angle (in case 8&&8)—is very uncer-
tain. With CI' explicitly broken by dimension-4 terms in
the Lagrangian, we do not have any reason not to expect
any infinite subtractive renormalization for the vacuum
angle. At present, for this case, we do not have a well-
defined calculation scheme to verify whether such infinite
subtractive renormalization is really necessary or not.
Similarly, when the Uz(1) is explicitly broken by
dimension-4 terms in the Lagrangian [e.g., the standard
SU(2)XU(l)&(SU(3) model with one Higgs doublet), we
do not yet know whether we can still consistently set
Zae' ——1. [The situation here is better in the sense that we
can here at least resolve the issue by calculation —one may
use our trick of replacing 8 by an arbitrary externally
given function e(x) in intermediate steps. ]
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