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Stochastic mechanics and the Kepler problem
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The stochastic mechanics of Nelson and Guerra is formulated for the hydrogen atom. We
demonstrate that this simple quantum system can be described in terms of three independent Gauss-
ian Markov processes which are driven (controlled) by the classical Kepler problem. It reveals a
manifest connection between the classical and quantized versions of the Kepler problem.

I. MOTIVATION

The idea of stochastic quantization, as developed in
Refs. 1 and 2, amounts to associating the stochastic pro-
cesses to quantum states of the dynamical system. The
procedure works quite successfully as long as ground
states of the simplest models are considered; the deter-
mination of the Madelung fiuid representation for higher
excited states is much more involved. In fact, the stochas-
tic strategy works in full generality for an example of the
harmonic oscillator and its most straightforward generali-
zations (see also the studies of its two-level, Fermi ver-
sion ' ). However, the formulation of the stochastics
mechanics for another simple quantum system, that of the
hydrogen atom, except for the ground state, is yet to be
accomplished. This fact is a bit puzzling since, like many
other simple quantum systems, the quantized Kepler
problem admits a realization in terms of (a quartet of)
harmonic oscillators, " and should in principle allow
for the generalization of the arguments of Refs. 2 and 12.
Moreover the concept of related coherent states was intro-
duced in Ref. 11, and the construction of oscillator sto-
chastic processes is most transparent with respect to the
coherent basis.

It is our aim to take advantage of the oscillator recon-
struction of the Kepler problem, to formulate the stochas-
tic mechanics of the latter. While working with the four-
oscillator system, the functions of Madelung density-
phase variables p;(x), S;(x), i=1,2,3,4, arise through
computing the coherent-state expectation values

(a
~

A
~

a) =Z(p, S) of operator-valued quantities. To re-
cover the hydrogen problem, the constraints must be ac-
counted for.

As we demonstrate in the course of the paper, the (ana-
lytic) stochastic mechanics of the problem, if formulated
in the Madelung [p(x),S(x)] parametrization, is in all
respects equivalent to the standard classical mechanics of
the singular (constrained) Hamiltonian system, whose
phase manifold is parametrized by holom orphic
coherent-state labels (a,a):

4

~
a)=exp g (a;tt —a;tt;)

~
0) .

consequence, we identify the coherent-state domain for
the Kepler problem, whose a~, az, a3,a4 parameters are
completely determined in terms of the canonical variables
of the standard classical Kepler problem. It allows for the
final conclusion that the three independent Gaussian-
Markov processes can be associated with the hydrogen
atom. Moreover, these processes are driven (controlled in
the language of Ref. 12) by the classical Kepler motion.
It establishes an apparent link between the quantized and
classical versions of the Kepler problem, the connection
which could hardly have been seen from the path-integral
computation presented in Ref. 6.

II. HYDROGEN ATOM AS THE CONSTRAINED
POUR-OSCILLATOR SYSTEM

Z8 I'M=-
T

whose square reads

fi
. (VXL —LXV)

2@i
(2.2)

M2=(Ze ) +—H(L +Pi ) .22 2
(2.3)

p
It is obvious that [L,M ] =0 and, moreover, that the
two important identities

L M=0=M L (2.4)

hold true.
We confine our attention to the bound-state (discrete)

spectrum of H, which after accounting for the identity
[H,M] =0 allows one to write

The reduced three-dimensional problem with Coulomb
forces is described by the Hamiltonian

H= —R V2 —Ze

2p r2
(2.1)

r =(x +y +z )'r, p= —iRV,

where p, stands for the reduced mass and Ze denotes the
charge of the nucleus. The operator H is known to com-
mute both with the orbital angular momentum operator
L=rxp and the Runge-Lenz vector:

They are explicitly related to the action-angle variables of
the four-oscillator system through a =v Je'e.

(2.5)
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and to make use of A and L to form generators of the
Lie algebra for the spectrum-generating group
SO4-SU2SU2/Z2. Indeed, we have

p,Z e l

fP (n, +n, +1)'+(n, +n, +1)' (2.14)

J=(L+A)/2, K=(L—A)/2 (2.6)
Hence the spectrum of H in hp comes out

so that

[Ji,J ] =i@i „J„,
[Ji,E ] =0,
[Ei,E ] =i@i „E„.

(2.7)

I f)&hp

(ni+ng)
I
@)=(n3+n4)

I
@)=(N —1)

I

—@),
%=1,2, . . . ,

(2.15}

Consistently, we can diagonalize H in the representation
space of the SO4-group Lie algebra. The representation
space is

so that

pZ2e4

2fPX
hp ——h' =hgheheh, h =Li(R') (2.8)

I'; =(2mi)ico)'~ (a; —a )/2i,

and one can generate it from the Fock vacuum by operat-
ing with the quartet of harmonic oscillators:

' 1/2

Q;= (a;+a )/2,
Nl CO

Be aware that H in (2;14) commutes in hp with the four-
oscillator Hamiltonian

Hp ——fico g (a;"a;+—,
'

) .

Among all oscillator eigenstates, the constraint (2.11)
selects those appropriate for the quantized Kepler prob-
lem.

[a;,a,'] =—5;J. ,

[a;,ai] =0=[a,aj']

a; IO)=0 Vi .

(2.9)
III. PASSAGE TO THE CLASSICAL

KEPLER PROBLEM

Let us observe that if we define
The underlying boson representation of operators (2.7}
reads

N
Hp = g VIk~ V=

k=1 2K
J& ——(a

& a2+a, a& )R/2,

Jg ——(a i ai —a]a2 )A'/2i,

J3 —(a i a& —azar')fi/2,

Ei ——(a q a4+a3a 4 )A'/2i,

IC2 ——(a fa4 —a&a f )R/2i,

K3 —(a 3 a3 —a 4 a 4 )A'/2

so that (2.4) acquires the form

(2.10)

Ik=h(akak+ —,
' ),

(3.1)

4m'p, Z'e'
(I, +I,)'+(I, +I,)'

while the constraint reads

I j +I2 ——I3+I4

(3.2)

(3.3)

we arrive at the expression for the hydrogen-atom Hamil-
tonian

n]+n2 —n3 —n4 ——0,
ni ~i ~i ~ (2.11)

Z'e'
H = [fi +2(J +Ki)] (2.12)

where

f22(J'+K')= [{n,+n, +1)'+(n, +n, +1)'—2],2

(2.13)

1.e.,

while the operator identity (2.3) after inserting L=J+K
and M=( 2H/p)'~ (J K) can b—e resolved wit—h respect
to 8:

Both quantum problems Ho and 8 are thus written in the
manifest action-angle form, where I; play the role of
quantized action variables. I.et

Ia)=exp g (a;a; —a;a;) I0) (3.4)

be the coherent four-oscillator state:

a; fa)=a; fa) Vi .

%'e immediately realize that

(a
I
Ik

I
a}=h(

I ak
I

'+-,' ) —=Jk .

(3.5)

(3.6)

Moreover, to view H as a formal power-series (Taylor) ex-
pansion with respect to the operator variables and then to
pass to the normal-ordered form of the series (the tree-
approximation concept' intervenes), we would have ob-
tained
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(a/ W: /a)=
(Ji+J2) +(J3+J4)

which is supplemented by the constraint

(3.7) In case of constrained systems, the unique choice of the
manifold on which motions consistent with constraints
can occur is guaranteed by choosing the auxiliary con-
straint condition

J)+J2 ——J3+J4 . (3.8)
g =g(H, J}=0 (3.18)

We have here passed to the classical (in the sense of using
the commuting ring) description of the quantized (hydro-

gen) system. The word "classical" does not refer to any
h —+0 limit, since the Planck constant is manifestly
present in Jk ——Ii (

~
ak

~
+ —,

' }. Nevertheless, our formal
tree-approximation device has related a c-number level to
the q-number theory, and methods of analytical (classical}
mechanics can, in principle, be adopted. Let us note that

such that

If,g) WO

Our choice is

g =g (8}=84=0

so that

(3.19)

(3.20)

(a
I
Ho

I
a) =v g Jk =—~o (3.9)

is defined (via the symplectic structure), to act on the
phase manifold equipped with a local ( J,H) parametriza-
tion, so that

~Mo
8; = =v—=-8; =vr+P;

BJ;
(3.10)

HJ
——8=

BJ1

E =Ze

4n pE
(J1+J2)'

(3.12)

arises. The same local parametrization enters the singular
Harniltonian system. %e admit the negative-energy
values; hence it is useful to define

—A:—(a ~:H: ~a} . (3.11}
Then, after accounting for (3.8), we arrive at (see also Ref.
11)

If gj= Bg df df =1.
aH, aJ,

=
aJ,

= ' (3.21)

P ~P+

It is well known that a passage to the new canonical vari-
ables is possible, so that the dynamics of the problem is
given in terms of the three independent canonical pairs.

To arrive at the six-dimensional phase manifold con-
sistent with constraints we must make an appropriate
canonical transformation and then account for con-
straints. The underlying transformation follows from the
generating function:

F2 F2(q, P, t)——,

F
A'=

(3.22)
F2

'=aP, '

Consequently, if we set

2m pE
(Ji+J2)

we obtain the standard formula (see Ref. 14)
1/2

=2~a" ~, a=-2m 2 E
v E ' 2E

(3.13)

(3.14)

provided we choose F2 F2(q, P) as fo——llows:

F2 81(Jl +J2)+ (82 Hl }J2+83J3+84J4

PI =J~+J2 P2=J2

Hence

Q1=8i Q2 =82—Hi

(3.23)

for the period of the Kepler orbit.
Let us analyze the singular system (3.8) in more detail.

The Poisson brackets read

Q3=8» Q4=84 ~

(3.24)

Because of the auxiliary condition, we have Q4 ——0 while

tM, A') = g
1.

so that

8;=IH, A I=

BW
88; 8J~

(3.15)

(3.16)

Pg ——P) —P3,
so that the Hamiltonian in the new variables reads

2m'p, Z'e4

P 2

(3.25)

(3.26)

%e write the constraint equation as

f(J)=0 ==- [A,f'I =0. (3.17)

We have thus arrived at the formula (9.75} of Ref. 14, for
the three-dimensional (classical) Kepler problem, which
by means of the standard analysis (involving a passage
from Cartesian to spherical coordinates) follows from the
Hamiltonian
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2 2
Pe Py

Pq+ 2
+

2p r r sin&
(3.27}

Indeed, upon making a canonical transformation

(P, Q)-+(J,w) (see Ref. 14)

I'I ——Jp+Je+J, ,

I'2 ——Jp+ Jg,
P3 ——J, „

(3.28)

3 =Nq,

(J,O)~(a,a),

IM, M)g J ——IM, AP j

!)M BA

k=1 1)ak !)ak

BA' !3A

Bak

(3.31)

Since after accounting for constraints, we pass from (J,8)
to (P,Q) the formulas (3.15)—(3.26) allow us to rewrite the
holomorphic parameters a;,a; in terms of the indepen-
dent canonical variables:

ai ——(Pi —Pz)' exp(iQ1),

Q2 Wg —Wr i

Q!=wg —wg,

az=(Pz)" e"P['(Qz+Qi)]

az ——(Pz )
' ~ exp(iQz ),

(3.32)

we recover the spherical action-angle version of (3.27):

2)i pE
(J,+Jg+ Jg)'

(3.29}

We have thus accomplished the reduction of the four-

dimensional (oscillating) motion to the three-dimensional

Kepler case, whose other realization is provided by the
Kustaanheimo-Stiefel transformation. "' Anticipating
further discussion, let us notice that with respect to the
oscillator version (3.2) of the quantized problem, the con-
straints (3.3) select from the coherent state domain these
coherent states only for which (3.8) holds true.

The four-oscillator coherent states were parametrized

by complex variables a;,a;, i = 1,2,3,4 which are related to
the (J,8) variables via the formulas (see, e.g., at the defini-

tion of Jk):

(p p )1/2

It means that we have arrived at the coherent state
domain for the quantized Kepler problem which displays
an explicit parametrization in terms of the phase-space
variables of the classical Kepler problem. I.et us observe
that the above analysis implies the following transforma-
tion of the four-oscillator Hamiltonian:

4

Mp ——v g J;~A p 2vP, .——
i=1

VI. STOCHASTIC DESCRIPTION OF THE QUANTUM
KEPLER PROBLEM

According to Ref. 2 (see also the brief description given
in Ref. 4) each harmonic-oscillator coherent state induces
a corresponding stochastic process which is driven (con-
trolled) by the corresponding classical system. For the
single oscillator Hamiltonian

ak=(Jk)' '
epx( 16})k, ak ——(Jk)' 'exp( —i()k) .

It provides us with a canonical transformation:

(3.30)

Ho= + +—m~q (4.1)
27tl 2

one finds that its coherent state [if to make an explicit use
of the Schrodinger representation of the canonical com-
mutation relation (CCR) algebra] takes the form

g(x, t) =(2no) '~ exp — [x q, (t)] + xp,—(t) p, (t)q, (t—) i t- ——
4o '

A
'

2A
' ' 2

&0qe&=q. (t» &e(q &Wq0&A&=a—

P(x, t) induces a corresponding stochastic process:

t

dq(t) = —p, (t)—~[q(t) —q, (t)] «

1
p(x, t}=(2wct) ' exp — [x —q, (t)]

20

S(x,t)=xp, (t}—,'p, (t)q, (t) , fi—cot . ——
(44)

(4.3)

which is characterized by the density-phase variables of
the Madelung fluid:

According to Ref. 12, if we rewrite (4.3) as

dq(t)=u+{q(t), t)dt +dw(t)

and denote

u+(x, t) = p, (t)+tu[x q, (t)]—, —1

(4.5)

(4.6)
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we arrive at the following formulas:

1 1
u =—(u++u )=—VS,

2 pal

1 fi V'p
u =—(u+ —u )=

2@i p

Moreover, we have

xxp x =g p

(4.7)

(4.8)

M(p, S)=(a
~

A
~

a)= (f,dI, Q}

= f dx g(x)(AQ)(x) . (4.11)

Obviously, since we parametrize coherent states by means
of a,a, we can write, as well,

coded in the coherent states (4.2), we can introduce the

following definition of any M(p, S). Let A =A (a', a) be
an operator defined in the harmonic-oscillator Hilbert
space. Then let

p, = p x VS x x =p, p5 M(p, S)=W(a,a) . (4.12)

If we insert (4.8) into

1 Vc

vm
(4 9)

At this point, let us come back to the notation (3.30), but
restricted to the single-oscillator case (it is a matter of
simplicity only). We denote

a= v J exp(i8), a =V J exp( i 8),— (4.13)

1 &Pc

(pro)'d2 ' ~m

we get an explicit dependence of holomorphic (coherent
state) parameters a,a on the Madelung fiuid variables

p(x),S(x), a=a(p, S), a=a(p, S).
The passage to the Madelung fluid description is an

essence of the Nelson-Guerra's stochastic mechanics (see
Ref. 12) since there is a natural symplectic structure asso-
ciated with (p,S). For any two functions on the phase
manifold of the Madelung fiuid, the respective two-form
implies the Foisson brackets:

and define

'= f dxd(x)f(x), 8= f dx 8(x)f(x), (4.14)

2 x cfx=1

It 18lplies

(4.15)

5a 5a
5J(x) 58(x)

5a 5a
5J(x) 58(x)

where f(x) is a real function obeying the normalization
condition

BM MP

Bp(x) BS(x)
a~ a~

ap(x) as(x) =2 x x =1 (4.16)

(4.10)

On the other hand, since the whole (p,S) dependence is
and, furthermore, the conclusion that for any two func-
tions of a,a, we obtain

I M, dI{() j g e= l f dx
ada 5a a~ 5a
aa 5J(x) (3J 5J(x)+ a~ 5 ae 5

a 58( )
+ — 58( )

Bgf 83k
(4.17)

IW, AI a=le, A)~s . (4.18)

Since in the present case, a,a are related via (4.13) to the
action-angle variable of the harmonic oscillator, we have
completed the relation (4.18) by

BW MP c1JBf MP
(4.19)

BJ 88 88 BJ

which translates the symplectic structure of the classical
harmonic system into that of the Madelung fluid, so that

Consequently, once we have the (holomorphic) canonical
parametrization a,a, a passage to the continuous
J(x),8(x) one is immediate. The next change of variables
from J(x),8(x) to p(x),S(x) is a canonical transformation
again, which clearly demonstrates an important property

p(x),S(x)~p;(x),S;(x),
J,e J;,eg, a,a~a), a;

4 aW edg

Idaho»

l,,s= g ada au
88( BJ(

(4.20)

to the pair, (J,8) of canonical variables, we have related
the fluid variables p(x),S(x) and thus the corresponding
stochastic process.

We realize that the analytic features of the stochastic
mechanics are an exact reformulation of the correspond-
ing classical mechanics, see (4.18). The above discussion
can be immediately generalized to the four-osrillator case,
provided we make some minor modifications such as
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and consistently, take into account that the quartet of
harmonic oscillators induces a quartet of independent
Gaussian Markov processes. It is quite amusing to see
that the analysis of Sec. III, which results in specifying
the six-dimensional (P;,Q;,f=1,2, 3) manifold on which
motions consistent with constraints occur, automatically
enforces the parallel reductions with respect to
(a, tT), (J,H), (p, S) parametrizations, which is due to
(4.17)—(4.19).

Here, because of (3.32), the coherent-state expectation
value of an operator reads

where the independent canonical variables are explicitly
displayed. Consequently the three independent Gaussian
Markov processes can be attributed to the quantized
Kepler problem, which conforms well with the general
analysis of Ref. 16, showing that it is possible to express
the random process in E.", n =3 through a random pro-
cess in R, Jil =4. The number of involved independent
Wiener processes is specified by n and N, respectively.
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