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The two-point field correlation functions for homogeneous and isotropic random (Gaussian) clas-

sical electromagnetic radiation are shown to be related to the electromagnetic fields of a fluctuating
electric dipole. The relationships derived between these two quantities are useful in calculations in-

volving classical electric dipole oscillators bathed in classical electromagnetic radiation. Using these

relationships, the van der %aals force is evaluated for a harmonic dipole oscillator that is a member

of an arbitrary configuration of N oscillators, all of which are bathed in thermal plus zero-point
classical electromagnetic radiation. Also, the expectation value of the Poynting vector is shown to
be unchanged from its null value when a classical harmonic dipole oscillator is included within a
classical electromagnetic isotropic and homogeneous random radiation field. A sketch is given as to
how these calculations may be carried over to the case of a system of harmonic dipole oscillators
uniformly accelerating through classical electromagnetic zero-point radiation. What enables these
calculations to be extended to the situation of acceleration through zero-point radiation is a recent
finding that the two-point field correlation functions, evaluated along trajectories described by uni-

form acceleration through classical electromagnetic zero-point radiation, are related to the elec-

tromagnetic fields of a uniformly accelerating electric dipole.

I. INTRODUCTION

A number of calculations have been performed within
the context of classical electrodynamics that agree with
the results of quantum electrodynamics. This agreement
occurs provided a nonzero homogeneous solution to
Maxwell's equations is assumed to exist in the form of
random electromagnetic radiation that is present even
when the temperature of the radiation equals zero. As-
suming the stochastic properties of this classical elec-
tromagnetic zero-point radiation to be that of a Gaussian
process in the fields, then the demands of isotropy, homo-
geneity, and Lorentz invariance result in the functional
form of the radiation's spectrum being uniquely specified
up to a multiplicative constant. Comparison with experi-
ment then yields the numerical value for this multiplica-
tive constant, which is found to agree with Planck's con-
stant. Hence, it is in this manner that Planck's constant
enters into this classical electrodynamical theory. The
name frequently given to this classical theory is stochastic
electrodynamics. (For reviews on this field of research,
see Refs. 1—4.)

The electrodynamical system that has received the most
attention within stochastic electrodynamics has been the
charged harmonic oscillator. The equation of motion for
this system is a linear stochastic differential equation;
hence, the steady-state solution is readily obtained by the
use of Fourier transforms. Although the physical inter-
pretation for the behavior of such a system is markedly
different from that of quantum electrodynamics, most of
the physically observable statistical properties of this sys-
tem agree between the two theories of stochastic and
quantum electrodynamics. Perhaps the most remarkable

agreement has been found in the case of the van der Waals
force between two nonrelativistic charged harmonic oscil-
lators, each taken in the e1ectric dipole limit; the force ex-
pressions calculated within both theories at temperature
T=O agree for all distances between the two oscillators
and to all orders in the electronic charge.

Other electrodynamical systems, such as the classical
hydrogen atom, have not been so successfully tackled
within stochastic electrodynamics; in most cases, the re-
sults obtained for these systems have not agreed with
physical observation. Such systems are described by non-
linear stochastic differential equations. It remains unclear
whether the basic theory of stochastic electrodynamics is
an incorrect description of nature or whether the difficult
mathematics of these nonlinear systems have simply not
been solved with sufficient accuracy.

At this point in time, perhaps the most appropriate
viewpoint of the theory of stochastic electrodynamics is
that, at the very least, it offers alternative means for cal-
culating certain quantities within quantum electrodynam-
ics. In some instances, as in the case of van der Waals
forces ' or of the thermal effects of electromagnetic di-
pole systems accelerating through the so-called vacu-
um, " there exist calculational advantages of stochastic
electrodynamics to the more traditional calculational
methods of quantum electrodynamics.

In Sec. II of this article, the two-point correlation func-
tion of the electromagnetic radiation fields in stochastic
electrodynamics are evaluated at fixed spatial points
within an inertial reference frame. This calculation has
certainly been done before; here, however, the correlation
functions are shown to be expressible in terms of the elec-
tromagnetic fields radiated by a fluctuating electric di-
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pole. ' The use of this functional form for the correlation
functions simplifies many of the calculations that have
been performed previously within the context of stochas-
tic electrodynamics; in particular, calculations involving
the charged harmonic oscillator, taken in ihe electric di-
pole limit, become much more efficient and tractable.
The calculations of Secs. III and IV illustrate this point.

Recently, the correlation functions of the classical elec-
tromagnetic zero-point fields were calculated along spa-
tially separated trajectories described by relativistic uni-
form acceleration. ' These correlation functions were
shown to be related to the electromagnetic fields of a uni-
formly accelerated electric dipole. Hence, this relation-
ship may be viewed as an extension of the unaccelerated
case discussed in the present article. Thus, there exists a
second advantage, besides greater simplicity, for recasting
previous calculations that have been done in stochastic
electrodynamics in such a way that the functional form of
the correlation functions in Sec. II are utilized: namely,
in many cases, without too much additional work, the cal-
culations for nonaccelerating electromagnetic systems
may then be extended to the corresponding situation of
electromagnetic systems uniformly accelerating through
classical electromagnetic zero-point radiation. Such is the
case for the calculations presented in Secs. III and IV.

In Sec. III, the expressions obtained for the correlation
functions in Sec. II are used to compute the van der Waals
force acting on a single harmonic dipole oscillator that is
a member of an arbitrary configuration of N oscillators.
This calculation for N oscillators generalizes the work of
Refs. 5 and 7 for two oscillators. The case where the tem-
perature of the electromagnetic radiation equals zero has
previously been carried out for an N-oscillator system in
quantum electrodynamics (see Ref. 13); the results found
in the present article, via the means of stochastic electro-
dynamics, agree exactly with the results of this particular
work.

By using the functional form found in Sec. II for the
correlation functions of the electromagnetic radiation
fields, the force calculation of the N-oscillator system in
Sec. II may be extended to the case of a system of N
transversely positioned oscillators that are uniformly ac-
celerated through classical electromagnetic zero-point ra-
diation. This extension may be carried out by combining
the work of Ref. 11, which calculates the expectation
value of the force between a pair of transversely posi-
tioned accelerating charged oscillators, along with the cil-
culation of Sec. III, which gives the expectation value of
the force acting on one charged oscillator of an N-
oscillator nonaccelerating system.

Section IV of this article repeats a calculation presented
in Appendix B of Ref. 1 that proves the expectation value
of the Poynting vector equals zero at a point in space near
a stationary harmonic dipole oscillator. The difference
between the proof given in Ref. 1 and the proof presented
here, however, is that the proof of the present article uses
the functional form obtained in Sec. II for the correlation
functions of the classical electromagnetic radiation fields.
Explicitly using this functional form demonstrates that
the proof can be carried out due to the relationships found
in Sec. II between the correlation functions of electromag-

netic radiation and the electromagnetic fields of a fluc-
tuating electric dipole. The original proof did not identify
this fact. Moreover, the explicit use of these relationships
then enables this proof to be extended to the case of a sin-

gle accelerating charged harmonic oscillator. This exten-
sion is briefly discussed in Sec. IV and sketched more ful-
ly in the Appendix.

II. CORRELATION FUNCTIONS
OF CLASSICAL ELECTROMAGNETIC

RADIATION FIELDS

The functional form for the electromagnetic radiation
fields that is often used for performing explicit calcula-
tions within stochastic electrodynamics consists of the fol-
lowing expressions

2
E'"(x,t)= g fdikh;„(e0)R(k,A, )

)& cos[k.x—cot +8(k, A, )],
2

B'"(x,t)= g fdik h;„(ri))[kQ(k, k, )]

Xcos[k x —cot+8(k, k, )] . (2)
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which can be used to show that
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A, =1 /=1

v

The frequency co in Eqs. (1) and (2) is defined by
co=c

~
k ~. %Rien the electromagnetic fields of Eqs. (1)

and (2) belong to a thermal radiation field described by
the temperature T, then the quantity h;„(co)will be denot-
ed by hT(co}, where

Thus, the radiation fields are expressed here as a sum of
plane waves; hence, they satisfy Maxwell's equations in
free space. The phase angle 8(k, A, ) is treated here as a
random variable that takes on values between 0 and 2ir
with uniform probability density. For each value of k
and A, , 8(k, A, ) is independently distributed. The polariza-
tion vectors R(k, A)satisfy , the relationships of
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hT (co)= coth
2kT

(E "(xi,ti)EJ'"(x2, ti) }
= (B "(xi,t i )BJ"(x2,t2) }

1~. 2+
Ace

exp

= —,
' fd k'h;„(a)') 5;~—

When T=O, then Eqs. (1) and (2) constitute the classical
electromagnetic zero-paint fields. The quantity hz' 0(c0)
will be abbreviated by h (co). From Eq. (7),

hz=p2(co}=h2(co) =
2

The two-point correlation functions of the fields in Eqs.
(1) and (2) will now be evaluated. Using the probability
distribution described earlier for the random variables
8(k, A, ), one can show that

(cos[A +8(k', A, ')]cos[B+8(k",A.")]}
= —,5i, i,-5 (k"—k')cos(B —A ), (9)

where angular brackets are used here to indicate that the
expectation value is to be taken for the quantity within
the brackets. Using Eqs. (1), (2), (5), and (9), the following
two-point correlation functions may be expressed by

&&cos[k'.(xz —xi) c—o'(t2 t&—)] . (1O)

The rotation matrix [0] will now be introduced such
that

R= (x2 —xi ) =[Q]zR,

where R =
~
x2 —x& ~. Let 8 and P be the polar and az-

imuthal angles of (xz —x~). The transformation of Eq.
(11)can be accomplished as shown in Fig. 1, which results
in an explicit form for [0]:

T

cos8 cosP —sing sin8 cosP

[0]= cos8 sing cosP sin8 sing
—sin8 0 cos8

Substituting k'=[0]k and Eq. (11) into Eq. (10), then
yields

3

(E "(xi,ti)EJ'"(x2, t2)}=—,
' fd kh;„(co) 5; — g 0~0/„2 cos[k&R co(tz —t, )] . —

m, n =1
(13)

The cosine term in Eq. (13) can be expanded into two
terms using the cosine sum of angles formula. Only

cas( WAR }Gas[co(t2 —t i )]

will remain, since

sin( k iR )sin[co(t2 t, )]—
results in an integrand odd in kq with regard to the 5,J
term in the large parentheses and an integrand odd in k&,
k2 ar k3 for the second term in the parentheses. For a

similar reason, the second term in the large parentheses
results in a nonzero contribution only when m =n. Per-
forming angular integratians, substituting in

2

g Ot~Oq~ =5' OtiOJi—~

m=1

and realizing from either Eq. (11) or Eq. (12) that
0;i——R;/R, yields'

( E "(xi,t, )EJ'"(xi,tz) }= (B "(x&,t, )BJ'"(x2,ti) }
dN cas [co( t2 —t i ) ]0

Z =X3

where

Xf(~ (X2—xi, co), . (14)

(x&-x&) = R
2m.h;„(ai)fJ"(R,a)) = Im[rPJ(R, c0)],

FIG. 1. Transformation that results in the explicit construc-
tion of [0] given by Eq. (12).

(5,J R;RJ/R ) i(5;J—3R;RJ/R )—
(kR)

(5;J—3R;RJ/R )
e SkR

(kR)

The quantity q;J(R, c0) is intimately related to the elec-
tric field E (R, t) of a fluctuating electric dipole p (t).
Here, the superscript D on i),J and E stands for "di-
pole"; the index a on E and p~ will be used to label a
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particular electric dipole under discussion. I.et R
represent the position of p~(t). From the formulas of
standard textbooks, ' one can readily show that

1p;(t) = dco exp( —i cot)p;(co) .
2'IT

(18)

E; (R, t) = f dco exp( i co—t)
277

3

&& g rtP(R R—,co)p, (co)

where

(17)

A similar relationship can be obtained between the
magnetic field of a fiuctuating electric dipole and the
two-point correlation function of the radiation fields list-
ed below. The first line in Eq. (19) follows from Eqs. (1),
(2), (6), and (9). The second line may be obtained by again
introducing the rotation matrix [0],using the cosine sum
of angles formula, and recognizing that k cos(k3R) re-
sults in an integrand that is odd in k

3 I

(8 "(xi,ti)EJ'"(xz, ti) }=—,
' fd k'h;„(co')g ejt, cos[k' (x2 —xi) —co'(t2 t&—)]

E=1

3 3

in ~ ail Em sin 3R sin 67 /2 —t1
1=1 m =1

(19)

g J"(R,co) = 2mh;„(co)
Re[pj, (R,co)],

3

pPJ(R, co) = —k g e,jt +
R M (kR)

g2)

It should be noted that the order of the i,j indices are re-
versed on the right- and left-hand sides of Eq. (21). This
convention then agrees with results found in Ref. 11,
where the two-point field correlation functions were
evaluated in a plane uniformly accelerating through clas-
sical electromagnetic zero-point radiation.

The quantity pp~(R, co) is intimately related to the mag-
netic field 8 ~(R, t) of a fiuctuating electric dipole ~(t).
Again, from the formulas of standard textbooks, ' one
can readily show that

Bt (R, t) = f dco exp( —i cot)
27'

3

X g pj(R R,co)p J(co)—
j=1

L

(23)

where p &(co}and pPJ are given in Eqs. (18) and (22).
Thus, from Eqs. (14), (15), (20), and (21), the two-point

correlation functions of the electromagnetic radiation
fields in Eqs. (1) and (2) have been related to the functions
gpj. and p,j that appear in the expressions of Eqs. (17) and
(23) for the electric and magnetic fields of a fluctuating
electric dipole. These relationships will be found useful in
performing calculations in stochastic electrodynamics that
involve the forced stochastic behavior of an electric dipole

Only the m=3 term in Eq. (19) yields an integrand that is
even in kq. After performing angular integrations, one
obtains

( Bg'"(xi, ti )EJ"(x2,t2) )

cosln N t2 —t'1 g,J x2 —x1,N, 20

where

due to the electromagnetic radiation fields of Eqs. (1) and
(2). Sections III and IV of the present article contain such
calculations.

Various symmetry properties can be identified for the
two-point correlation functions of Eqs. (14) and (20).
Both correlation functions depend only upon the differ-
ence in time (ti ti ) an—d the difference in spatial position
(x2 —xi). Because of the cosine and sine expansions in

Eqs. (14) and (20), the correlation functions of Eqs. (14)
and (20) are even and odd functions of (t2 ti), respec--

tively. Other properties of the correlation functions that
may readily be deduced from earlier equations are

f~j~(R,co) =fJ'( —R,co),

f,g"(R,co)=fg (R,co),

g,j (R,co) = —g;j~( —R,co},

gcj~(Rico) = g)~; (R—,co) .

(24)

(25)

(26)

(27)

Similar relationships to those of Eqs. (14), (15), (17),
(18), (20), (21), and (23) have recently been obtained be-
tween the correlation functions of the classical elec-
tromagnetic zero-point radiation fields, as calculated
along trajectories described by relativistic uniform ac-
celeration, and the electromagnetic fields of a uniformly
accelerated electric dipole. " The configuration assumed
for this calculation consisted of two points located in a
plane, where the plane followed a trajectory of uniform
acceleration along the normal to the plane. Because of the
correspondence between the functional forms of the field
correlation functions found in the present section and
those found for an accelerating system, many of the calcu-
lations performed in an unaccelerated-thermal system can
be carried over to a system uniformly accelerating
through classical electromagnetic zero-point radiation.
This point will be mentioned again briefiy in Sec. III and
illustrated a bit more clearly in Sec. IV. (Reading Ref. 11
should greatly clarify this point. )

Because of a connection discussed in Ref. 2 between the
electromagnetic radiation field correlation functions in
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stochastic electrodynamics and the corresponding expecta-
tion value of electric and magnetic field operators in
quantum electrodynamics, the relationships of Eqs. (14)
and (20) may be immediately camed over to quantum
electrodynamics. I.et

[a,b]+ ——a b+b a,
where a and b are underlined to denote quantum-
mechanical operators. Then, from Ref. 2 and Eqs. (14)
and (20),

(o
I 2 [E i(xl~tl ) 4 J(x2~t2)]+ I

0)
= (0

f
—,
' [8;(xi,ti),8 J(x2, t2)]+

~
0)

da) cos[co(ti ti )]f—JJ'(xi x—i, cu), (29)
0

(0 i
—,
' [8,(x„t,),E,(x,, t, )]+ i

0)

rosin m t2 —t~ g,&J' x2 —x~, co . 30

Here, E;(x,t) and 8;(x,t) are the electric and magnetic
field operators in quantum electrodynamics; Eqs. (29) and
(30) represent the vacuum expectation value of the sym-
metrized products of these operators. The functions f~JJ'

and g;&& in Eqs. (29) and (30) are given by Eqs. (15), (16),
(21), and (22), with h;„(co)replaced by the function of
Eq. (8) that is appropriate for the zero-point radiation
field situation. Equations (29) and (30) may be general-
ized to the situation of a thermal radiation spectrum by
replacing the vacuum state

~
0) on the left-hand sides of

Eqs. (29) and (30) by the appropriate incoherent superpo-
sition of photon states at temperatures T; in correspon-
dence with this change, the function h;„(ei), which
occurs in the expressions for fJ" and g,j" of Eqs. (15) and
(21), should be replaced by the thermal expression of Eq.
(7). (Referring to Ref. 2 should clarify these points. )

mx« ——mc—oo x«+mI x «+eE;r(R~, t)

+e g E; ~(R,t),
~a

(31)

where i=1,2,3 and a=1,2, . . . , N. Here, the index a
serves as a label to distinguish each of the N oscillators.
The quantity I = —', e /mc is the radiation reaction
damping constant. The force constant of the harmonic
potential is denoted by m coo . The equilibrium position of
the ath oscillator is given by R and the displacement
from equilibrium by x . The electric field Er stands for
the field of Eq. (1), where Ii;„(co)is replaced by hT(co) in
Eq. (7). Finally, E ~ represents the electric dipole field of
the Pth oscillator; hence, the expression for this quantity
is given by Eqs. (16)—(18), where p«(t) in Eq. (18) is ap-
proximated by ex;(t).

In order to solve the linear stochastic differential set of
equations indicated by Eq. (31), the following Fourier
transforms will be introduced:

x;(t)= dco exp( i cot)x;(co), —1

21T

potential consists of a spherical uniform distribution of
charge, with net value —e. If a + e point charge is locat-
ed within this sphere at a position x~(t) from the center of
this charge distribution, then the particle will experience a
force proportional to the displacement x~(t). For a suffi-
ciently small spherical volume of charge distribution and
for sufficiently small amplitudes of oscillation of the
point particle, the net charge configuration then approxi-
mates an electric dipole of value + ex (t).

Under the small oscillator approximation (see Refs. 8
and 10), the equation of motion for one of the N oscilla-
tors is given by'

III. RETARDED VAN DER VfAALS FORCE
FOR A SYSTEM OF N CLASSICAL

HARMONIC OSCILLATORS

In this station an arbitrary configuration of N-charged
classical harmonic oscillators wiB be considered, where
each oscillator will be taken in the electric dipole limit. A
thermal plus zero-point electromagnetic radiation field
will be assumed to exist, corresponding to the choice of
hT(co) for b;„(co)in Eq. (7). This radiation field provides
the mechanism for the forced steady-state behavior of
each oscillator. All oscillators interact with each other via
the electromagnetic radiation they emit due to their forced
harmonic motion.

The expectation value of the I.orentz force on one of
the oscillators will be calculated in this section. From the
viewpoint of stochastic electrodynamics, this quantity is
simply the van der Waals force. In the process of carry-
ing this calculation through, frequent use will be made of
the relationships found in Sec. II of the present article.

The model chosen for each charged harmonic oscillator
will be that of a point mass m with charge + e that oscil-
lates under the action of a simple harmonic potential. A
convenient model for providing the mechanism for such a

E; (R, t) = f dc@ exp( i cot)E; (R—,ra) . (33)
2'F

Also, let

e
g~j(R, co) = — r),J(R,~),

Pl

2

p;J(R,a)) = — p,j(R,co) . (35)

3

C(co)x;(co)+ g g i)~j(R —Rp, co)xpj(co)

E; (R«co), (36—)
m

C (co ) = —co +coo —/ I co

Equation (36) can be expressed in the form

Replacing p«(co) in Eq. (17) by ex;(co), then, from Eqs.
(17) and (31)—(34), one obtains
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N 3 E;(R,co)g Ma; pi.(co)xpt(co) =-
p~ i i tri C co

where

([xt),B(R t„)])= —[x(t,)reR(R. t),])dt

+C(x (t)s[v(8)E(x, t)]
~ „R) (42)

rt,q(Ra —Rp, co)
M; pj(c.o)= 5 p5;i+(1 5—p) C co

Fram Eqs. (32) and (38),

oo

x~(t) = dco exp( ic—ot)
217

3

X —g g [M '(co)];.,pj
P=l j=1

(39) is helpful, since the first term on the right-hand side of
Eq. (42) equals zero, as will be proven shortly. Hence,
from Eqs. (41) and (42),

(E„(t))=g ex, (t) E, (Rt)),c}R;
3

g ex;(t) g EDP(R,t), (43)
i=[

E t (Rp, co)

C(co)
~ (40)

Using this solution for the displacement of the crth os-
cillating particle, the expectation value of the Lorentz
force on the ath oscillator can be obtained. Again ap-
proximating each oscillator as an electric dipole, the
Lorentz force on the oscillator is given by

where a superscript T has been added in (Ea, (t) ) in order
to designate the thermal situation at temperature T

In order to prove that the first term of Eq. (42) equals
zero, the operation of taking the time derivative should be
interchanged with taking the expectation value. From
Eqs. (14), (20), (23), (33), and (40), one can then show that

e

x (t)e 8 (R„t)+QB (R, t)
~a

F (t)=[ex (t) V]E;(x,t) ~,

[3)B(R,t)
C

(41)

where E and 8 represent the total electric and magnetic
fields due to the radiation fields of Eqs. (1) and (2) and the
dipole fields of all the other (N —1} oscillators. When
taking the expectation value of Eq. (41), the relationship
of

is independent of time. Alternatively, one may present a
more general argument by physically demanding that the
behavior of the set of oscillators constitutes a process that
is statianary in time. The expectation value of two quan-
tities connected to the behavior of the oscillators must
then depend only upon the difference in the time argu-
ments of the two quantities.

In order to evaluate the first quantity an the right-hand
side of Eq. (43), the consideration of the following quanti-
ty will prove helpful:

x„(re') E( t„Re)h=g X [M '(re')]„,Xh, Er(Reer') EJ(Rrrh )) . ,
"

~

~

From the inverse of Eq. (33),

(44)

E h(RXeh') Ei (Rre )= f dt ,ex"p(ieh t )J'Ck 'ex'p(ire"t") "Eh (Rx t )Ei (R', t")}.~ ~

~

ai ZEST 00
(45)

As will be proven shortly,

Et (Rp, t') EJ (Ra, t") = f dco cos[co(t"—t')] [(1—5ap}fit(Ra —Rp, co)],
al ai

(46)

where f~~ is given by Eq. (15), with h;, (co} replaced by hr(co). From Eqs. (45) and (46),

Ei (Rp, co') Ei (R,co") =nfdco[5(co' . co)5(co"+co)+—5(co'+co)5(co" co)] [(1—5p)fij(R Rp, co)] . — —j
ai ai

(47)

From Eqs. (16), (34},(37), and (39),

C( —co) =C'(co),

qPj(R, co) =rt~~'(R, co), —
(48)
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rj;j(R, —to) =rj,'j(R, to),

Ma;.pj( —to) =Ma;.pj(to) .

(49b)

From Eqs. (44), (47), (48), and (50), one can then show that the first term on the right-hand side of Eq. (43) is given by

(
3 g 2 N 3 [M '(~)jaj;pig exaj(t) Ej (Ra t) =—g g f dco Re

Ra, P=] j l=]
[(1 5a—p)fij(R Rp—,to)] .

ai

This expression may be put into a more convenient form by the use of the following relationship:

[(1 5ap)—fij (Ra Rp, t—o)]=
ai

2vr—hr (to)
1m[5 p5ijC(to)+(I —5 p)rjij(R —Rp, to)]

e2 M;

—2n'hr (co)
z Im[C(to)Mai. pj(co)],

m

which can be verified by using Eqs. (15), (34), and (39). Hence,

(52)

( g ex j(t) Ej (R, t) = 2n Q —g f hri(to)Re
j=i ai p=t j, l =r

M '(to)aj. pi 8
Im C(co) Mai pj(to).

C co ai
(53)

The missing proof of Eq. (46) will now be given. First, consider the case where a~P. Combining the obvious rela-
tionship of

Ei (Rp, t') Ej~(R,t") = (Ei (Rp, t')E)~(R, t"))
~ ~

(54)

with Eq. (14), one can easily verify Eq. (46) when a&P. When a =P, then the following identity must be used:

(cos[A +e(it', A, ')]sin[8+8(k", l")])= —,'5i i-5 (It"—It')sin(8 —A) .

From Eqs. (1), (55), and (5), Eq. (46) becomes, for o. =P,

Ei (R,t') Ej (R,t") = —,
' fd kh (to) 5ij —

2
( —k;)sin[0 —to(t2

ti)]a.

—a 7

I

~
~

I

JI~ a t
I I ~~ ~

~i
3 2 j~ ~1~

2

/I ~
fI

~ ~ ~
~

ai k

(55)

(56)

By inspection, each of the two terms making up the integrand in Eq. (56) must be odd in either k i, kz, or k&, thereby re-
sulting in the integral being identically equal to zero when a =P. Hence, Eq. (46) has been verified.

The second term of Eq. (43) will now be evaluated. From Eq. (34) and the Fourier transforms of Eqs. (17) and (40),

X,(~') Et~)R„m"))
ai

e " ' [M "(to')] j;ri
s=iim =1

a „[M'(to")jp~;s.
(R —Rp, to") „'(E i (Rr, to')E „(Rs,to") ) .

ai C to

(57)
From the inverse of Eq. (33), along with Eq. (14),

(E i (Rr, to')E „(Rs,to") ) =n f dto[5(to' to)6(to" +to)+5(—to'+to)5(co" to. )]fi„(Rs—Rr,—co) .

With the use of Eqs. (57), (58), (48), (49b), and (50), the second term of Eq. (43) can be expressed as

~j ~~
~

I

~ t

I~I
~

t

a t

t j t

N

g exaj(t) g EjDP(Ra, t)
j=] ai

(58)

~2 N 3

f de f(„(Rs Rr, a))—
p, y, 5= I j,l, m, n =1

(59)

Re [M '(co)]'j ri[M '(co)]p s.„[(1—5 p. )gj (R —Rp, to)jm, n~+

Here, it should be noted that a factor of (1 —5ap) has been included on the right-hand side of Eq. (59), thereby enabling
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the index P to be summed from 1 to N without restriction.
Several substitutions can be made to simplify Eq. (59). First, from Eq. (39),

c)
[(1 5—p)yjj (R R—p, a))]= [C(co)M j.p (co)] .

(61)

Second, from Eqs. (15) and (34),

2—nhT .(co)
fl„(R5 R—y, co) = Imyji„(R5—Ry, co} .

2

By using sin(kR)=kR ——,(kR) and cos(kR)=1 ——,'(kR) for kR &&1, one may verify from Eqs. (16), (34), and (37)
that

lim Imyjt„(RR,co) = —5l„— 3
co =5in ImC(co) .

3 mc

Consequently, from Eqs. (62) and (39),

Imyjln(R5 Ry ~)~™[55y5inC(~)+(1 55 )yjly(nRp Ry )l
=lm[C(io}Msi;y (to)]

Substituting Eqs. (60), (61), and (63) into Eq. (59) yields

N

g ex j(t) Q EjDP(Ra, t)
j= i al

Irn[C (co)M5l;yn(to)]
=2m hz'(~)

P, y, 5=1 j,l, m, n = I

(62)

(63)

XRe [M '(co)]', ,»[M '(~)]p,5„C(~) . Ma, ;p~(~)
ai

(64)

& fair amount of algebraic manipulations must now be employed in order to bring Eq. (64) into a form that is compa-
tible with Eq. (53}. First, the imaginary and real terms below may be expanded as shown:

I'

3

g Im(CM, ( „„)Re(.M '),'j y, (M -')
p .,„C-.

y, 5=1 l, n=1 ai

1 i)
~~J;Pm

4i BRa;
g C(M ')aj.yi g [(M ')p 5„M5ly„] g. C'(M. '—

)p .5„+[(M ')'j.ytM5l y„].
y, l 5, n 5, n y, l

+C
aZ . M-j'p-

Cl

y«M ')p;5. /[(M '} j;,Mt,„s.i]—yC'(M ')
,. jy»[(M ')p .,„M;,.„„]

S,n y„l y, l S,n

From Eqs. (39), (34), and (16), the following symmetry rules for M;.pj may readily be verified:

(65)

(66)

(67)

By using Eqs. (66) and (67},a pair of Kronecker 5's may be obtained from each of the terms enclosed in square brackets
in Eq. (65). For example,

g [(M ')p~;snMsi;yn]= g [(M ')pm;5nMsn;yl]=5py5 i . (6&)

Both terms in the large parentheses of Eq. (65) may then be shown to be equal to

2i Im[C'(M— ')aj.p~] .

Combining terms enables Eq. (65) to be expressed as
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E 3 —i e —IIm(CM@ r )Re (M )~j rt.(M )p s C M J p
= —Im[C (M ) j.p ]Re C M J.p

y, &=1 l, n =1

By now substituting Eq. (69) into Eq. (64), using the simple relationship of

Im[ C*(M ')aj p.] (M ')aj.p—=1m

(69)

and relabeling the m dummy index as I, finally yields

~

j
N g

' ' X 3

g ex j(t) g Ej p(R, t) = 2m—g.g f hr (co)lm
p=1 j, l = 1

r

(M ')aj.pi 8
Re C Maj. pi

ai
(71)

If Eq. (67) is used to switch the I,j indices of Mat. pj in Eq. (53), then it can immediately be seen that Eqs. (53) and (71)
are of the same form. Combining Eqs. (43), (53), and (71), then yields

3

(Fr;(t)) = 2n g— g f hr'(~)lm (M '), ;pi M, ;pi
p=1 j,1=1 al

(72)

(73)

then the inverse matrix elements may be written as

I.et the determinant of [M] be denoted by
~

M ~; let b, j.pt be the cofactor of the matrix element Maj pt Si.nc.e
~

M
~

may be expressed as

Mpt;aj ~pt;aj
P=11=1

(74)

Consequently, with the use of Eqs. (66) and (67),

(Fa;(t)) = —2ir f hT (co)lm
p-i, i=i ™ai;pt

BMaj.pt

BRa;
(75)

Using Eq. (66) to write Eq. (75) more symmetrically,

(F;(t))= n f h —(co)lm
p ji aj pl

dMaj; pi +M; p i BMpj. t

BMpj. t

BRag.
(76)

This expression for (F;(t)) may be simplified significantly by considering the quantity within the square brackets.
From Eq. (39), the quantity (8/M;)Mpj. „tis nonzero only when P=a and y&a, or when P&a and y=a. By inspec-
tion of Eq. (76), all such nonzero contributions of this quantity have already been included within the square brackets.
Hence, one may simply include the remaining terms within the indicated summation, since the remaining terms equal
zero. More specifically,

BMpj. y(

r

BMpj. ri
BR;

(77)

Hence, as may be seen from Eq. (77), (F;(t)) may be
written as

(78)

where

O'T ~ Q
2

Equations (78) and (79) generalize the van der Waals

expressions of Eqs. (8) and (9) in Ref. 7. The latter result
dealt with the expectation value of the component of the
Lorentz force along the axis separating two electric dipole
oscillators situated in thermal plus zero-point electromag-
netic radiation. From Eqs. (16), (34), and (39), Eq. (79)
may be readily shown to reduce to Eq. (9) of Ref. 7 when
%=2 and R=zR. [The configuration of R=zR was
chosen in Refs. 5 and 7. From Eqs. (16) and (34),
i);j(zR,m)=5ji);, where i); is given in Eqs. (19) and (20)
of Ref. 7.]
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When the temperature T equals zero, then Eq. (79) may
be compared to the result of Eq. (18) in Ref. 13 that was

obtained via the means of quantum electrodynamics.
When T=O, then Eq. (8) must be used in Eq. (79). Froin
the line following Eq. (13) of Ref. 13 and the comment

G (z) =0 at the top of p. 202 in Ref. 13, one can deduce

that G~p may be written as

NG;,pj(~)=(1 —5 p) V;V'pj ,—{i,j

l6)
exp ~R —Rp~

C
«

/
R,—Rp/

m
(1 5~—p)rtcj. (R R—

p, c()) .
e

From Eq. (16) of Ref. 13, a(co)=(e /m)[I/C(c(i)]. By
now following the steps in the first part of Sec. IVB of
Ref. 5, from Eq. (82) to Eq. (87}, the above result of Eq.
(79) can be shown to be equivalent to Eq. (18) of Ref. 13.

The calculations in this section may be extended to the
situation of X oscillators located in a plane undergoing
uniform acceleration through classical electromagnetic
zero-point radiation. The equations that allow this exten-
sion to be made consist of the relationships between the
two-point radiation field correlation functions and the
fields of a fluctuating electric dipole found in Eqs. (14),
(15), (17), (20), (21), and (23) of the present article, and in
Eqs. (A35), (A36), and (Cl)—(C4) of Ref. 11. Although
this extension will not be carried out here, a careful read-
ing of the present section and of Ref. 11 will indicate how
this extension may be accomplished.

IV. EXPECTATION VALUE OF POYNTING VECTOR
IN PRESENCE OF AN ELECTRIC

DIPOLE OSCILLATOR

If a classical charged hartnonic oscillator is bathed in
classical electromagnetic radiation, then the oscillator will

be forced into a steady-state motion by the radiation.
Consequently, the charged oscillator will emit electromag-
netic radiation of its own. Consider the case where the os-
cillator is taken in the electric dipole limit. I.et the sta-
tistical properties of the electromagnetic radiation causing
the oscillator's forced motion be isotropic and homogene-
ous in space. Under these conditions, one can show that
the expectation value of the Poynting vector, due to the
total electromagnetic radiation, is exactly equal to zero.
This is precisely the situation that occurs when the dipole
oscillator is not present. Hence, the presence of the oscil-
lator does not alter the basic flow pattern of electromag-
netic radiation.

The proof of the above statement has been given previ-
ously in Appendix B of Ref. 1. This proof will be recon-
structed in the present section of this article in such a way
as to explicitly use the relationships found in Sec. II. As
will be seen, what enables the proof to be carried out are
precisely these relationships between the two-point corre-
lation functions of classical electromagnetic radiation
fields and the electromagnetic fields due to a fluctuating
electric dipole. At the end of this section, the means for
extending this proof to the case of a uniformly accelerat-
ing oscillator will be demonstrated.

Let a single oscillator be situated at the origin of a
Cartesian coordinate system in an inertial reference frame.
The model assumed for the oscillator will be the same as
that of Sec. III. Let the background electromagnetic radi-
ation be described by Eqs. (1) and (2). As may readily be
deduced from Eq. (31), with E p omitted on the right-
hand side, along with Eqs. (32), (33},and (37},the motion
of a single oscillator is given by

1 e E,'"(0,~)
x;(t)= dc@ exp( i cot)—

27T m C (co)

The expectation value of the Poynting vector due to the
total electromagnetic radiation at a location R and time t
is given by

(S«(R ())= [R«««(R ) (()R«««(R ()]«)
4m

g ejk [(E,""(R,t}8)"(R,t) ) + (E "(R,t}BD(R,t})+ (ED(R, t}8)"(R,t) }+(En(R, t)BJD(R, t) }].
4n,

(82)

The four terms in Eq. (82) can readily be evaluated by
the use of Eq. {81)and the relationships in Sec. II. Fol-
lowing the same method used in deducing Eq. (62), one
can show from Eqs. (22) and (35) that

lim Re[pent(Rk, co)]=0 .
R~0

(E "(R,t)BJ'"(R,t)) =0.
The second term on the right-hand side of Eq. (82) may

be evaluated by reexpressing 8& by Eqs. (23), (81), and
(33) and then using Eqs. (14), (15}, (34}, and (48). From
Eqs. (22) and (35),

From Eq. (83), the result follows that the correlation
function of Eq. (20) equals zero when x2 —x„.consequent-
ly, the first term on the right-hand side of Eq. {82)equals
zero. More specifically, from Eqs. (20), (21), (35}, and
{83),

p;~(R, —co) =p,j.*(R,co),

p~j(R, —co) =p J{R,co) .

Combining the equations mentioned above,

(85a)

(85b)
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- d~(E "(R,t)B)D(R,t))=, g —
'"

[C'(a))rtt;(R, co)p;t(R, a))+C(a))rit;(R, a))p,'~(R, ~)
2i(e'/m) ) i

o a)
~

C(a))
~

—C'(a))rt(((R, co)pit(R, a)) —C(u)rtt*;(R, a))pj'((R, a))] .

Using virtually identical treatments, one may obtain the following expressions for the third and fourth terms of Eq.
(82):

h;„(a))
(E,D(R, t)a,'"(R,t)) = [C(a) )rt,'t(R, a) )pti ( R,—co ) C'—(a) )ri,)(R,a) )pii ( R,a—) )

2i(ezlm) t, 0 a) ~C(a)) ~'

+C(a)))I,'((R,a))pt)( R,—a)) C'—(to)rtl(R, a))p)'i( —R, a))], (87)

(E; (R,t)8i (R, t)) = g J 2 [ C(to—)ri;t(R, to)pit(R, co)+C'(a))ri,t(R,a))piI(R, to)
2i(e /m) I i

o a) ~C(to)
~

C(—a))rt'i(R, a))pit(R, co)+C'(a))ri,'t(R, a))p, t(R, co)] . (88)

Hence, all four terms of Eq. (82) have been expressed in
terms of the functions rt;i and p;i that appear in the ex-
pressions for the electric and magnetic fields of a fluctuat-
ing electric dipole. At this point, the symmetries of

p" ( —R co) = —p"(R a))

rt,i(R,a) ) =rti, (R,to),

p;i(R, co) = —pi;(R, co),

(89)

(90)

(91)

which are readily deduced from Eqs. (16), (22), (34), and
(35), may be introduced to show that all terms immediate-

ly cancel upon combining Eqs. (82), (84), and (86)—(88).
Moreover, as may be noted by examining the integrands
in Eqs. (86)—(88), this cancellation occurs exactly at each
frequency. The relationships derived in Sec. II are what
enabled this precise cancellation to arise; Hence,
(Sk(R, t) ) =0.

Thus ends the proof of this section of the fact that the
presence of an electric dipole oscillator does not alter
(Sk(R, t)) from its zero value. The important assump-
tions used in this proof were that the linear dipole oscilla-
tor was stationary in an inertial frame and bathed with
homogeneous, isotropic electromagnetic radiation
described by Eqs. (1) and (2).

Without too much difficulty, however, this proof may
be extended to the case of a dipole oscillator uniformly ac-
celerating through classical electromagnetic zero-point ra-
diation. This analogous situation requires that (Sk(R, t))
be evaluated in the instantaneous inertial rest frame of the
accelerating oscillator. Instead of using the relationships
in Sec. II of the present article, the analogous relation-
ships of Appendixes A and C of Ref. 11 must be em-

ployed. The steps of the proof given in this section for an
unaccelerated oscillator may then be followed up through
Eq. (SS). The symmetries of Eqs. (89)—(91) may not be
employed, however, as these do not carry over to the ac-
celeration case.

A sketch of this calculation is given in the Appendix.
I.et a denote the proper acceleration of the oscillator; let

R denote the distance from the oscillator to the point at
which the Poynting vector is evaluated, taken along a per-
pendicular to the acceleration. Provided that a small lab-
oratory condition is imposed such that terms O(aR/c )

are ignored, then a null value is obtained for the expecta-
tion value of the Poynting vector in the instantaneous rest
frame of the accelerating oscillator. This result agrees
with the exact value of zero that is obtained for the expec-
tation value of the Poynting vector when the oscillator is
not present, as given in a nonrotating coordinate system
uniformly accelerating through classical ele:tromagnetic
zero-paint radiation. Hence, for terms up to O(aR/c ),
the presence of an oscillator within a plane uniformly ac-
celerating through classical electromagnetic zero-point ra-
diation does not alter the expectation value of the elec-
tromagnetic momentum density calculated at some point
in the inertial rest frame of this accelerating plane.

V. CLOSING REMARKS

Relationships were derived in Sec. II between the two-
point field correlation functions for homogeneous and iso-
tropic random (Gaussian) classical electromagnetic radia-
tion and the electromagnetic fields of a classical fluctuat-
ing electric dipole. Section III explicitly used these rela-
tionships in order to obtain the van der Waals force on an
oscillator surrounded by (N —1) other dipole oscillators,
all of which were bathed in classical electromagnetic
zero-point plus thermal zero-point radiation. Section IV
used the relationships of Sec. II to show that the expecta-
tion value of the Poynting vector in the presence of an os-
cillator, bathed with homogeneous and isotropic classical
electromagnetic radiation, is unaltered from its null value
that occurs when the oscillator is not present. Brief dis-
cussions were also given in Secs. III and IV and the Ap-
pendix as to how the calculations of Secs. III and IV
could be extended to the case of a small laboratory uni-
formly accelerating through classical electromagnetic
zero-point radiation. %'hat enables this extension to be
made is the result found in Ref. 11: namely, when the
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two-point field correlation functions for classical elec-
trornagnetic zero-point radiation are evaluated along a
trajectory described by uniform acceleration, they are
found to be related to the electromagnetic fields of a uni-

formly accelerating electric dipole in the same way that
occurs for the relationships of Sec. II in the
unaccelerated-thermal case.
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APPENDIX

Section IV presented a proof that the expectation value
of the Poynting vector, evaluated in the presence of isotro-
pic and homogeneous random (Gaussian) classical elec-
tromagnetic radiation, is unchanged from its null value
when a harmonic dipole oscillator is also present. Gen-
eralizing the relationships of Sec. II to the relationships
found in Ref. 11, this proof may be extended to the case
of an oscillator uniformly accelerating through classical
electromagnetic zero-point radiation. In order to make
this extension, a fair degree of familiarity is required of
Ref. 11. Consequently, the calculation sketched below as-
sumes that Ref. 11 is readily accessible to the reader.

In keeping with the work of Ref. 11, let 2 be along the

direction of acceleration. The corresponding relationships
to Eqs. (16) and (22) of the present article were evaluated
in Ref. 11 for the case where the vector position R [here,
R corresponds to the argument of Ti;J and p;J in Eqs. (16)
and (22)] was contained in the plane that was accelerating
along with the oscillator and oriented such as to be per-
pendicular to the x direction [see Eqs. (A37)—(A44) of
Ref. 11]. The Fermi-Walker transported coordinate sys-
tem used in Refs. 10 and 11 was constructed so as to have
one coordinate axis along the 2 direction and two orthog-
onal coordinate axes lying in this accelerating plane and
parallel to the y and z directions. Let g indicate a vector
in this coordinate system; let g'=JR be a point in the ac-
celerating plane at a distance R along the y axis from the
accelerating oscillator. It is at this point that the Poynt-
ing vector will be evaluated.

Equations (82)—(88) still hold for this accelerating sys-
tem when R is replaced by g=yR, t is replaced by the
proper time T, of the accelerating oscillator s equilibrium
point, all fields are evaluated in the instantaneous inertial
rest frame of the oscillator's equilibrium point, h;„(co)is
replaced by Eq. (7) for T =iiia /2mck, and the functions C,
g;J, and p,j are replaced by their appropriate generaliza-
tions of Ci', ri',J, and p';J that occur for the accelerated situ-
ation. 's The latter functions are given in Eqs. (16) and
(A37)—(A44) of Ref. 11. Combining these functions with
Eqs. (82)—(88) then yields

zp ~ c dco p g p32 p3&(S*"k(yR T.)&=, "T (~)
I T=Aal2mck im(ri~i2) Re ~ki+Re 8kl

(e /m)
KC cg C)

(A 1)

aR
~&1 (A2)

is considered, then the result of Eq. (Al) shows that the
only terms that remain after combining Eqs. (82)—(88) are
terms that are first order in ( aR /c ), or higher. All terms
of zeroth order in ( aR /c ) cancel precisely.

It should be noted that restricting attention to terms of
zeroth order in ( aR /c ) does not mean that
(S;~k(yR, r, )) has simply been expanded in a power

series in the acceleration and only the zeroth-order term in
the acceleration examined. Such a case would be quite

The subscript r, on S', k indicates that the Poynting vec-

tor is to be evaluated in the inertial reference frame in-
stantaneously at rest with respect to the accelerating oscil-
lator at proper time v, . The superscript zp on S,' k indi-

cates that the background radiation, through which the
trajectory of uniform acceleration takes place, consists of
classical electromagnetic zero-point radiation.

As will be noticed in deducing Eq. (Al) from Eqs.
(82)—(88), a large number of the terms cancel and drop
out; nevertheless, Eq. (Al) does not equal zero exactly, as
was the situation in the unaccelerated case. ' As shown in
Ref. 11, however, when i &j, then the magnitude of r),'z is
approximately (aR /c ) times the magnitude of Ti';;. Thus,
when the small laboratory condition of

trivial, indeed, since then the null result for
(S*,i'k(yR, T, )), obtained to zeroth order in the accelera-

e

tion, would simply be a restatement of the unaccelerated
result in Sec. IV. On the contrary, the zeroth-order terms
in (aR /c ) for the four expressions corresponding to Eqs.
(84) and (86)—(88) in the acceleration case, do depend
upon the acceleration; in particular, they depend upon the
spectral function

igloo 'rrcco
AT (~0)

I T=Aul2nck cot
2

(A3)
L

In addition, these four expressions depend upon the func-
tions C', q',J, and p,z. , which contribute additional depen-
dency upon acceleration even after dropping terms of
0 (aR/c ). Adding these four expressions together in or-
der to form (S;~k(yR, r, )) then yields a null value for
(S*,k(yiR, ))r, when terms of O(aR/c ) are ignored.

References 8, 10, and 11 analyzed the equivalency that
exists in certain physical properties between a system of
classical dipole oscillators in a thermal radiation bath and
a similar set of oscillators uniformly accelerating through
classical electromagnetic zero-point radiation. As first
noted in Ref. 8, the stochastic behavior of a single ac-
celerating oscillator agrees with the behavior of an unac-
celerated oscillator bathed in classical electromagnetic
thermal radiation characterized by the spectral function
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of Eq. (A3). The calculation outlined above for the expec-
tation value of the total Poynting vector, when a single os-
cillator is present, shows another property that has a
correspondence between the accelerated and unacceler-
ated-thermal single-oscillator situations. In this case, the
narrow linewidth approximation used in Refs. 8, 10, and
11 was not required; only the small laboratory condition
was needed. Here, the expectation value of the Poynting

vector was evaluated in the instantaneous rest frame of
the oscillator and in the plane that included the oscillator
and that was perpendicular to the direction of accelera-
tion. This quantity was shown to equal zero, provided
that terms of O(aR/c ) were ignored, thereby agreeing
with the null effect upon the expectation value of the elec-
tromagnetic momentum density when a harmonic dipole
oscillator is included within a thermal radiation bath.
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the unaccelerated oscillator situation when a constant magnet-
ic field is added to the problem, as in Eq. (117) of Ref. 2. In
that case, the use of the small oscillator approximation is the
appropriate reason for retaining the (x/c)8„„„term in the
equation of motion. ]

' As was done in Ref. 11, the notation of ppj and p,'j stands for
the functions r)J(ka, +$'R, co) and p;, (Ra, +$'R, co), where R is
assumed to be positive here.

'9The expectation value of the Poynting vector in the Fermi-
%'alker-transported coordinate system may be readily shown
to be exactly equal to zero when the oscillator is not present.
This may be deduced from the fact that
(E*,~r(g, r, )B*,rJ(f,r, ) ) =0, where g is a point in the Fermi-

Walker-transported coordinate system.


