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Calabi-Yau manifolds from arbitrary weighted homogeneous spaces
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Three new Calabi- Yau spaces relevant for superstring compactifications with Euler characteristic
—144, —156, and —120 are constructed from the weighted complex projective space %CP5. No
nontrivial discrete isometry group has been found for these spaces.

I. INTRODUCTION

Unification of strong interactions, electroweak interac-
tions, and gravity is a main concern of theoretical physi-
cists. Kaluza-Klein supergravities have been considered
in these contexts, but have the following difficulties. (1)
Although the maximal d= 1 1 supergravity can be com-
pactified with the SU(3)XSU(2)XU(1) isometry group, '

the quantum numbers of fermions on harmonic expansion
do not agree with quark-lepton representations. Further-
more, fermions in four dimensions compactified from
d= 1 1 supergravity are vectorlike. (2) A chiral fermion in
four dimensions can be obtained from higher even-
dimensional theory with nontrivial background. i Howev-
er for d = 10 theory, the scalar equation of motion is diffi-
cult to satisfy. (3) The space-time after compactification
is anti —de Sitter space of Planck size. These problems
have led to speculation that the Kaluza-Klein supergravi-
ty theory is the theory of preon dynamics.

Recently, Green and Schwarz have shown that the
gravitational and gauge anomalies of ten-dimensional
theories have been miraculously canceled in SO(32) and
E8XE8 gauge groups. Furthermore Candelas, Horowitz,
Strominger„and %itten have shown the above three
problems can be resolved in compactification of d=10
superstring theory into four-dimensional Minkowski and
Calabi- Yau (CY) spaces. '

But there remains an important problem: to choose the
"correct" one out of a huge number of conjectured
Calabi- Yau spaces. (However only a very limited number
of CY spaces have been constructed until now. ) The fol-
lowing criteria may be useful in selecting the right com-
pactification: (1) Compactification into Calabi-Yau space
should be stable against string quantum fluctuations; (2)
in addition, one requires a global anomaly' freedom.
Presently our understanding of superstring theories is not
deep enough to settle this problem immediately. At this
stage, it is important to find as many Calabi-Yau spaces
as possible. Then further developments in superstring
theories will allow one to determine the right Calabi-Yau
space.

In this paper, we report three new Calabi-Yau spaces
with Euler characteristics of —144, —156, and —120
constructed from the weighted complex projective space
%CP". No nontrivial discrete isometry group has been
found for these spaces.

II. CONSTRUCTION OF CALABI- YAU SPACES
FROM THE %'EIGHTED COMPLEX

PROJECTIVE SPACE WCP"

dIi A AdIk&0 (3)

for every point. The total Chem class with constraints
is12

n+1

ff (1+i J)
m=1

g (1+d J)
m=1

(4)

and the Euler characteristic is ci g d /g i, where c3
is the coefficient of J in the expansion of Eq. (4). The
requirement of the SU(3) holonomy group is satisfied if

k+4 k

X t-= X d-. (5)

This is more relaxed than the corresponding formula

k

k+4= g d for CP".

Three new Calabi-Yau spaces are constructed from

The weighted complex projective space WCP" is con-
structed from complex (n +1)-dimensional space exclud-
ing the origin, C"+' —tOJ, by identifying

(1)

where i„.. . , i„+i are arbitrary positive integers. Usual
CP spaces correspond to the case i i i i ———— i„+,————1.
The total Chem class of WCP" is

n+1
c = g (1+i„J),

k=1

where J can be interpreted as a normalized Ricci two-
forrn. "

One can consider a submanifold of WCP" with k con-
straints which are homogeneous polynomials of degree
dt, . . . , dk counted with weight given in Eq. (1). The
metric and complex structure depend on the detailed form
of constraints. One of the conditions for a smooth mani-
fold is
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weighted CP as follows.
(1) CY space from WCP with X= —144.
The Calabi- Yau space is constructed with identification

(zl,zz, wi, . . . , N4)~(A, zi, A, zz, owl, . . . , Aw4)

(zp, z i,zz, wi, wz, N3 } (I, zp, A, zi, A, zz, AN l, Awz, AN 3 )

(13)

and constraints

and with polynomial constraints
3

Ii =zp +zi +zz + g wl =0,2 (14)

Il=zl +zz + g w; =0,
3

Iz=zi +azz + g blw( =0, (15)

4

Iz ——zi +azz + g b;N; =0,

where (a,bl, . . . , b4) are complex parameters and any
two of (l,a, bl, . . . , b4) should not coincide. The power
of zj (j=1,2) with weight 2 is identical to the power of N;
(i=1,2,3,4) with weight 1 in Eqs. (8) and (9) for consisten-
cy with the identification of Eq. (7). The Ricci-flat condi-
tion Eq. (5) is satisfied with pi~ =8 and g 1~ =8 obvi-

ously.
We want to show that spaces constructed with the

equivalence relation Eq. (7) and constraint equations (8)
and (9) are smooth. Fixed points in the equivalence rela-
tion Eq. (7), if they exist, give rise to singularities. For
A, = —1, points with w;=0 (i=1,2,3,4) and arbitrary

zj (j=1,2) can be fixed points, if they satisfy constraint
equations (8} and (9). However constraint equations (8)
and (9) with w; =0 (i=1,2,3,4) require z; =0, since a is
not equal to unity in Eq. {9). But the origin is excluded
from WCP . There is no fixed point in the equivalence
relation Eq. (7).

Singularities can also originate from constraint equa-
tions (8) and (9). Each constraint eliminates one complex
coordinate; thus, the normal directions of two constraints
should be independent everywhere to eliminate two com-
plex coordinates smoothly from WCP . If the two-form

3

A zldzi+azzdzz+2 g btNt dN&. (16)

does not vanish everywhere. Singularities can arise for
the cases

zo ——0, 3z 1
——pz 1, 3z2 ——paz2,2 2

3W; =Izb;N; (i =1,2,3),
(17)

where dIi and dIz are parallel. Equation (17) can be sa-
tisfie by

z, =0 or z, =p/3, (18)

give a Calabi- Yau space. Here complex parameters
(a, bi, . . . , b3) should avoid i +ja +kb, +Ibz' +mb3
=0 with (i,j,k, l, m) =0 or 1. This space is Ricci flat and
has Euler characteristic —156.

Fixed points can arise for A, = —1, e ', or e "', but
they are not consistent with constraints Eqs. (14) and (15).
Thus there is no singularity in equivalence relation Eq.
(13).

The transversality condition is satisfied if the two-form

30= 2zpdzp+3zi dzl+3zz dzz+6a g tu; dw;

Q=dIi AdIz (10)

vanishes at any point, we cannot eliminate two complex
coordinates smoothly, and this point becomes singular.
Equation (10) for constraints (8) and (9) is

zz =0 or zz ——)ua /3,

w;=0 or w; =pb;/3 (l =1,2,3)'.
(19)

(20)

4
0= zidzi+zzdzz+2 g N& dN&

To eliminate these possible singular points, the complex
parameters (a,bi, . . . , b3) in Eqs. (14) and (15) should
avoid the following:

i +ja +kbl +lb2'+mb3 ——0, (21)
A z i dz i +azzdzz +2 g bg Ng dw(

Equation (11) vanishes if dI& and dIz are parallel as

z& ——pz» zz ——pazz, w;=pb;w; (i =1,2, 3,4) . (12)

where i, j, k, l, and m are either 0 or 1 to cover in Eqs.
(18)—(20).

{3) CY space from WCP with X= —120.
This space is constructed from the identification

For @=1, Eq. (12) can be satisfied by arbitrary zi, zz ——0
and N;=0 (i=1,2,3,4). Constraint equations (8) and (9)
with zz ——0 and w; =0 (i =1,2, 34) require zl ——0, but the
origin is already eliminated. Similar arguments hold for
the pa= 1 and pb; =1 (i=1, , 243) cases, respectively.
Therefore this complex three-dimensional manifold is
smooth and Ricci flat with Euler characteristic —144.

(2) CY space from WCP with X= —156.
The equivalence relation

Ii ——(zi +zz )+(Ni +Nz )+(ul +uz )=0, (23)

Iz ——(z, +azz )+P(wl +ywz )+5(ui +evz )=0,
(24)

(z y izy zw~ iN, zutiuz) (A, zi, A, zzyA, w], A, wA zkUi)Uz

(22)

and constraints
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where any two out of ( l, a, /3, 5,Py, 5e) should be different.
Fixed points in the equivalence relation Eq. (22) can

arise for the case of A, = —1, e '~, or e '~. Constraint
equations (23) and (24) require these fixed points to lie at

the origin, which has been already eliminated in %CP .
Thus there is no singularity in the equivalence relation
Eq. (22).

The transversality condition is satisfied if

n=(2ztdzt+2z2dz2+3wt dwt+3w2 dw2+6u] dut+6u2 du2)

A(2ztdzt+2azzdz2+3Pwt dwt+3Pyw2 dw2+65u~ dut+65eu2 du2)&0. (25)

Singularity can arise for

2 & 2Z) =PZ), Z2 =PAZ2, N
& =IJ~N )

2 2 5 5 5 5
w2 =i Dywz» =i 5ut u2 =I 5eu2

(26)

(1) (z t,zz, . . . ,zs )=(A, zt, k@2, . . . , Azs } with X= —204,
(2) (zt, z2, . . . ,zs)=(A, zt, A@2, . . . , Ass) with X= —296,
(3) (z„zz, . . . , z6)=(A, zt, Az2, . . . , Ass) withe= —256,
(4} (zt, z2, . . . ,z6)=(A, zt, km~, . . . , Az6) with X= —156.

Strominger and Witten have found one space from arbi-

where dIt is parallel to dIz. To avoid the singularity
given by Eq. (26), any two of (l,a,P,5,Py, 5e} should not
equal each other. Thus the constructed space is smooth
and Ricci flat with Euler characteristic —120.

We now turn to the familiar Calabi-Yau spaces. Strorn-
inger and Witten have found CY spaces with branched
coverings of CP" where only one of the weights differs
from one and the remaining weight equals one. They are

trary %CP":

(zt, z2, . . . ,zs)=(A, zt, A, z2, kz3, isa, les)

with X= —288. The new spaces reported in this paper be-
long to this category of homogeneous space with an arbi-
trary weight.

There are no other Calabi-Yau spaces, from differently
weighted (WCP, WCP, WCP, WCP, WCP ), up to
highest weight (100, 40, 30, 20, 10) in the equivalence rela-
tion Eq. (1).

It is not clear how these new Calabi-Yau spaces can be
applied to the phenomenology of superstring theories.
The number of generations for these spaces are 72, 78,
and 60, respectively, and are quite large compared to three
generations of the standard model. The Hosotani'3 mech-
anism of gauge-symmetry breaking by a twisted boundary
condition cannot be applied to the Calabi-Yau spaces in
this paper due to the absence of a nontrivial discrete
isometry group.
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