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The renormalizatiou of P theory in a six-dimensional conformally flat space-time is discussed at
the two-loop level. The background-field method and the momentum-space representation of the
Feynman propagator are used to calculate the ultraviolet divergences of the effective action. It is
shown that {P3)6 theory is renormalizable in a conformally flat space-time at the two-loop level.

The counterterms are given to the two-loop order. The next-to-leading-order term in the P function
for the cauphng constant of the 8P2 term is then obtained.

I. INTRODUCTION'

Quantum field theory in curved space-time has been
one of the interesting subjects of investigation. In partic-
ular, the possibility of explaining the evolution of the ear
ly Universe based on particle physics must be carefully ex-
amined through a closer study of quantum field theories
in curved space-time. Furthermore, the examination of
the ultraviolet structure of quantum field theory in curved
space-time is thought to give some clue to the ultraviolet
problem of quantum gravity itself.

Renormalizability is the first problem which arises
when one considers an interacting field theory in curved
space-time. This problem has been considered by many
authors. 3 Although a general scheme to discuss the renor-
malizability of a given theory, especially a gauge theory,
has not yet been given, the current folklore is that a
theory may be renormalizable in curved space-time if it is
renormalizable in flat space-time. The explicit calcula-
tions of scalar field theories and gauge theories in curved
space-time with various topologies, in fact, support the re-
normalizability in curved space-time.

In this paper we consider P theory, (P )6, in a six-
diinensional conformally flat space-time. We perform an
explicit calculation at the two-loop level. This is of in-
terest because this theory is the simplest one which has
asymptotic freedom. This theory was considered in Ref. 6
in flat space-time. The two-loop renormalization was per-
formed in Ref. 7 in spherical space-time. In Ref. 8, the
one-loop calculation was presented in a general curved
space-tine by using the heat-kernel technique. The au-
thors in Ref. 9 investigated this theory at the two-loop
level in a conformally flat space-time and found a peculiar
structure of this theory.

The purpose of this paper is to prove the renormaliza-
bility of (P )6 theory in a conformally flat space-time at
the two-loop level. We will obtain as a byproduct the P
function for the coupling constant of the g'RP term. We
use the background-field method' ' to obtain the effec-
tive action (Green's function). The momentum-space rep-
resentation of the Feynman propagator' ' and dimen-
sional regularization are employed to analyze the ultravio-
let divergences.

In Sec. II we present our notations and give a brief re-

view of the momentum-space representation of the Feyn-
man propagator which was developed in Ref. 14. In Sec.
III we calculate the divergences at the two-loop level, and
renormalizability is proved to this order. The counter-
terms and the P functions mentioned above are explicitly
given. Section IV contains a brief summary.

II. {Ps)eTHEORY IN A CONFORMALLY
FLAT SPACE-TIME

In this section we explain our notations and some tech-
nical points which will be used in Sec. III. We restrict
ourselves to a conformally flat space-time. Therefore, the
metric tensor can be conformally transformed into a flat
space-time:

n —1

ds2=0 ri&gx"dx"=fI (g) dpi gdx'— (2.1)

where n is the dimension of the space-time.
The bare action for P theory is given by'

I[pa] f dv~ 2 Pampa

2(a~tta' —
3,

ga0a'— (2.2)

where

1[ka+Wj=l[baf+0
~

+I(Pa 4 j
4 =Pa

and

I[Pa,g)= ——,
' f dv„g(Cl+ma +gaR)P

—t ga f dvx0 4a —
3, ga f dvx4

(2.3a)

(2.3b)

Now define the renotrijalized quantities and counterterms
as follows by taking into account that quantum fields

dv, :—v' —g (x)d "x, v' —g (x)=0"(ri) .

According to the background-field method '6 Eq. (2.2)
will be expanded about the background field Pa.
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need not be renormalized:

p' "-"ps=z'"y, Z= 1+5Z,
mg ——m +5m

4 =0+8
go=) ' ""(g+5g},

(2.4a)

and the counterterms. I[Ps ] becoines

I[Pa]=I"[(()]+I"[4]
"4b' w~ere

(2.4c)

(2.4d)
I [P]=y," f dv, ——,'P~ ——,'m2P

(2.5a)

where an arbitrary parameter p of mass unit is introduced
so that g and P have the same dimension for all n as they
do for n =6. By substituting Eqs. (2.4) into Eq. (2.3), we
obtain the action in terms of the renormalized quantities

——,
'
(R(() 2 ——,gP' (2.5b)

I"[P]=p" f dv, {—,'5ZQ—CIP ,'(m—'5Z—+5m +5m 5Z)P ,'((—5Z—+g+g'5Z)Rj i

—( I /3! )[(g +5g)( I+5Z)'i' —g]((' 3] .

The terms which are quadratic and cubic in P take the following form

I[/, P]= ——,
' f dv„g(CI+m +JR)P——,'g f dv, P P —,p "—~g f dv, P —,

' f—dv„g(5m +5gR)P

——,
' [(g+5g)(1+5Z)' —g] f dv, P P i

p' "—5—g f dv„P

(2.5c)

(2.6)

Since we are interested in only the divergences which
arise in the matter action, it is enough to treat the back-
ground field p perturbatively. 's Therefore, the first term
of Eq. (2.6) is regarded as a free part of the theory and the
remaining terms as interactions:

I=10+1;.&

Eq. (2.10) into momentuin space,

g(x,x')= „ f exp[ikon ikori—' ik (x—x')]-
(2m )"

Xg(ko ko k)dkodkod k (2.11)

with

a+m'+ Z

it is straightforward to drive the following integral equa-
tion for g (ko, k o,k)

g(ko~ko, k)=(ko —k ) 5(ko —ko)

g(x,x') =—Q(g)"i 'G(x,x')Q(ri')" i

the equation for g (x,x') reads

Q"B„B~(x,x'}+{m Q +[/ —g(n)]RQ jg(x,x')

(2.9)

The form of I;„, is obvious in Eq. (2.6). Equation (2.7)
defines the free propagator

G(x,x') = —i(0 { T[P(x}(()(x')]
~
0},

which satisfies

(o+m '+ gR)G (X,X')=—( —g) '/'5"(x — ') . (2.8)

The effective action I'(p) can be obtained by calcuiatjng
the one-particle-irreducible diagrams with the help of the
Wick reduction formula. The propagator G is, of course,
used on the internal lines.

In the case of the conformally flat space-time, Eq. (2.8)
can be solved by going into the momentum space as dis-
cussed in Ref. 14. If a new function g (x,x') is definel as

—«o' —k') ' f dpoV«oIo)g(Io, ko, k),
(2.12)

where V(ko,po} is the Fourier transform of V(ri },

V(rl }= —m 'Q(rI )'—[g—g(n)]R Q(r/)'

then

V(ko,po)= f e V(g)dq .
2m

(2.13a)

(2.13b)

g(ko ko, k)=go(ko ko, k)+gv(ko ko, k)+gf(ko ko k)

Since Eq. (2.12) can be solved iteratively, we will get the
solution for G by putting back Eq. (2.12) into Eq. (2.11)
and using Eq. (2.9). For our purpose of finding the pole
terms, only one iteration of Eq. (2.12) will be needed as
easily seen by power counting. Explicitly the form which
wi11 be used in the next section is

= —5"(x —x'), (2.10)

where g(n}=(n —2)/4(n —1). By Fourier transforming with

(2.14)
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g()(k(),k(),k) =5(k()—k() )(k() —k )

gv{k(),k(),k) = —(k()i —k) 'V(ko, k())(k() —k )

(2.15a)

(2.15b)

0

I'"((I))= ——g J du„du„(I)(x)G (x,x')({)(x')
4

6
——gi f du„du, du„-(t)(x)G(x, x')(II)(x')

It turns out that the explicit form of gf is not required to
discuss the renormalizability to the order we are working.

Since all the technical devices which will be needed
have been prepared, we can proceed to the explicit calcu-
lations.

GI. DIVERGENCES IN (Qi)6 THEORY

In this section we calculate the pole terms to the two-
loop order. For completeness we start our computations
at the one-loop level.

A. One-loop renormalixation

At the one-loop level, the divergences of the effective
action (for the matter parts) are contained in the terms

XG(x',x")Q(x")G(x",x) . (3.1)

The pole terms of I'" are given by those of G~(x,x') and
G(»x')G(x', x")G(x",x). From Eqs. (2.9) and (2.11) we
can immediately write down the expressions for G2 and
GGG. Power counting only the first and the second (the
first) terms in Eq. (2.14) leads to the divergence of G2

(GGG) at n =6. We will write these contributions
schematicdly in Fig. 1. In Fig. 1 the bold line represents
the full propagator g(ko, ko, k). The solid line corre-
sponds to go [Eq. (2.15a)], the line with the triangle to gv
[Eq. (2.15b)].

The pole part of Gi [Fig. 1(a)] is easily calculated to be

~ [~'-"G'(x,x )]=—( t ,
'

[Q—(~—)Q(~)]-' ""~~"a aP"(x —x )+2[Q(q)]-'V(~)5"(x —x')
I

1

(4n)' n —6

i —
3 {——,

' [Q(il')] "[D+g(n)R]5"(x —x') —2[Q(rl)] I m +[/ g(n) p—t I5"(x —x')) .1

(4~)3 n —6

(3.2)

In Eq. (3.2) use has been made of the following identity:

[Q(q)Q(q')]-'-""[q~"a„ag"(x -x )]

= [CI„+g(n )R ]5"(x—x')[Q(rl')] " . (3.3) +—'M ——'P6) l~0'
Similarly the pole part of GGG [Fig. 1(b)] is easily found
which is the same as in flat space-time: + 6g({'I . (3.5)

I'p[p, "G(x,x')G(x', x")G(x",x)]

Q(rl) ' 5"(x —x')5"(x —x") . (3.4)
(4~)i n —6

Adding the counterterms at the one-loop level of Eq.
(2.5c), it will be seen that the pole terms are removable if
the counterterms are fixed as follows:

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1), we get the
pole term of I'"(P):

+ finite

+ finite

5Z'"= —'
6 (4~)' n —6 '

2
5m""=—g m'

6 (4~)i n —6

5(' '=—, (g ——,),)) 5 g 1

6 (4~)' n —6

5g(() 3 g 1

4 (4~)' n —6

These results are in agreement with those in Ref. 8.

8. Taro-loop renormahzation

(3.6)

FIG. 1. The divergent diagram at the one-loop level. The
bold line represents the full propagator g. The solid-line (line
with triangle) corresponds to go (g&).

We next turn to the two-loop calculations. As in flat
space-time, a power-counting argument tells us that we
have only to consider the two-point (self-energy diagram)
and the three-point (vertex diagram) Green's functions.
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The divergent diagrams me should compute are listed in
Figs. 2 and 3. The contributions from each propagator of
Eq. (2.14) are also shown as in Fig. 1. The dashed line
means that the corresponding propagator contains any
combination of gz, gi, and gf other than those explicitly
shown in the figure. The vertex with a closed circle
represents the counterterm vertex which is given by the
fifth term of Eq. (2.6). The closed circle on the line cor-
responds to the counterterm contribution from the fourth
term of Eq. (2.6). It should be noted that the integral over
the dashed lines does not produce any new divergence as
easily seen by power counting. Therefore, the diagrams
with dashed lines have only the single pole which is just
that of the one-loop subdiagram. This means that such
poles are canceled out trivially among the two-loop dia-
grams and the counterterm diagrams. The nontrivial dia-
grams which should be calculated are those which do not
contain dashed lines.

The calculations of each diagram are tedious but
straightforward. The diagrams which contain only the go
propagator, Eq. (2.15a) (the first diagram of the two-point
and three-point functions), are the same as in flat space-
time except for an additional inQ(i))-type contribution.
In order to explain from where this kind of contribution
comes out, let us consider the diagram of Fig. 2(a). The

+~+~+~

b-1 b-3

+. + finite
I

/

+ —4; + finite
I

G-2

+ —, , + finite

expression for Fig. 2(a) is

I'2i, '= —,'g p6 "fdu„du„du, d ,u-4( x)G(x,x')G( x, x")

&& G'( x", x"') G( x"', x')P( x') .

Substituting Eqs. (2.9) and (2.11),we have

FIG. 2. The divergent two-point diagram at the two-loop lev-
el. The meaning of each line is the same as that in Fig. 1. The
dashed line means any combination of go, gz, and gf. The
closed circle corresponds to the counterterm.

I 2', ' ———,'g~p "fdu, du„g(x)P(x')(2n) 5"[Q(i))Q(g')] "d"x"d"x"'[Q(rl")Q(g"')]

X f exp[ikon ikorl' —ik(x x—')]g(ko—,ko, lt)dkodkud" 'lr

X exp ipo9 —~go& —~»—" ~&o po p &0 5'

exp iqoq" —iqoq"' —iq x"—x"' g qoqo, q qo q
"

q

exp r'roy'" —iron' —ir x"'—x' g roror ro r' " 'r . (3.7)

From this expression, it is easy to see the origin of the
lnQ-type contribution. This is due to the incomplete com-
pensation of Q factor at the vertices x" and x'". In fact,

[Q(g")Q(rl"')]i "~ =1——,
'

(n —6)ln[Q(rl")Q(rl"')]

+Of(n —6) ),

iE,

r ~r ~ + . . + finite

and the second term multiplied by the double pole pro-
duces a single pole. The factor of [Q(g)Q(g')] " also
gives the similar contribution to pole terms as seen in the
subsequent explicit calculations.

Now let us list our results of calculations. Writing I' '

as

a, l "'=~"-'f du. du. y(x)y(x )[Q(q)Q(q')]'-"

~q[x —x']e
(2n )"

+, +- finite

+ finite

'n —6

Xdn
4np (4m)

(3.&)

FIG. 3. The divergent three-point diagram at the two-loop
level.
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72(n —6)
1 43

72(n —6) 12

lnQ(i) )Q(g')1

V(i)) Y(i)) 3

4(n —6)3 4(n —6)

+ I' (7),q) — InQ(g),
1 V(ri )

V(il) V(i)) 13

12(n —6)3 12(n —6) 12

we show the results for I. Figure 2(a) gives

(3.9)

I2e —
&
=

3 —n/2

4mp

X( —q )
5 5 4 y

36(n 6)' 36(n —6) 3 2

I2e —2 =
3—n/2

4np

5
V(i) )

6(n —6)

5 1

12(n —6) 2

For Figs. 2(c) and 2(d), we use the one-loop counterterms
of Eq. (3.5) to fix the value of the effective vertex:

1 V(r) )I' (rl, q)+ lnQ(i)),

1I2a-4= p I2. -3

For Fig. 2(b),

' 3—n/2—g

4m.p

5 F(i),q)

5
2

V(i))
12(n —6)

(3.11)

I2b i
——( —q )

2

I2b —2 2I2a —2 ~

1
2+

1
(3—y)

12(n —6) 12(n —6)

lnQ(i) )Q(ri')
1

(3.10)

5 1

24(n —6) 2

1

240(n —6)

5

12(n —6)

V(ri)
2b —3

( 6)
In the above expressions V(ri) is given by Eq. (2.13a) and

y is the Euler constant. The function F(ri, q) is given by

k 2

F(ri, q)—= f dkue ' V(ku) f dgdggln 1 —g —2$(1—g) +g(l —g')
g

Summing up Eqs. (3.9)—(3.11), we get, through Eq. (3.8),

I'p&~~ p" f d,u——d„uP( x)P( x')[ Q( r)iQ( r'i)] 2
x x'

(4~)' (2~)"

(3.12)

X e q(x —x')
nq ~2 5 +

72(n —6)2 864 n —6
—V(ri)

5 23

8(n —6)' 96(n —6)

+ RQ +(—q ) InQ(ri)Q(i)') —V(i)) inQ(i))
240 n —6 144(n —6 8n —6

4
=p" f du„du„P(x)P(x')

(4m )

, + [Q(~)Q(q )]-'-""[~~"a„ap"(x—x )]
72(n 6)' 864 n —6

+ 2+ [m +[/ g(n)]RIQ "—5"(x —x')
8(n 6)2 96 n —6

+ RQ "5"(x—x')1
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Again using the formula Eq. (3.3), we reach the final expression for PPI'~,':

4
I'pI'&2 ——p" du

23

72(n —6) 864(n —6) 8(n —6} 96(n —6)

5 23 1

, +
8(n —6) 96(n —6) 9(n —6)

The three-point function, Fig. 3, can be calculated in the same way to be

5

P 1(g) +n —6 d&
g 3

(41r) 24(n —6) 288(ri —6)

RP
108(n —6)

(3.13)

(3.14)

This result is exactly the same as that in flat space-time. 6

The counterterm Eq. (2.5c) to this order reads

Ict(2) ps-6 U
& Z(2) g & ~2 Z(2)+ ~2(1) Z(1)+ ~2(2) 2

& (pe(2)+g(l)5z(i)+g(2))g j 2 & (gg(2)+ &ggz(2)+ & Sg( )1gz(1)+ &ggz(i)2) j3] (3.15)

97 g 1

216 (4ir)6 n —6
20
97

27 g' 1 125 g' 1

32 (4n) (n —6) 288 (4ir)

As we have seen, the theory is renormalizable at the
two-loop level. This conclusion is in disagreement ' with
that of Ref. 9. The counterterms to this order are exactly
equal to those in flat space-time6 except g' which is not
present in flat space-time. Therefore, the 't Hooft pole
identities and the Symanzik identity are naturally satis-
fied. The beta function for the coupling constant g is also
the same as in fiat space-time:

Ps(g) =P Bg 3 g 125 g
~p 4 (4m)' 144 (4n)'

The P function for g becomes

&pgk)=s
&„

= a

1 g
(4m )

97 20 g
108

Although each diagram has the nonlocal divergences like
(n —6) 'F(ri, q) and/or (n —6) '1nQ(ri), they cancel out
among each other. Therefore, the divergences in Eqs.
(3.13) and (3.14) can be removed by the counterterm of
Eq. (3.15) with the following choice:

5 g 1 13 g 1

36 (4n. ) (n —6) 432 (4~) n —6 '

36 (4ir) (n 6) 216 (4n )6 n —6

(3.16)
35 g 1 1

36 (4 )' (n —6)'

Since the theory is asymptotically free, the value of g(p)
approaches the conformal value —,

'
when @~co.s This

fact is, of course, not affected by the higher- (two-loop)
order effects.

IV. CONCLUDING REMARKS

It has been shown that (P )s thcery in a conformally
fiat space-time is renormalizable at the two-loop level.
The background-field formulation was used to write down
the effective action (Green's function). The momentum-
space representation for the Feynman propagator was em-

ployed with dimensional regularization to handle the
divergences in the effective action. In Sec. III the explicit
calculation to the two-loop order was performed and we
have seen that the counterterms Eqs. (3.6) and (3.16) can
remove all the divergences present. As in flat space-time,
the cancellation of the state-dependent infinities F(ri, q) of
Eq. (3.12) and lnQ(i)) which are present in the individual
diagram can make the theory renormalizable. In this
respect our results are not in agreement with a recent re-
sult in Ref. 9.

In this paper we have considered only the divergences
which are present in the matter action. Strictly speaking,
in order to claim that the theory is renormalizable at the
two-loop level, one must also investigate the pure gravita-
tional action and also the "tadpole" parts in the action.
However, it is beyond the scope of this paper. Although
we investigated (P )6 theory in a conformally fiat space-
time, it may be a simple exercise to do a similar calcula-
tion in an arbitrary space-time by using the momentum-
space method of Ref. 24 as far as the topology of the
space-time admits such a method. Such calculation may
prove the correctness of the results of the present paper
and is currently in progress.

As mentioned in Sec. I, it is usually supposed that the
theory may be renormalizable in curved space-time if it is
so in flat space-time. Although one cannot a priori claim
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this, there has been much evidence to support it. The re-

sults we have obtained in this paper may add a further in-

dication that this is indeed the case.
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