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The breaking of global continuous symmetries in two-dimensional flat spacetime and in four-

dimensional de Sitter spacetime is investigated. Infrared divergences require physically allowable

quantum states in these spaces to break Lorentz or de Sitter invariance, resulting in two-point func-

tions which are explicitly time dependent. Field expectation values which break the global symme-

try must decay in time, but it is possible to have a state which exhibits broken symmetry for a finite

time. It is also possible for field correlations and energy density produced by a broken-symmetry

state to persist after the symmetry has been restored.

I. INTRODUCTION

It has long been recognized that the dimensionality of
spacetime can have a significant effect upon the breaking
of global continuous symmetries. In four-dimensional
Minkowski spacetime, such symmetry breaking can give
rise to a nonzero vacuum expectation value of the quan-
tum field in a Lorentz-invariant vacuum state, a
phenomenon first discussed by Goldstone. ' However, in
two-dimensional spacetime and in three-dimensional
spacetime at finite temperatures this is not possible. In
both of these cases, the nonappearance of the Goldstone
phenomena is linked to the infrared behavior of a massless
scalar field. In curved spacetimes the symmetry-
breaking behavior can be quite different from that in flat
space. For example, Inami and Ooguri have recently
shown that global syinmetry breaking can occur 'in two-
dimensional anti —de Sitter spacetime.

It has recently ben recognized that a massless scalar
field in four-dimensional de Sitter space also has unusual
infrared properties which are similar to those in two-
dimensional fiat space. The effects of this behavior have
hxn considered by Ratra, who argues that global con-
tinuous symmetries must be restored in de Sitter space. In
this paper we will examine the breaking of such sym-
metries in both two-dimensional fiat spacetime and in
de Sitter space from a different viewpoint.

Our approach is motivated by inflationary cosmological
scenarios in which the Universe goes through a de Sitter
phase of exponential expansion in its early history. Before
inflation, the Universe is described by a Robertson-Walker
metric in which the massless scalar-field propagator has
no infrared divergences and spontaneous breaking of glo-
bal symmetries is allowed. As the Universe enters the de
Sitter phase, the propagator remains finite, but it is expli-
citly time dependent, and thus the corresponding state is
not de Sitter invariant. More generally, we consider a
class of physical states in two-dimensional Minkowski
and four-dimensional de Sitter space in which the mass-
less scalar-field theory has no infrared divergences. Such
states necessarily break Lorentz or de Sitter invariance.
We will examine the behavior of the expectation value and
correlations of a scalar field in these infrared-finite states.

Our analysis indicates that the physical properties of such
states can be similar to those of the broken-symmetry
state.

II. T%'0-DIMENSIONAL FLAT SPACETIME

We wish to consider a complex, self-coupled scalar field
4 for which the Lagrangian has a global U(1) symmetry
and is of the form

I. =aalu'aa4 —V(
i
4

i ), (2.1)

4=pe'

where X and 8 are real fields. Then

I.=a~a x —v(x)+x'a. ea e.

(2.3)

(2.4)

The expectation value of X, (X ) =o, is at the minimum
of the potential V(X), while the expectation value of 8 is
arbitrary. As usual, we can define X=o+5X, where
(5X)=0. For energies much less than mo, or for length
scales &~ma ', the interaction between 8 and 5X is weak,
and we can approximately treat the Goldstone boson
P =o8 as a free massless scalar field. In the same approx-
imation, we can represent 4 as

e=oe'&', O y=O. (2.5)

Decompose the quantum operator P into two parts,
tI) =/++/, where for a given quantum state

~
+),

y- ~e)=0 (2.6a)

(q ~y+=o.

For example, let

(2.6b)

where V(
~

4
~

) has a degenerate family of absolute mini-
ma with

~

4
~
&0. For example, if

V(
i
4

i
) = ——,

'
mo 4'4+ —,

' Ag(4'4), (2.2)

then the absolute minima occur at
~

4
~

=(mo /A, o)'~ .
Let
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y+(x) = g a,'f,'(x) (2.7a)

(x)= gajfj(x), (2.7b}

[aj «]=&JI
we have that

[0 (»0+(y)]=(0( )4(y})

(2.&)

(2.9)

where the expectation value is taken in the state
~

4 ) .
The Campbell-Baker-Hausdorf formula states that

e 3 +B e Ae —f A, B]/2~ B (2.10)

for any pair of operators A and 8 which each commute
with [A,B] Usin. g this relation we find that

((y(x) ) ~e (P (x))/2o (2.11)

Similarly, the correlation functions are

(4(x)4(y) ) =cr exp I
—[(P(x)P(y) ) + —,

' (Pi(x) )

+ —,'(P (y))]/o j (2.12)

where [fj j are an orthonormal set of positive-norm solu-
tions of the massless IGein-Gordon equation, Of& 0. ——In
the particular case that

~
0) is the Lorentz-invariant vac-

uum, P+- are the usual positive- and negative-frequency
parts of P. However, here we are not requiring that the fj.
be purely positive-frequency mode functions and hence

~

4') could be a more general state. Because the ajt and

aj satisfy

malization. Let 4a ——Z@a, where 4ii and 4a are the
bare and renormalized quantities, respectively. If we let

(P )„s——(cd )r,„+D, where (P )„s and D are regulator-
dependent quantities and (P )r,„is finite in the absence of
a regulator, then we need Z =e ~ . Henceforth we will
assume that 4=4+ and (P ) =(P )r,„. Even after the
ultraviolet divergences in (P ) have been removed,
(P(x)P(y}) is still singular as x —+y. This causes
(4(x)4(y)) and (4(x)4' (y)) either to diverge or vanish
as in this limit. However, the above expressions for the
correlation functions are only valid if

~
(x —y) ~

)mo
At smaller distances, the approximation in which the
dynamics of the X field are neglected would fail.

To this point our discussion applies to flat spacetimes
of any dimensionality. Let us now consider two-
dimensional spacetime. Here (t}} ) and (P(x)P(y)) con-
tain an infrared divergence in the Lorentz-invariant vacu-
um. If we were to insert an infrared cutoff, such as a
small mass, these quantities would diverge (~+ ao) in
the limit that the cutoff is removed. Hence both (4) and
(4(x}4(y)), although not (4(x)4'(y)), vanish in this
limit. This is the sense in which spontaneously broken
continuous symmetries do not arise in two dimensions.
The thermal averages of P2 and P(x)P(y) also contain an
infrared divergence in three-dimensional spacetime, so
(4)=0 at finite temperature in three dimensions.

In this paper we wish to approach this problem from a
somewhat different viewpoint in which we do not insist
upon the Lorentz invariance of the vacuum state. A simi-
lar approach was taken in the earlier work on infrared
divergences in curved spacetime. ' We wish to choose a
"vacuum" state ~%) which is free of infrared diver-
gences. Let the mode functions be of the form

(@(x)4'(y)) =o exp{[(P(x)P(y) ) ——,
' ($2(y) )

Although (p (x) ) is formally infinite due to ultraviolet
divergences, we are primarily concerned with the long-
wavelength behavior of the theory for the purposes of
symmetry breaking. In flat spacetime these ultraviolet
divergences may be removed by a wave-function renor-

fk =(4~ad) ' 'e' [ci(co)e'"'+ci(co)e '"'],

where co=
~

k
)

and

ic2(c0)
/

—/ci(co)
/

=1.
The field operator is

f ~k(akfk+akfk } .

The two-point function in the state
~

4) is

(2.14)

(2.15)

(2.16)

(P(x,&)P(x,t ) ) =(2m') f deuce I cosco(x x')[c~(co}—e'" +ci(co)e '"'][ci (co)e '"' +c'(~)e'"' ] j . (2.17)

This integral converges at the lower limit provided that

~c, +ci (
~0 as co~0.

Thus the infrared divergences may be avoided by a suit-
able choice of the quantum state.

The energy-momentum tensor for a massless scalar
field is

7i =4'.iA, 2gi A', c,
4'—

and hence,

cia
~
ci —c2

~

~0 as ccp~O . (2.21)

Thus physically allowable choices for the vacuum state
are those associated with functions c& and c2 which satis-

fy Eqs. (2.15), (2.1&), and (2.21). For simplicity, let us

( Too) =(4n)' f dco co(
~

'cie'"' —c2e

+
~

c&e'"'+c2e '"'~ ) . (2.20)

This quantity should also be free of infrared divergences,
so we require that
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also restrict our attention to the case in which ci and c2
are real functions. Then

c2 —c) =1,2

c, +c2~0, co(c& —c2)~0 as ot~O .
(2.22}

f(~)=Ci+C2 (2.23)

so

ci (f 1——)/(2f—) (2.24a)

The quantity c2 —ci ——(ci+c2) ' becomes infinite as
~~0, but less rapidly than ~ '. Let

to that obtained by matching. Requiring that fk and its
first time derivative be continuous at t =0 yields

co —Q co+ Q
2v coQ 2v coQ

(2.30)

This matching procedure is accurate for tobt « 1, where
ht is the duration of the transition from m&

——m to
m~ ——0. As long as we are not interested in the ultraviolet
behavior, we can use Eq. (2.30) assuming that ht is suffi-
ciently small. The forms of ci and c2 in (2.30) satisfy Eq.
(2.22).

Here we have a =m '~ and t{,= —,', so

and
($2)-mr/4, r (2.31)

Iff varies as a power of ro near oi =0, then

f (r0) -aco, co~0,

(2.24b)

(2.25}

Let us examine the behavior of the two-point function
(P(x, t)ttt(x', r) ) as either t~ oo or p~ oo, where
p=

~

bx
~

=
~

x —x'
~

. First consider the case in which
M is fixed and t~ oo. From Eq. (2.26} we find that

where 0&t{,&1.
Consider the time derivative of the two-point function

at equal times:

—(ttt(x, t)P(x', t) )
dt

dcoci(co)c2(co)[si neo(M +2t)
0

(ttt(x, r}P(x',t) ) —($2) 1+A(2t{,—1)
2t

Similarly,

t~ oo, p fixed . (2.32)

(p(x, r){t(x',t)) — (2A, —1)p' -'r' 0
2 A,l (2A, )t2

—sinttt(M —2t)], (2.26) p~ oo, r fixed . (2.33)

where M =x —x'. Let us first examine the i moo limi-t

of (hatt ). Set M=O and use the small r0 forms of ci and
c2 to find

—({{}) = 27' d—cocic2 sin2tco
t

and hence

~(21M ) dtd co sln2ico
0

sec[n(1 —2A, )/2]
2 I'(2A, )t2

(2.27}

(y2) sec[7T(1 —2A, }/21 2k (2.28)
2 A,l (2A, )a

This growth of ($2) is very similar to the behavior which
occurs in de Sitter space (see Sec. III). Quantum states
which are free of infrared divergences necessarily break
Lorentz invariance in such a way as to force ({(t ) to be a
growing function of time.

A particular example of an allowable state is construct-
ed by matching the massless mode functions to those for a
massive field. Assume that for t & 0, fk has the form

(4 Q)—1/2 i{kx ntl— (2.29}

where Q=(k+m }'~, and the form of Eq. (2.14} for
t&0. This state has a physical interpretation. Suppose
that in the past the {tt field had interactions (such as those
at finite temperature) which caused it to acquire an effec-
tive mass; after these interactions have been switched off
and the field becomes massless, the P field will be
described by an infrared-divergence-free state equivalent

We can now relate the above results to the discussion of
symmetry breaking in two dimensions. From Eq. (2.11)
we see that (4)~0 as taboo. However, the rate of
growth of ({(}) depends upon the choice of state and may
be arbitrarily slow. Hence it is possible to have states in
which (4) is approximately constant over any finite-time
interval and hence exhibits broken-symmetry behavior
during that interval. From Eqs. (2.12), (2.13), and (2.33),
we see that both (4(x, t)4(x', t) ) and ( Ct(x, t)Ct'(x', t) )
approach nonzero values as phoo at fixed t if o&0.
Thus there exist correlations in the 4 field over arbitrarily
large spatial separations. As t~ oo with p fixed,
(4(x,t)4(x', t))~0, but (Ct(x, t)4'(x', t)) approaches a
nonzero value. If by a broken-symmetry state, one means
a state in which (4)&0, then it is true that such a con-
figuration cannot be sustained for an infinite time in two
dimensions. However, it can be sustained for any finite
period of time. Furthermore, even after the symmetry has
been restored in the sense that (4) and (tri(x, t)4(x', t) )
have decayed to effectively zero values, there still remain
lang-range correlations exhibited by the nonvanishing of
(4(x,t)4'(x', t) ) over large but finite distances which do
not decay in time. Thus the theorem that "there are no
Goldstone bosons in two dimensions, " although formally
correct, is somewhat weaker than it might appear to be at
first sight and does not prevent the realization of certain
aspects of broken symmetry in two dimensions.

We can understand the behavior of (P(x, t)P(x', t) ) and
hence of (4(x,t)@'(x',r)) in more detail by calculating
these quantities in a particular quantum state. Let the
state be that defined by Eq. (2.30), the state obtained by
matching the massless field to a field of mass m at t=O
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From Eqs. (2.17) and (2.30) we find that, at t =0,

(P(x,0)P(x', 0) ) = Ko(mp)
1

2m.

(2ir) 'e ~, mp &&1,
—(2ir) 'ln(mp), mp «1 .

For t&0,

tP(x, t)P(x't)) = K,(mp)+F(p, t),1

2'

(2.34)

(2.35)

Ol

b
A

e

V

/2 n' cr 2
(m p)

2

F(p, t) = coscop sin cot . (2.36)
to (ro +m )'

If either p or t are large compared to m ', the dominant

contribution to E(p, t} comes from values of to«m.
Thus,

m 'I dco 2+(p, t)= i coscopsin tot2' 0 Q)

m . ~ dc'
lim

2
coscop(1 —cos2~t)

4&p~o o ~+p

-l
mo

I

271 2T2
i

2T3

FIG. 1. The correlation function (tt(x, t)4 (x', t)) in two-

dimensional spacetime in the state obtained by matching a mass-

less scalar field to a field of mass m is shown. It is plotted as a
function of p=

~

x —x'
~

for various values of the time t Fo.r
large p, (4(x,t)4 (x', t) ) approaches the constant value

2~ —mt/4+

so

(i2t —pi+2t —p),
16

(2.37} where rl = H'e '. A—free massless field which satis-
ies

(3.2)

8 m (2t —p), 2t &p »m

(P(x, t)((}(x',t})—' ,' mt —l—n(mp), t & m ' &p,

O(e i'), p&2t »m

(2.38}

III. de SITTER SPACETIME

A massless, minimally coupled scalar field in four-
dimen»onai de Sitter space has infrared behavior' whjch js
similar to that in two-dimensional fiat spacetime.
the metric on de Sitter space to be

ds~=dti eiH'dx~=(Hrl) i(dr—l dx ), —(3.1)

Combining Eqs. (2.13), (2.34), and (2.38) we find that the
correlation function has the following behavior:

rr (mp} "~ ", mo '&p&m

(4(x,t)4'(x', t)) —'o e t'~, 2t &p&&m

2~ —mt/412 2g ~~~ —1

(2.39)

This correlation function is illustrated in Fig. 1.
This function illustrates the general features discussed

above: as t~ 00 with p fixed, the correlation function ap-
proaches nonzero limits. Note, however, that if both p
and t become large, (@(x,t)4'(x', t))~0. Thus at very
late times the value of the correlation function becomes
very small as p~ 00. The characteristic time scale here is
m ' which can be chosen to be arbitrarily large.

has the property that (P ) in a spatially homogeneous

state in the above coordinates must be a growing function
of time; for t »H ', itis given by ' '

H3t
(yJ) H (3.3)

4

This is the analog of Eq. (2.28) in two dimensions. This
linear growth of (pi) is again due to the infrared

behavior of the theory. For the free field theory there is

no accompanying growth in the energy density; however,

in interacting theories ( T„„)can also become time depen-

dent. "
The time dependence of (P ) necessarily breaks

de Sitter invariance. This is to be expected because no
meaningful de Sitter-invariant vacuum exists for the
massless field due to infrared divergences (for a recent de-
tailed discussion of this point see Allen, ' where a
rigorous proof of the nonexistence of a de Sitter-invariant
two-point function is given}. This is completely analo-
gous to the need to give up Lorentz invariance in order to
have a well-defined massless scalar quantum field theory
in two-dimensional flat spacetime. The physically al-
lowed states are those in which the two-point function is
free of infrared divergences. States which are free of in-
frared divergences at one time will remain so at later
times. ' Ratra has attempted to give a counterexample
to this result; however, his example requires taking the
limit as time goes to infinity before examining the zero
frequency limit, whereas these limits should be taken in

the reverse order.
For the discussion of symmetry breaking in de Sitter

space, we need to examine the two-point function. Ex-
press the field operator as
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y=(2~}-'"f d'k[a„g, (~}e'"'+H.c.],
where

gk(rt)= ,' m'—H
~ g ~

[ciH3~'2(krl)+c2Hi~)2(k9)1 .

(3.4) as t~ ao (
~
rj

~

~0) with 4x fixed. Set rt =g' and change
the integration variable in Eq. (3.7) to z=k/H. For
small, negative arguments the Hankel functions have the
limiting forms

(3.5)
The coefficients ci and cz are functions of k/H and
satisfy

(3.6}

If the vacuum is defined by ai,
~
0) =0, then the two-point

function is

(4( )(()( ')) =(2 )-' f d'kg, (q)1(k(q } '"~*-*'~.

This quantity is free of infrared divergences provided that

F(k/H)=
i

c(ik/H)+ ic(k/H)
i

~0 as k~O. (3.8)

Let us first consider the limit of the two-point function

H))p( —g) -H3)2( —g) -&2/mg (3.9)

Xeiz hxH 0 (3.10)

This form applies when the coordinate separation
~

hx
~

is held fixed. It is also of interest to consider the limit
rI~O with the proper separation p=b, x(H

~ g ~
)

' held
fixed. Let g'= —rtk. Then

Thus at late times the two-point function approaches a
nonzero constant:

H
, f d". F-(.)

16m

&((l(x)(()(x')&„„=,f d'0
I
c, (CH 'I rt I

--'»,",', ( —k)+c, (CH-'
I
rt I

-'}H'i'), ( —P I

'e' ' ". (3.11)

Take the derivative of this equation with respect to g with

p held constant and use the asymptotic forms given in Eq.
(3.9) to find

3

(p( )p( i)) f 0eif pH

16m'rtz

xF'(fH 'irli-') .

(3.12)

Let z=g'H '[g~ ' and take e'*'t'~" ~H=1. Then be-
cause F(0)=0 and F( ao )= 1, we find

H'
dr/ 4m

and hence

(3.13)

(P(x),P(x') )v v
—(P )—,t ~ ao, p constant .

0'~
4 2

(3.14)

H dz
(P(x)P(x'))v q

— f 3
F(z)e'*'t' "' . (3.15)

16m z

This is the analog of Eq. (2.32).
Finally we need the limiting form as either

~
b,x

~
or

p=
~ p~ ~no with rl fixed. From Eq. (3.11) we can see

that in this limit the exponential factor forces the dom-
inant contribution to the integral to come from small
values of g. Again using Eq. (3.9) and changing the in-
tegration variable to z yields

Ha(P(x)P(x') )„„- I (P—1) sin[ —,
'
(P—1)n ]

X(H p ~7]
~

) ~, phoo, rl fixed.

( @) ae H3t/Ar oi— (3.18)

We can also give the behavior of the equal-time correla-
tion functions in various limits.

(1) Late time and fixed coordinate separation:

&c( )@( ')& —&@( )@'( ')&

ae '-+~ ~0, taboo, hx fixed.

(3.19)

(2) Late time and fixed proper separation:

(4(x)4(x')) -a e ' —+0,

( @(x)4'(x')) ~const, t ~ ao, p fixed .
(3.20)

(3) Fixed time and large coordinate or proper separa-
tion:

(3.17)

Thus (P(x)P(x'))„z vanishes as phoo with rl (or t)
fixed ~ this is the analog of Eq. (2.33). Thus the two-
point function in de Sitter space as a function of proper
separation has qualitatively the same behavior as does the
two-point function in two-dimensional flat spacetime.

Equations (2.11)—(2.13) which relate expectation values
involving 4 to those involving P are still valid in de Sitter
space. Thus

Let F(z}have the limiting form

F(z)-az~, P&0, z~O .

If we substitute this form in Eq. (3.15},we find

(3.16)

(4(x)4(x') ) —(4'(x)4(x') ) -a e

=const, p~ oo, t fixed .

(3.21)



2838 L. H. FORD AND ALEXANDER VILENKIN 33

Thus if we were to graph (4(x)4'(x') ) as a function
of p at various times, the result would look qualitatively
like Fig. 1. For any fixed time, (4(x)4 (x') ) decays un-

til it reaches a limiting value as p increases. However, this
limiting value is proportional to e '~ and hence at
late times the correlation function decays to very small
values at large proper separations.

A few remarks concerning ultraviolet divergences are in
order here. %e have assumed that the ultraviolet diver-
gent part of ((b ) has been removed in writing such rela-
tions as Eq. (3.3). In a general curved spacetime (P )
contains divergent pieces which are of the form of a con-
stant and of a constant multiplied by R, the scalar curva-
ture, which is constant in de Sitter space. In this particu-
lar case the resulting divergences in quantities such as
(4) could be removed by a wave-function renormaliza-
tion, as was described in Sec. II. This procedure is not
completely satisfactory because it would fail in more gen-
eral spacetimes. In general (4) will contain a factor of
e where a is a regulator-dependent constant and R is a
function of position; such a divergence is apparently not
renormalizable. This difficulty is probably due to the
breakdown of the approximation used in writing Eq. (2.5).
In a more careful treatment of the ultraviolet behavior of
the theory the quantum fluctuation of the X field cannot
be ignored. %e are here primarily concerned with sym-
metry breaking and the infrared behavior of the theory for
which this is an inessential complication.

IV. DISCUSSION AND CONCLUSIONS

From Eqs. (3.18)—(3.20) we see that (4) and the corre-
lation functions have very similar behavior in de Sitter
space to that found in two-dimensional fiat spacetime. In
particular (4) and (4(x)4(x'}) must decay to zero on a
time scale of the order of H '. The correlation function
(4(x)4'(x')) does not decay if the two points are at
fixed proper separation, but does decay if the two points
are at fixed coordinate separation. These properties may
be given an operational interpretation. If we establish a
state in which correlations between 4 and 4' exist at one
time, then any subsequent measurements made over the
same physical length scale will reveal the presence of the
same correlations. On the other hand, if we design an ex-

periment in which the correlations are measured by a pair
of comoving observers (who remain at fixed coordinate
separation but exponentially increasing proper separation),
these observers will see the correlations decay exponential-

ly in time, At any fixed time, both (4(x)4(x')) and
(4(x)4*(x')) can reveal the presence of correlations over
infinitely large distances.

As in the two-dimensional case, global symmetries are

eventually restored in de Sitter space, but configurations
which have some of the features usually associated with
broken symmetry can continue to exist. It is true that a
nonzero value of (iIi) cannot persist forever; however, a
state with correlations over a given physical length scale
can persist. The Lagrangian and hence the energy-
momentum tensor of the 4 field are functionals of 44'
rather than (4). Thus one expects that if one initially

prepares a broken-symmetry state with a nonzero energy
density, this energy density would not decay in time. An
example of such a state is a string arising from global-
symmetry breaking. ' This is a spatially inhomogeneous
state with a nonzero energy density. Because a string has
a nonconstant (X) and in fact (X)=0 on the string itself,
the analysis given in this paper, particularly Eqs.
(2.11)—(2.13), does not apply directly to strings. Nonethe-
less, it seems more plausible that global strings can exist
indefinitely in de Sitter space than that their energy must
be dissipated on a time scale of H '. The quantities (4)
and (4(x)4(x') ) are not U(1) invariant, whereas
(4(x)4'(x')) is U(1) invariant. Hence at late times the
symmetry is restored in the formal sense even though the
energy density may remain unchanged.

One difference between de Sitter space and the two-
dimensional flat-space cases is that in the former there is
a natural time scale (H ') set by the spacetime geometry
on which (4) decays, whereas in the latter case this time
scale can be arbitrarily specified by the choice of quantum
state. It is in principle possible to construct states in
de Sitter space which carry other time scales and in which

(4) decays more rapidly. However, if the de Sitter space
is regarded as arising in an inflationary model' with an
earlier, non —de Sitter phase the natural time scale is
necessarily H ' (Ref. 6}.

It is worthwhile noting that it would be completely con-
sistent with all observations for our present Universe to be
a de Sitter space with H '-10' yr. It would be very
surprising if this were to have any effect upon symmetry
breaking on terrestrial or subatomic scales. From the
above discussion we see that there is indeed no prohibition
against global-symmetry-breaking phenomena on such
small scales.
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