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We present an on-shell superspace formulation of ten-dimensional S=1 supergravity coupled to
X =1 super Yang-Mills theory. The coupling is completely specified in superspace by the Bianchi
identity dH =citrF, where 0 is the gauge-invariant three-form field strength of supergravity and
F is the two-form super Yang-Mills field strength. We also briefly discuss the theory that results
from modifying this Bianchi identity by the addition of a piece proportional to the square of the
super curvature two-form.

I. INTRODUCTION

A striking feature of ten-dimensional Iii =1 supergravi-
ty coupled to E =1 super Yang-Mills (SYM) theory' is
that the gauge invariance of the Lagrangian requires that
the antisymmetric potential 8~„(x) transform anomalous-
ly under gauge transformations. The demonstration, by
Green and Schwarz, of anomaly cancellation in super-
string theory has shed further light on this curious feature
of the SYM-supergravity theory. They showed that the
anomalous transformation of 8~„under gauge transfor-
mations (and similarly under local Lorentz transforma-
tions) is required for anomaly cancellation in the field-
theory limit of superstrings. More recently, studies of
two-dimensional nonlinear cr models have revealed an
unexpected connection betwo:n these anomalous transfor-
mation laws of 8 „and world-sheet properties of the
string. Hull and Witten have shown that the nonlinear tT

model describing string propagation in background fields
(belonging to the massless sector of the string spectrum)
has gauge and local Lorentz anomalies which can, howev-
er, be canceled by postulating that 8 „ transform
anomalously.

The present work reveals another interesting aspect of
this feature of the SYM-supergravity theory. We present
a superspace formulation of on-shell ten-dimensional
N = I supergravity coupled to SYM theory; the coupling
is succinctly summarized by the superspace Bianchi iden-
tity

dH =c&trF

where H is the gauge-invariant three-form field strength
of the two-form potential 8 of supergravity and F is the
two-form SYM field strength. Equation (1.1), of course,
implies that 8 transforms anomalously under gauge
transform ations.

This work grew out of an attempt to include back-
ground SYM fields in Witten's analysis of the propaga-
tion of the heterotic version of the Green-Schwarz super-
string in curved superspace. Crucial to the Green-
Schwarz formulation is the existence of a local fermionic
world-sheet symmetry, the x symmetry, which is needed
to gauge away unphysical degrees of freedom. It is neces-
sary to maintain this symmetry while coupling the super-
string to background fields. For the heterotic string prop-
agating in curved superspace %'itten has shown that the rc

symmetry is ensured if the background fields satisfy the
supergravity torsion constraints (which imply the super-
gravity equations of motion). We have shown that a
naive coupling of background SYM fields to this system
possesses a classical ~ symmetry, but that both it and the
gauge syinmetry of the resulting superspace o model' are
anomalous. These anomalies have, however, been shown
to be absent if the modified superspace Bianchi identity
for H, (1.1), is used instead of the pure supergravity Bian-
chi identity dH=0. Since the torsion constraints of su-

pergravity together with the Bianchi identity (I.l) ensure
the existence of the tc symmetry, one might, in analogy
with the pure supergravity case, then suspect that the re-
sulting background system describes the fully coupled
SYM-supergravity theory in superspace. The purpose of
this paper is to show that this is indeed the case.

The organization of this paper is as follows. Section II
is devoted to establishing our notation and discussing
some technical preliminaries. The latter are essentially a
paraphrasing of Ref. 11 and are included here only for
completeness. In Sec. III we motivate and discuss the
coupling of SYM theory to supergravity from another
point of view. In Sec. IV solutions of the Bianchi identi-
ties of the coupled system are exhibited and some of their
more interesting features are discussed. The detailed
derivation of these solutions is relegated to the appen-
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dixes. We conclude in Sec. V with a brief discussion of
the theory resulting from modifying (1.1) by adding a
piece proportional to the square of the supercurvature
two-form.

II. TECHNICAL PRELIMINARIES

+a ~cB B C B

In terms of components

T"= ,' dZ—dZ Tsi~" ,'——e e—TBc",

= 2dZ dZ RsrNa =Ye e RcaaB & W M B & D C B

(2.9)

(2.10)

(2.11)

%e consider a curved superspace with points
parametrized, in local coordinates, by Z =(X,&')
where X~ (m =0,1,2, . . . , 9) are ten ordinary bosonic
world coordinates and EV' (tu=1, 2, . . . , 16} are 16 an-
ticommuting fermionic world coordinates. At each point
in superspace we introduce a set of basis one-forms [e"j:

A dZM A (2.1}

where e~ is the superveilbein. We shall denote its in-
verse by Eq, so

e3e E~ =&))e, E„e))r =&„.A N N M B B (2.2)

The tangent-space indices A, 8, . . . can either be bosonic
ab, . . . (=0 1, . . . , 9) or fermionic a P, . . . (=1,
2, . . . , 16). A basis for p-forms is constructed from the
set [e"j, in the usual way, by forming wedge products,
except that the wedge product is now graded, i.e.,

e AeB ( )[A)[B}eBeA (2.3)

5V"=V LB", 5' ———L„VB . (2.4}

We choose the tangent space group to be SO(1,9) with or-
dinary (bosonic) vectors transforming as the 10 and spi-
nors as the 16 or 16 depending on their chirality. This
implies that the Lie-algebra-valued matrices Lz must
satisfy

L '=O=L, , L B=-L (l4b) ~ (2.5}

We work with a bimodular representation of the ten-
dimensional y matrices. Thus there are two sets of (sym-
metric) 16X 16 y matrices, O'B and I' B. The fermionic
indices cannot be raised or lowered and an upper fermion-
ic index can only be contracted with a lo~er one. The
Dirac algebrais I'BI's™+I BI ™=2g5 ". I" '''

is
used to denote a totally antisymmetric product of y ma-
trices, normalized to unit weight.

The covariant exterior derivative, D=dZ DBr =e "Dz
may be defined by its action on vector-valued p-forms:

DyA dye+ yB A

DV~=dV~ ( }'~~—VB—

(2.6}

(2.7)

where ~q ——dZ ~~& ——e cue~ is the superconnection
one-form. The operator d is the exterior derivative de-
fined by d=dZ B~. It satisfies di=0 and obeys the
Leibnitz rule with the sign convention of Ref. 11. From
the connection and veilbein one can construct the torsion
two-form T" and the curvature two-form R„defined as

yA D A (2.8)

where [a]=0 and [a]=1. We have omitted an explicit
wedge symbol.

Vectors transform under the tangent-space group as

Similar conditions are also satisfied by coq .
In the presence of SYM fields one also needs to consid-

er the field strength F which can be written as the Lie-
algebra-valued (in the gauge group) two-form:

F= 2e e"Fg (2.13)

where we have suppressed the gauge indices. It is defined
in terms of the one-form potential A =dZ Asi ——e AB as

F=dA+A (2.14)

All the "field strengths" introduced above satisfy Bian-
chi identities by virtue of their definition in terms of "po-
tentials. " These can be obtained from (2.8), (2.9), and
(2.14) by using di=0 and are

Dr"—eBZB"=0,

DRg ——0,
DE=0,

(2.15)

(2.16)

(2.17}

where 9' is the gauge- and superspace-covariant deriva-
tive. Its action on a Lie-algebra-valued scalar superfield
A is &A=dA [A,A]. —

At this stage it is appropriate to remark that the Bian-
chi identities (2.15) and (2.16) are not independent. Dra-
gon'2 has shown that, for the choice of the tangent space
group made here, (2.16) is in fact identically satisfied by
virtue of (2.15). Thus the only independent Bianchi iden-
tities are (2.15) and (2.17). In component form these are

DtA ~BC) + T~AB ~
)

+ fgBC) =0,D E D D

~[A+Bc)+T[gB ~Dc) =0
~

(2.18)

(2.19)

where [ ) represents graded antisymmetrization normal-
ized to unit weight. Also, [ ] and ( } will be used to
represent ordinary antisymmetrization and symmetriza-
tion with the same normalization. Indices with a caret are
excluded from these operations. Henceforth (2.18) and
(2.19) will be called the T and F Bianchi identities, respec-
tively.

III. COUPLING OF SYM THEORY
TO SUPERGRAVITY

A basic feature of the superspace formulation of a su-
persymmetric theory is that the number of ordinary (i.e.,
X space} fields is usually far greater than the number of
dynamical fields required to describe the theory. This
makes it necessary to impose constraints on some of the
superfields to eliminate redundant X-space fields. For

As a result of our choice for the tangent-space group R„
satisfies

(2.12)
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dH=citrF +c2trR (3.1)

where c) and c2 are a priori arbitrary. Since d trF
=d trR =0 we may write them as

trF =doiiyM,2

trg 2=da3L

where e3+M is the SYM Chem-Simons three-form

Ci)3yM=tl(AF —
3 A ) ~

(3.2)

(3.3)

0.4)

and co&L is the super Lorentz Chem-Simons three-form

cil3L, =fr(coR —
&

co ) .

This implies the following relation between H and 8:
(3 5)

pure supergravity these constraints are usually imposed on
components of the torsion tensor T„a . In view of
Dragon's result, ' this is a natural thing to do, since the
supercurvature can be related to the supertorsion and its
covariant derivatives through the T Bianchi identities
(2.18). In the presence of SYM fields one has, in addition,
to constrain the field strength Fzz. Once constraints are
imposed Eqs. (2.18) and (2.19) are no longer identically
satisfied. In fact, for an appropriate set of constraints
they determine all the unconstrained superfields in terms
of the dynamical fields. They also provide equations of
motion for these fields.

The superspace formulation of ten-dimensional X =1
supergravity along these lines was first presented by
Nilsson. ' In this formulation the e=0 components of
the torsion and curvature tensors contain all but the an-
tisymmetric tensor degree of freedom. In order to accom-
modate this degree of freedom at the e=0 level Nilsson
introduced a super two-form 8 by constructing a closed
three-form H using a suitable set of constraints. Since H
is closed it can be written as the exterior derivative of a
two-form, at least locally; it is this two-form that Nilsson
identified with 8

In formulating supergravity coupled to SYM theory we
introduce the two-form 8 using a natural generalization
of Nilsson's procedure. We require that the three-form H
satisfy a Bianchi identity but will not insist on it being
closed (it is not necessary for H to be closed to interpret it
as the field strength of 8). The Bianchi identity that H
now obeys must relate dH to other closed four-forms in
the system. Even though this Bianchi identity can be
reexpressed as dH=0 in terms of a new three-form, H,
related to H, this is more general than requiring that H be
closed. This is because this Bianchi identity is solved us-

ing suitable constraints on H not H. Now, there are only
two four-forms in this system that are naturally closed,
namely, trR and trF (the trace in the first term is over
tangent space indices and in the second term over the
group indices). So, in general, the Bianchi identity for H
takes the form

M = —c) tr(A dA ) —c2tr(Q den ), (3.7)

3 P 3
D[A+SCD)+ 2 T[gi) HjCD) 2 1 (F[ABFCD)) (3.8)

IV. SOLUTIONS OF THE BIANCHI IDENTITIES

In this section we discuss the solutions of the T, F, and
0 Bianchi identities. These Bianchi identities are solved
using the following set of constraints on the torsion ten-
sor:

T~p' ——2I'~p, T~ = —T,~ =0,
(4.1)

where the superfield g ~ and the components T,b' and
T,b are unconstrained. This set is due to Mitten; al-
though not identical to that used by Nilsson, ' the two
sets can be shown to be equivalent. %'e use this set since
we find it simpler to work with. We also use the follow-
ing constraints on the superfields H~zc and F„~:

where A and 0 are the superfield parameters of gauge and
local Lorentz transformations. As mentioned in the In-
troduction, it is precisely this anomalous gauge transfor-
mation of 8 that is required for a consistent coupling of
the string to background SYM fields in curved super-
space. The superspace o model discussed in Ref. 9 must
also have a Lorentz anomaly, as can be seen by expanding
the action in powers of e. We expect that the above
anomalous Lorentz transformation property of 8 will be
required to cancel this anomaly. In most of what follows
we shall, however, restrict ourselves to the case with
c2 ——0, i.e., we will assume that H satisfies the Bianchi
identity (1.1). In Sec. IV we will solve the T, F, and H
Bianchi identities using an appropriate set of torsion con-
straints. The resulting equations of motion and super-
symmetry transformation laws describe coupled SYM-
supergravity theory.

It is important to realize that (1.1) introduces an arbi-
trary parameter in the coupled theory. If we restore the
gauge coupling constant in the definition of F and work
with fields of canonical dimensions in (1.1), then c) can
be seen to be of length dimension four. This is precisely
the dimension of the ten-dimensional gravitational cou-
pling constant. It is, perhaps, appropriate that the gravi-
tational constant first appears explicitly in (1.1), since it is
this equation that is responsible for coupling matter to
gravity. (This should be contrasted with the pure super-
gravity Bianchi identities where no arbitrary parameter
appears explicitly. ) Interestingly, as we shall see in Sec.
IV, ci can actually be removed from all equations by ap-
propriate rescalings of the various fields, reflecting the
fact that in the Chapline-Manton theory the coupling con-
stants can be scaled away from the Lagrangian.

%e end this section by giving the H Bianchi identity
(1.1) in component form:

dB =H —C ~ Q)3@M—C2C03L (3.6)
H~p„——0, F p

——0. (4.2)

Since H is, by definition, gauge and local Lorentz invari-
ant, (3.6) imphes that 8 is no longer so. In fact it
transforms as

Since the algebra is rather involved, a detailed derivation
of the solutions is relegated to the appendixes. Here we
present the solutions and discuss some of their more in-
teresting features.
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T Bianchi identities

Using (4.1) and (2.18) one obtains a number of equa-
tions for the unconstrained components of torsion and
curvature. These have been listed in Appendix A, Eqs.
(Al) —(A7). An immediate consequence of these equa-
tions is that the superfield T~ =—T~"ri~, which is a
priori antisymmetric in its first two indices only, is actual-
ly totally antisymmetric. This result is interesting because
it makes T~ have symmetry properties identical to those
of H,b, . In fact, as we will see when we discuss the solu-
tions of the H Bianchi identities, these two superfields are
simply related.

There are a number of additional results that can be ob-
tained from (Al)—(A7). One can determine the super-
fields pap and R,~=R,p,"ri~ completely in terms of
Tahe

yaP & T ( I abc)aP

1

RaP.b= 6 ~,a(f'ab' )aP+3T~f'aP

(4.3)

(4.4)

Also, using the following decomposition of T,b in terms
of SO(1,9) irreducibles

T,b J,b +——2Jp(, I b) +J (I,b)p

where

(4 5)

one can show that

JP 13 D yaP

Jp, = ——,', [Da(I,Q) p+288J I',ap] .

(4.6)

(4.7)

(4.8)

(4.9)

T.;(r ").,=16J~~~, (4.1 1)

once we have solved for Jp using the H Bianchi identi-
ties.

Finally, one can also relate R~ and R~ to T~ and
its fermionic derivatives. The latter relation leads to the
following two results; the equation

D~ Tb,
'——0 (4.12)

which will turn out to be the equation of motion for the
field strength H~, and an expression for the Ricci tensor

~~cd ~ b + Jgh~b I + 9&T2 T&2 (4.13)

where we have used the notation T =—T,b, T~,

From (4.7) and (4.9) one finds that P must satisfy the
equation D QP=O, which implies

(4.10)

This equation will eventually turn out to be the equation
of motion for the supergravity "spin- —,

' " field. The
remaining irreducible component J,b can be related to a
fermionic derivative on T,b„as in (A25). This expression
satisfies (4.6) identically and so does not lead to any fur-
ther constraints. The Rarita-Schwinger equation is ob-
tained from

T,b =—T~&Tb' . Although not evident in (4.13), R,b is
actually symmetric, as shown in Appendix C.

In summary, the T Bianchi identities enable us to relate
all the unconstrained components of the torsion tensor
and all the components of the curvature tensor to the sin-

gle superfield T,b, . They also give us a number of equa-
tions which will eventually turn out to be the equations of
motion for some of the dynamical fields of the theory.

F Bianchi identities

I ap&, XP=O .

(4.16)

(4.17)

The first two of these are essentially the variations of the
gluino and the gauge-field strength under a supersym-
metry transformation and the last is the equation of
motion for the gluino. The simplicity of this equation is
deceptive —we remind the reader that all our covariant
derivatives are torsionful. There is one more result that
can be derived from (Bl)—(84). It is the Yang-Mills
equation:

(4.18)

ln summary, the F Bianchi identities can be completely
solved using the results of the T Bianchi identities. One
obtains in this way the supersymmetry variations of the
SYM fields and the equations of motion for them.

H Bianchi identities

So far the scalar and "spin- —,
'"

degrees of freedom of
supergravity have not appeared in our discussion. As we
shall see below, the solutions of the H Bianchi identities
contain these missing degrees of freedom. In addition, we
will be able to relate H,b, and T~, solve for a fermionic
derivative on T~b, and obtain an expression for J~, in
terms of the other superfields whme 6=0 components
are directly related to the dynamical fields of the theory.
This will enable us to obtain all the equations of motion
and also show that, on-shell, all the superfields can be ex-
pressed in terms of the dynamical fields of the SYM-
supergravity system.

Using (4.1) and (4.2} in (3.8) one can write the H Bian-
chi identities in components as in Appendix C, Eqs.

Using (4.1) and (4.2) in (2.19) these Bianchi identities
can be written out in components as in Appendix 8, Eqs.
(Bl)—(84). It follows from (82) that F, is of the form

Faa=I' ag (4.14}

where the "spin- —,
' " superfield I is a 16 of SO(1,9) and

transforms in the adjoint representation of the gauge
group. We identify it as the gluino, the superpartner of
the gauge field. It is now relatively straightforward to ob-
tain the following equations:

e~p=-,'F.,(r").p, (4.15)

9"aFab 2I'(,a pD—b—g T~I' pj—,' —2( I'(,Ql b) )ag
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k —=D (t). (4.20)

Using (4.19) Eqs. (C3) and (C5) can be solved for the other
components of Hzpc. We obtain

H~~= ——,'(I ~)~ A,p, (4.21)

H~= —2$T—~+ (I',b, ) ptr(X Xp) .
4

(4.22)

One other important equation that can be obtained from
(C5) is

D A,p= P'pD, —P

(Cl)—(C5). Equation {C2) is solved by'

H, p P——I, p,
where P is a scalar superfield, whose 8=0 component is
just the dilaton. Its superpartner is the 8=0 component
of the "spin- —,

' "superfield A, , which is defined by

I-PD Xp=2~PXp+
' (r'b)~ptr(F„XP) .

3
(4.24)

From this one can obtain the equation of motion for (I}:

D'D, P = —,' PT —T~(1 '+)~ptr(X XP)

variation of A, , has interesting consequences for the com-
pactified solutions of superstring theory. As argued in
Ref. 17 this means that it might be possible to have vacu-
um solutions with a vanishing cosmological constant even
when supersymmetry is broken. Equation (4.22) also ex-
plains the "perfect square" of Ref. 17; this appears
through the T terms in {4.13).

Returning to Eqs. (Cl)—(C5), there is another impor-
tant result that we can obtain from them. This result,
given in (C13), expresses a fermionic derivative of T,b, in
terms of the other superfields. A number of relations fol-
low from this equation. First of all, imposing the restric-
tion (4.10) gives the A, equation of motion:

+ —,'(r~) p H + (I )„,tr(X"X') . (4.23)9 + 8 tr(F.,F"} . (4.25)

This equation is essentially the supersymmetry variation
of A,.

Equations (4.22) and (4.23) are extremely interesting.
The first tells us that the field strength H~ is propor-
tional to the spacetime torsion in the absence of coupling
to SYM (Ref. 16) fields. When SYM fields are present
this relation is modified by the appearance of the gluino
bilinear. Since all our equations, with the exception of
(4.23},are written in terms of T~, they will involve H~
only in this specific combination with the gluino bilinear.
The fact that H~ always appears in a specific combina-
tion with the gluino bilinear, except in the supersymmetry

I

Finally, one can obtain the following expression for J,:

D.X.—(r.y+2yl. .).Pap

(3I +I,—2I, I ) ptr(Fb, Xp)

(4.26)

Equation (4.11) then gives us the Rarita-Schwinger equa-
tion while the Ricci tensor can be obtained from {4.13).
The latter is

C)
R,b ————,(4} (2AI'(, D)bA)+c(p 'tr(XI(, & )Xb)

—(}} 'D(,Db)(t)+ ,'rI~T 2Tb +—p'—tr(XI Jk(,X)Tb)"
2

C)
p 'g~tr(XI', ~X)T' + (t) '«(4F F'b+9g~F.gF'") .'(t) '(~I—'Jk—(a~)Tb)

C)+ —,', ~ ~ +(AI;~A )T ((} tr[Fb~X—(I "Jrl ++125(",1 ~I b) Q (4.27)

We have used an obvious compact notation in this equa-
tion. All expected source terms appear in it, though in a
noncanonical form. The last equation of motion, that for
H,b„ is obtained from (4.12) and (4.22). Having obtained
all the equations of motion we ean now see that the pa-
rameter ci can be removed from them by the field rescal-
ings P~c)(I} [which also implies A,~c)A, through (4.21)]
and H~~c, H~. (In the 8~0 limit, this corresponds
to rescaling the antisymmetric potential 8 „.}

%'e should mention here that in solving the three sets of
Bianehi identities one comes across a number of con-
sistency conditions. %'e have checked that they are all
satisfied. For example, one might have thought that one
could solve for T,b in terms of the other superfields
since it is related to a fermionie derivative of T,b, for
which an expression has been obtained in (C13}. It turns

out that this is not the case, as explained in Appendix C.
This is as it should be since the 8=0 component of T,b

involves a dynamical field, the Rarita-Schwinger field.
However, fermionic derivatives of T,b can be expressed
in terms of the other fields. In fact, from the solutions we
have obtained it is not difficult to see that this is true of
all the superfields. Hence the constraints (4.1) and (4.2)
are sufficient to determine the on-shell system completely.

A detailed comparison of this theory with the
Chapline-Manton theory' entails working out the 6~0
limit of the equations of motion snd supersymmetry
transformations for the various fields and then finding the
appropriate field redefinitions. We shall not attempt to
do this here but only remark that qualitatively all our
equations of motion and transformation laws agree with
those of the Chapline-Manton theory, except for the pres-
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ence of extra terms quartic in X. These terms a«neces-
sary for the theory to be supersymmetric, as was first not-

ed in Ref. 17.

V. CONCLUDING REMARKS

In the preceding sections we have discussed the cou-

pling of SYM to supergravity, which was achieved by
considering (3.1) with only ci nonzero. However, for
reasons mentioned earlier, we expect that a consistent
treatment of superstring propagation in curved superspace
in the presence of background SYM fields would require

I

H to satisfy the full Bianchi identity (3.1). It is therefore
of interest to extend the previous analysis to this case.
Another reason for doing so is that SYM-supergravity
theory is known to be anomalous, and, as demonstrated by
Green and Schwarz, a modification in the definition of
the field strength H, similar to (3.6), in X space is re-

quired for anomaly cancellation. In this concluding sec-
tion we will briefly investigate the effect of this modifica-
tion on our previous results.

To see what this modification entails it is necessary to
look at the Bianchi identity (3.1) in components. These
are

9c2
R t„f"~R~~ ——0,3ci

tr(F[eaF~] )

1

[e a]p(i+ (pHs)ea+ YTea Hfps+ PpsHfea 0 I [etpHya]s f I [eesHya]p+ 2c) I'[epaI'a]&tr(& &y)

—3c2Reaf Rpsg +3c2R[epf" R ]s +3ciR[ sfgR ]p
I=

D(,H~~)+ —,
' T H-f

(~a fgg~ 2 (~~f Ps)g

D(,H p)g+2&, H-,„6c,R„—f- R, =0,

3D[e ab]s sHeab +3T[~ Hpb]s+ 3]t)I [eesHab]y —6c(tr(F[ea1 b]aQ ) —18czR [ & gRb]&f 0, ——

(5.2)

(5.3)

(5.4)

Since the T and I' Bianchi identities do not change, their
solutions in terms of the superfields T,b„F,b, and X are
unchanged and can still be used in (5.1)—(5.5) to solve for
the various components of H„pc. However, the presence
of curvature squared terms in these equations now makes
them harder to solve. Assuming that a consistent set of
solutions exists, it is almost certain that it cannot be ob-
tained in a closed form. However, it seems feasible to ob-
tain the solutions in a power series in the parameter cq.

To see how this can be done, we first note that since the
curvature component R ~ is simply related to T,b,
through (4.4), Eq. (5.2) can be solved for H, p. The solu-
tion is modified from (4.19) by terms proportional to the
square of T~. To solve (5.3) and (5.5) for H,b and H~
to first order in c2 it suffices to substitute the zeroth-
order solution for D T~ in these equations. This is be-
cause all terms involving DaTab, appear either through
H, p or the curvature squared terms and so are already
first order in cz. Substituting these solutions in (5.4),
D T,b, can be determined to first order in cz. This pro-
cedure can obviously be iterated to generate series solu-
tions of (5.1)—(5.5).

It is clear that the equations of motion of this theory
obtained by the above procedure will be an infinite series
in the parameter c2. Since the theory is manifestly super-
symmetric and anomaly-free (for specific values of c, and
cz) it is tempting to conclude that it is some kind of low-

energy field-theory approximation to superstring theory.
Precisely in what sense, if at all, it arises from superstring
theory'is, however, far from clear. In any case, the itera-
tive procedure outlined above provides a systematic way
of obtaining an anomaly-free SYM-supergravity field
theory. In this connection we mention the recent at-

I

tempts' that have been made using the component fie]d
formalism. The superspace approach presented here is
technically more efficient, but a detailed analysis is re-
quired to establish its consistency. Work in this direction
is in progress.

Note added. After this work was completed, L. Mezin-
cescu brought to our attention the recent work of R. Ka]-
losh and B. Nilsson [Phys. Lett. 167B, 46 (1986)] which
also discusses some of the issues studied here.
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2$ I agPI y)s
—,'R—yP, +ryPTb ——0,e5 d & d b d

Ra(py) +D(yP rap)e rypTea
e5 e 5

(A6)

Rgr(py) —0 e (A8)

We first study the algebraic equations (A3) and (A6).
From (A3) we find

eliminating R p,bd we can derive the equation:

6T„' —D,y"(r, r, )y

,'DpT-„d(r, r~}p'+ ,'T„-y(rbr, ),p

+ —,'T y(r~r, r, ),s—T,y(r"r ) '.
Using this in (A6) we get

Tab =0.
Contracting a with d in (A6) and using (A9) we find

0"r.~pry)s=o

or, equivalently,

raepryS=0 .(e5)

Also, multiplying (A10} with I"py we get

p'sr;s=0 .

(A9)

(A10)

(A 1 1)

(A12)

Using (4.5) this becomes

6T„'—D.y"(r, r, );——,'D, T„,(r, r~)p'

=36J r —8J.,r s+27ZP(r, r, ),'—18Jsq„.
(A22)

Contracting c and e in this equation we get (4.8), while

multiplying it with I'sy gives (4.9). Using the constraint
(4.7}on Ja, and (4.8) we find

(A23)

Using this equation and the part of (A6) symmetric in a
and d we find

Ta (be) (A13)

Since T,b, is antisymmetric in the first two indices this
tells us that T,b, is totally antisymmetric.

Now Pes may be expanded in SO(1,9) irreducibles as

yeS g ( ra)eS g ( rabc)eS g, ( r abcde)eb (A 14)

Where Gab, iS antiaymmetriC and G~d„aS Well aS r a+d',

are both antisymmetric and self-dual. Equation (A12)
forces Gb to vanish while (A13) and the part of (A6) sym-
metric in a and d implies that the 126 is absent. So,

yeS g ( rase)eS (A15)

To determine G~ we proceed as follows. Multiplying
(A3) with ra y and contracting 5 with a we find

Rap,dr =0 (A16)

Jy, ———,', Dp(r, g—)Py . (A24}

Using (4.5) and (A22) we can obtain an expression for the
remaining irreducible, the 560:

s ) D T (rjk)ps+ ( D T rkps (A25)

Combining these results we can relate the superfield T„
to fermionic derivatives of T,b,

T„= )4DPTjk[e(r—]) + DPT kl— (A26)

From (A20), we see that the same is true of R p,bd. Final-

ly, we obtain an expression for the Ricci tensor in terms
of T,b, and its fermionic derivatives. Multiplying (A5) by
(I If )s and evaluating some traces we find

Rcbef ()DPTbc '(I elf)S +D[bTc]ef+ i Tbc Tefd
S p

This implies that the 16 in Tbd vanishes while the 144 is

given by

while multiplying it with ra™(r'f)sagives us

R,(racdef)aP 18R efraaP

2R ear faP—+2R par «P=O .

Similarly, multiplying (A6) with (I ~ ~}yp we get

+ l2 je[c fb]fT + 4 yje[bTcJ Tfjk 4 yjf[bTcI Tejk '
'k 'k

(A27)

(A17) The Ricci tensor is then

1 5 b P & b & 2 3 jk
Rce () DPTbc (rer }S 2 DbTec + 4 jec T 2 TejkTc

24X16X42ga'f+(r«d'f) pR @d=0,

while multiplying it with I y we find

6X646„d—Ry~l +32T, ~——0 .

(A18)

(A19)

Using (A17)—(A19) we can derive (4.3). Substituting this
in (A6) we get (4A).

%e now study the remaining equations and show that
all the other unknown superfields can be related to T~
and its fermionic derivative. From (A4) we see

DpTb, p ——0 (A29)

which follows from (A5). The first term in (A28) may
then be expressed in terms of a fermiomc derivative on the
144 of Tb, s. The antisymmetric (in c and e) part of the
resulting equation is

(A28)

where R„=yj fR,b,f. This expression can be simplified

by using

1R Pcbd TDP Tcbd + Tcb ~dyP+ Tdb ~cyP+ Tdc ~byP . R [ce]=DE y[cre] 2 Da Tecpy 1 (A30)

(A20) On the other hand, from (Al) we get

Multiplying (A7) by 1Py and (A20) by —,'(l, l ~)+ and D, Tb, '+2R)b, )
——0 . (A31}
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Comparing (A30) and (A31) we see

D~J,~.I bj
——D, T.,'.

Now using (A26) and (A29) and the result

D DPT,b'I, = —16D,T,b',

(A32}

(A33)

which can be obtained by using the relation for the an-
ticommutator of fermionic derivatives, we get

DaDpTfk[, (rb)fk) =24D, T,b' .

This equation along with (A24) and (A33) gives us

DpJr[arb)+ = 4D, T,—b' .

(A34)

(A35)

Comparing (A32) and (A35) gives us the equation of
motion for T,b, (4.12). Also, this result can be used to
simplify (A28} to obtain the expression for the Ricci ten-
sor given in (4.13).

APPENDIX B: THE I' BIANCHI IDENTITIES

In this appendix we discuss the solutions of the F Bian-
chi identities (2.19). In component form these equations
are

D[eHabd]+ YT[„H" tr(F[eaFbd]) =0

rf H-, =o,

D&,a.~„+Zrf a- „=0,

(Cl)

(C2)

(C3)

3D[eHab)5 —D5Had, +3T H- +31[)'rr
[ea Fb]$ [ee8 4b]g

—6citr(F[~rb)a5X )=0, (C4)
1

D[eHa]P5+D(PH5)ea+ T ea HfP5+ rP5Hfea

—1[ r[„-pH-„.]5—y~r =,H-

+2ci I [,p "r,)5„tr(X~X~)=0 . (C5)

Equation (C2) is solved by (4.19). Using this (C3} can be
solved for Hfdp To obtain the solution we multiply this
equation with I' P and find

APPENDIX C: THE H BIANCHI IDENTITIES

In this appendix we discuss the solutions of the H Bian-
chi identities (3.8). In component form, these equations
ale

&[cFba) T[cb Fa]d T[cb Fa)5=0d 5

I („pF )d=O,d

+[cFb]a+~a cb+Tcb Fda Ta[c Fb)5

&(rFP)a+ I rPFd =0 .

(81)

(82)

(83} We may write Hfdp in terms of irreducibles as

Hfdp ~fdp+ ~[f rd]ap+~a(rfd)p (C7)

SAa5d+Aa(I dI'), +2(I' I'), Hfpd+16H;d =0 .

(C6)

Writing F d in terms of irreducibles we may use (82) to
show that the 144 is absent and so (4.14) follows. Writing
&+5 in irreducibles we may use (84) to show that the 1

and 210 are absent and thus derive (4.15). Equation (83)
directly gives us (4.16}.

To obtain the gluino equation of motion, (4.17), we use
the anticommutation relation:

INp, & IX5= 2rp, &',X-5 Rp 5„Xr .- (85)

Contracting a and 5 and using (4.16) we get

7r ~+.X5= ,' T„,(r"d—)p—5X5+9y"rbpsrb~'

(86)+Rp rX" .

Using (4.3) and (4.4) this simplifies to (4.17). Finally, the
pang-Mills equation is obtained by using the commuta-
tion relation

[ub, u.]x5=Fb~5 Rb.s„xr Tb.p—&pxs. —(87)

Multiplying this with (I" )5, using (4.15) in the first term
and commuting &' through & in the second term on
the left-hand side me find

[6abF"=8x r:px p ,'D.T„,(r""r ),—.x—' 16T„F~—

Substituting this in (C6) we find that the 144 vanishes,
thus resulting in (4.21).

To solve for H~, we multiply (C5) with I d to get

H = yT~+ ,', (r —)P'D pX, —

(rd ) Ptr(X XP), (Cl 1)

while multiplying (C5) with (I ) and using the ex-
pression for the anticommutator of two fermionic
derivates on P, we get, after some algebra,

Dpa, = r~, y T(r—'")~—

where the superfields 4 fdp and P'f satisfy the con-
straints

(CS)

(C9)

Equation (C6) then requires that the 560 in Hfdp be ab-
sent. Contracting c and d in this equation we can solve
for the 16:

(Clo)

& T 5(rcreb) ~y+ T 5(rcerb) ~r
+3T,d (r'"r')rbx~+ ', T;5I' sx

i' . —

Using (A24} we may simplify this to

m,F"= ,' r'.pX XP T' F -[)J,'X& . --(8[))

(89)

tr(x x")(r~)a„(r )p, . (C12}

Equations (Cl 1) and (C12} lead to (4.22) and (4.23). Fi-
nally, an exPression for a fermionic derivative on Tab, can
be obtained from (C4) by using (Cl 1):
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Dy abc T[ab I c)ay+0 D[a~y~I bc])y 0 Tabc~y (t) T[ab (I c]g)y ~P 4' (I [ait)~bc])y ~P

'(I" l,b, )yPtr(FfX )+4c((t) 'I [,-„pcr{F~P' } .
6

(C13)

This completes the set of solutions of the IBianchi identities. We shall now derive the equations of motion for A, and P.
Multiplying (C13) by {I" } " and using (4.10) we get (4.24). Taking the fermionic derivative of (4.24) and using the ex-
pression for the commutator of a bosonic and a fermionic derivative on A. and several of the pre~ious results we obtain
the equation of motion for ()(), (4.25). The expression, (4.26), for the 144 in T,b may be derived by multiplying (C13) by
(I bc) y

We may now evaluate the first source term in the Einstein (xluation; this is a little tedious. Using (4.26) and (4.24), the
expression for the commutator of a bosonic and a fermionic derivative on A, , the expression for the commutator of two
bosonic derivatives on ([), (A20), (A26) and (83), we find

C)
DpJy, l b™=—,'(t) (AI—(,Db)A)+c)p 'tr(XI (,S'b)X) —p 'D(,Db)p —,

' T p—Tgj"+ (t) 'tr(XI'Jk(, X)Tb)J
2

C) C)
'yl, b tr(XI,~X)V + (t) 'tr(4F„F'b +9yj,bF,~F' ) —,

'
p (—A I jk (,A, )Tb)

C)+ —.8 0 'y)ab(~l ca~)T' —
12 0 '«[FbJX(I "'r)~+125(al'I'b))~l (C14)

We have used an obvious compact notation in this equa-
tion. This expression is symmetric in a and b, thus satis-
fying the constraint on it, from (A32) and (A35), identi-
cally. Also, the Ricci tensor is, therefore, symmetric.

Finally, we show that (C13) in (A26) do not determine
T,b in terms of the other superfields. Substituting (C13)
in (A26) we see that all terms involving the 560 of T,b
cancel and the resulting equation just determines the 144.
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