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Because it acts on space-time and is not semisimple, the Poincaré group cannot lead to a gauge
theory of the usual kind. A candidate model is discussed which keeps itself as close as possible to
the typical gauge scheme. Its field equations are the Yang-Mills equations for the Poincaré group.
It is shown that there exists no Lagrangian for these equations.

I. INTRODUCTION

Gauge models for the Poincaré group endeavor to bring
together three lofty ideas: (i) all interactions should be
unified in some all embracing theory; (ii) interactions are
mediated by gauge fields; (iii) gravitation is intimately re-
lated to the very texture of space-time. Elementary parti-
cles are classified by the gauge groups and, in what con-
cerns symmetries in space-time, the same role is played by
the Poincaré group.! A Poincaré gauge theory will always
be kept apart from the usual gauge models by two pecu-
liarities: the nonsemisimple character of the group® and
the presence of a “kinematical” representation, whose gen-
erators are fields on space-time itself. Concerning the
first of these features, there are two main consequences:
the gauge potentials related to the Abelian subgroup have
unusual transformation properties and there is no bi-
invariant metric on the group. A purely right-invariant
metric may suffice to build up a Lagrangian but the result
is an atypical gauge Lagrangian leadin§ to field equations
which are not of the Yang-Mills form.” As to the second
peculiarity, shared by all models involving space-time
symmetries, all local transformations in the kinematical
representation may ultimately be seen as translations and
the trouble is that there is no such thing as “gauging”
translations in the usual way: exp(a®d,)f(x)=f(x +a)
becomes false as soon as the parameters a* become point
dependent. The simple idea of gauging by imposing a lo-
cal symmetry does not apply and at least some of the
ideas currently associated to gauge theories will have to be
forsaken. Our objective in this paper is to examine a
model which remains as close as possible to the general
scheme of gauge theories. Poincaré models have been ex-
tensively considered,** but almost always with a Lagrang-
ian as the starting point. In general, their field equations
are not the Yang-Mills equations which can be written
directly from the group structure constants. These equa-
tions will be taken here as the model cornerstone and it
will be shown that they cannot come from an action prin-
ciple.

When looking for a space-time-rooted gauge model for
gravitation, it is natural to investigate those features of
space-time presenting gaugelike characteristics. On any
differentiable manifold there is a naturally defined bundle,
the bundle of affine frames,® whose structural group is the
affine linear group AL(n,R )=GL(n, R )&T,, the semi-
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direct product of the linear group and the translation
group. In the case of space-time the restriction to Lorentz
frames reduces it to the Poincaré group P=.¢&T,. This
always-present structure provides the most general gauge-
like features related to space-time and justifies the interest
in Poincaré gauge models.” Of course, in order to accom-
modate the known elementary particles, .Z is to be taken
as the covering group of SO(3,1), that is, SL(2, C). The
Lie algebra is, as a vector space, a direct sum of the
Lorentz and the translation sectors. In a basis with gen-
erators {Z,p,1,}, an affine connection T on the bundle
decomposes into

T=r+S, (1.1)

where I‘:%Zaﬁl“"ﬁ“dx” is a Lorentz connection form

and S =I,h%dx" is the solder form.® The same decom-
position affects the curvature of T':

F=F+T, (1.2)
where F and T are the curvature and the torsion of I':

F=dTI'—-iC AT, (1.3)

T=dS —i’AS—iSAT . (1.4)

Note that torsion is always present in the bundle of
frames. It may be vanishing (as in general relativity) but
it has consequences anyhow. Furthermore, the introduc-
tion of spinors on a manifold practically enforces (or re-
veals®) its presence. As still another consequence of the
Lie-algebra decomposition, two Bianchi identities appear:

dF —i[T,F]=0, (1.5)
dT —i[T,T]—i[S,F]=0. (1.6)

These equations summarize the geometry involved, and
should correspond to the purely geometrical substratum
of any gauge theory. The dynamical content is to be
given by the field equations.

The Yang-Mills equations can be written for any group
once its structure constants are known. For the Poincaré
group, we find that they are

dF—i[I',F]=0,
dT—i[TI,T]—i[S,F]1=0,

(1.7
(1.8)
where F and T are the duals of Fand 7. These equations
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have been first proposed by Popov and Daikhin,’ who
pointed out that, if I' is restricted to be metric preserving
and torsionless, they reduce to Einstein’s equations
R,,=0. Such restrictions are, however, unnatural for
other reasons than the desirability of the presence of tor-
sion alluded to above. Important reasons to look for a
gauge theory for gravitation are the apparent resistance of
Einstein’s theory to renormalization and the gauge
theories’ penchant for it. It is not clear just where such a
penchant comes from, but it is a general feeling that con-
formal invariance is somehow involved in good short-
distance behavior.'!! The restrictions leading to
Einstein’s equations break the conformal symmetry of
Egs. (1.7) and (1.8). They also break the discrete duality
symmetry of (1.5)—(1.8), another important characteristic
of gauge theories.!?

A problem remains in taking the above equations as
gauge field equations: the translational gauge potentials
are identified with the tetrad fields £,. There are many
difficulties in such an interpretation. First, the solder
form being a canonical attribute of the frame bundle, its
components are in a sense given a priori* and cannot par-
ticipate in the description of any specific field. A second
difficulty appears in the presence of source fields: the A%,
will couple to their kinetic energy and consequently they
will have no free propagator. Finally, the absence of a
gauge interaction is characterized by the vanishing (up to
gauge transformations) of the potential field, an impossi-
bility for the four-leg fields. We shall see below how all
these problems can be avoided. The solution will be an
old one!® (the potential being the nontrivial part of the
h?,) but in a different context. Equations (1.5)—(1.8) will
remain valid, and the field equations will keep the same
form, but with T replaced by a new field strength. The
validity of these equations is supported by another, in-
dependent argument. The Poincaré group P acts on the
tangent spaces, each one itself a Minkowski space. Now,
P is an Inonii-Wigner contraction of the de Sitter (dS)
group. Unlike P, dS is semisimple and it is not difficult
to build a gauge theory for it. In the tangent bundle, to
replace P by dS corresponds to replacing each tangent
Minkowski space by an osculating de Sitter space."* Such
a space is characterized by a parameter L, a length related
to its (constant) curvature. The contraction process corre-
sponds to L — co: in the limit, dS becomes P and each de
Sitter space becomes a Minkowski space.!”” The Lorentz
group, a common subgroup of P and dS, remains un-
scathed in the process, but the four remaining dimension-
less parameters of dS get multiplied by L and become the
translation parameters of P.!® What happens to gauge
fields under contraction has been analyzed some time
ago.” The point of interest is that the equations taken
here as fundamental (both Bianchi and Yang-Mills) come
out as the contraction limits of the corresponding equa-
tions for the dS model.

The contraction procedure has been used for a number
of years!” to circumvent difficulties in treating models in-
volving the Poincaré group'® and will be used in the fol-
lowing as a guide. In Ref. 7, the behavior of fields in the
adjoint representation has been examined in detail. In
Sec. II below, we analyze briefly what happens in the

kinematical representation and give a rather detailed ac-
count of the model. The impossibility of getting at the
Yang-Mills equations from a Lagrangian is shown in Sec.
III as a consequence of Vainberg’s theorem'*?° of func-
tional calculus. In the final section a few comments are
made about quantization and the possible interest of a su-
persymmetric version.

II. GENERAL DESCRIPTION OF THE MODEL

A special characteristic of gauge models involving
space-time symmetries is the presence of a “kinematic
representation,” whose generators are tangent fields. At
each point of space-time, one can choose coordinates { x ¢}
for the tangent space?*' and realize the P Lie algebra by
the well-known generators

Laﬂ= —i(xaaﬂ—xﬁaa) N (21)
Zy=—id, . 2.2)

The important point is that, as these operators act on
source fields through their arguments, all fields will
respond to their action. Spinor and vector fields will be-
long also to other representations and their total response
to Lorentz transformations will be governed by

Zop=Lag+Sap - (2.3)

Scalar fields, however, will be singlets in any other repre-
sentation, and their kinematical response is the only possi-
ble explanation for the universality of gravitation in a
gauge picture.

The transformations generated by (2.1) and (2.2) will
change points in the fiber (i.e., in the tangent space). For
an infinitesimal change with parameters (8w®?,8a%),

Sx¥= éSw"ﬁLmﬁx"‘-}-z’Ba"‘Zax7
=—8w"x,+8a? . (2.4)

At a fixed point, we shall write the corresponding change
of a scalar source field as

Sodp(x)= d(x) . (2.5)

i .
Eﬁw"ﬂLaB+lﬁa"Za

For the dS Lie algebra, the kinematic generators L,
(with a,b =1, ...,5) are!®

Lop=—i(xadp—%pdq) ,
i b (2.6)

2
14+

La5=—'iL 4L2

B
X
ASTACS

where L is the dS length parameter and x2=x,x% The
ten group parameters can be grouped as {w®=—w)}.
They are, of course, dimensionless. The contraction is ob-
tained by redefining

da,=Lbw,s (2.7)

and proceeding to the limit L-— . The infinitesimal
change under a dS transformation,
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Bod(x) = 78w Ly g(x) (2.8) Vit
becomes just (2.5). In this process, generators and param- U =exp -é—w"”zab (2.19)

eters change their dimensionalities. The gauge potentlals
I“"’ for the dS field will, under contractlon, behave in a
way analogous to the group parameters:’ defining

ref, =4, (2.9)
and
r“,=L-'B%,, (2.10)

the A"ﬂy and B, will, after the limit is taken, appear as
the P gauge potentials. The covariant derivative for the

dS case is
b
=3,+= Fa”& ol (2.11)
For a scalar field,
i .

D,¢= |3+ E[“'ﬁﬂLaB-HF"S#LaS ¢
turns into

D,¢=[3,—(4°P,x5—B*,)3,]¢ . (2.12)

Note that we have been using { x*} (with the beginning of
the Greek alphabet) as coordinates in tangent space, and
{x*} (with the second half of the Greek alphabet) as coor-
dinates on space-time. So,

Dyé=h?,3q , (2.13)
where
h®,=3,x*+B%— A% xg (2.14)

can be regarded as a four-leg field. This expression comes
out naturally from (2.11) under contraction, using (2.10).

For fields belonging also to some other representation,
Z,p instead of L,g has to be used. Let us examine the
case of spinor fields. The dS Lie algebra has a beautiful
representation in terms of the y matrices: the generators
are

Slrarsl; 2.15)

Ogp = —
we see that ys5 acquires the same status as the other y’s.
The complete generators are now

g,
Zgp=Lgy+—2 (2.16)

2
The covariant derivative (2.11) gets extra terms; the part
in % ,0,5/2~L ~'B%,0,5/2 vanishes on contraction and
the resulting Poincaré covariant derivative is

D= |h%3a+ L ye v. 2.17)

#" aB

The behavior of the gauge potentials under transforma-
tions is obtained from that in the dS theory. There,

r,=Ur,u-'-iva,u-', (2.18)

The double-index notation allows the use of 5X 5 matrices
in the adjoint representation and leads to a direct contact
with the usual notation [as in (2.30) below]. Using

(Zgp)ea /= if ab,cd o

for the matrix elements, a straightforward calculation

shows that (2.18) can be written as
ed, =(A~1,T%,Ap?—(A71)5,0,A% (2.20)

where

1
=[exp(w)]p?=8,"+w, +?wb wed e,

the indices being raised or lowered by the dS metric. In
the same line, the field strength covariance

' -1
Fj,=UF,U

can be put in the form

F:cdpvz(A—l)caFab“vad . (2.21)
The field strengths are

FCduvz a#l-\cdv__ avrcd# _ rce#r\edv_,r_ rcevred# . (2.22)
The contraction is done by identifying I'*’,=—T%,

=L~'B%; T*f,=4°8; F*, =L~'r",,; after the limit
is taken, it remains for the Lorentz sector

Faﬂ,",:a,‘A aﬂv'_avA aﬂ,‘_Aaw‘A YBV+AGYVA (2.23)

[a term L"Z(B“,_,Bﬂ,,——B“,,BBP) disappears] and, for the
translation sector,

,,=0,B%,—3,B%,—A°,BP + 4°5 BP, .

v8,

(2.24)

This is just the covariant derivative of BY,, as defined by
the connection 4. The same procedure, applied to (2.20)
and (2.21), leads to the gauge transformations for the P
theory:

APy = (A1), AT AP — (A1), 8,A7F, (2.25)
B, =A%, 4" a5 +(A~1)",BY,—(A~")%,d,a? ,
(2.26)
Fob =(A=1) F® AP, 2.27)
% =(A"1 F8 g+ (A1) 17, . (2.28)

Here a note of caution: one might wonder about the in-
version of the roles of matrices A and A~!. The reason
for it is that we have been considering affine frame
transformations in the tangent spaces, given by

en=egAP,—a, , (2.29)
with the matrices acting on the right. This convention,
borrowed from the mathematical literature,® corresponds

to the coordinate transformations
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x%=(A")s(xP+aP), (2.30)

of which (2.4) is the small-parameter version. The above
rules for B'®, and 7'%,, come from (2.20) and (2.21) by us-
ing

aa=LAa5 ,

of which (2.7) is the infinitesimal case. The above con-
vention of taking the product of Lorentz transformations
and translations instead of the exponential (2.19) makes
no difference for the above rules but should be taken into
account when considering the change of a source field as,
for example, the finite version of (2.5).

The torsion T%,, will be the covariant derivative of the
tetrad field [the same as (2.24) with A, instead of B?,].
Using (2.14) and collecting the terms conveniently, we
find that

T, =1%,—F%, xg . (2.31)
The sourceless field equations for the dS case are
3 FoPy _T% FYBv | o 7B _Tog Fou
+FT%, =0 (2.32)
and
8, F¥# T2, FY¥ 4 F2T75,=0 . (2.33)

Redefining the fields prior to contraction, we see that the
last two terms in (2.32) acquire factors L ~2 and vanish in
the limit. The resulting equation is

a”Fapr__ A aw,FYB”V'l’ Fﬂyl‘VA 7’5“ =0. (2.34)

The disappearance of these terms will be responsible for
the non-Lagrangian character of the P field equations, as
will be seen in the next section. From (2.33) we get

3,7 — A%, T L F% MYBY, =0 . (2.35)

A direct computation shows that this set of equations is
covariant under the transformations (2.25)—(2.28).

Equation (2.34) is just (1.7) in components. As to
(2.35), it has the same form as (1.8) when written in com-
ponents, the difference being that 7 is not the torsion, but
simply the covariant derivative of the field B. Had we
identified I'**,=L ~'h°,, just (1.8) would have resulted.
Now comes a surprising result: if we take (2.31) into
(2.35), we find that

3, T — A%, TH L FO"hP, =0 . (2.36)
This is just (1.8) in components, which is consequently
preserved.

The behavior of the tetrad (2.14) under P transforma-
tions is obtained by using (2.25), (2.26), and (2.30). One
finds that

h'®,=8,x"*+B"*— A" B xP=(A""VghP, (237
has an interesting result: the tetrad field ignores transla-
tions, behaving (as it should) as a Lorentz vector field. If
we use all the above transformation properties in relation
(2.31) we find also that, under a P transformation,

T'ayv=(A_l)aﬂTBuv . (2.38)

Looking at the equations and transformation properties
for the components in the Lorentz sector, we see that it
constitutes a gauge subtheory. This is not the case for the
translation sector, which clearly is not a subtheory and ex-
hibits rather awkward transformation properties. Howev-
er, if we look more closely into (2.26) and (2.28), we find
that, for pure Lorentz transformations (¢%=0), both B%,
and 7%,, behave as vectors in the algebra indices. The
awkwardness comes from the coupling between transla-
tions and Lorentz transformations and is just what is
necessary to endow those quantities possessing clear
geometrical meanings, such as A%, and T7,,, with a sim-
ple behavior. The set (F"ﬁ“v,f",w) can be taken as the
field strength despite the strange behavior of 77,,. In par-
ticular, it allows a good, invariant characterization of the
vacuum of the model as F “9,“=0, 7 ,,=0, corresponding
to gauge transformations of zero potentials in (2.25) and
(2.26).

Usual gauge potentials have the dimension of mass and
field strengths of (mass)? (in units #i=c =1). The tetrad
fields are dimensionless and, because of the redefinition of
fields, B®, and 77, have dimensions zero and one. If we
want to get back the normal dimensions, we must add a
length factor / to each B, (equivalent to a redefinition
I‘"5M=IL ‘IB““ instead of that previously adopted). Such
a problem was to be expected because translations, unlike
other transformations, have dimensional parameters. All
current densities have dimension 3, except the Noether
current associated to translations: the energy-momentum
density has dimension 4 and any theory using it as a
source current will have to cope with this fact. We shall
here prefer to keep B®, dimensionless and adopt the
(equivalent) rule of adjusting the source terms with / fac-
tors whenever necessary.

Taking the covariant derivative (2.17) into the usual
free Lagrangian for the spinor field (by the minimal cou-
pling prescription), it is easy to check that the variations
with respect to B?, and A"ﬂy lead to the energy-
momentum tensor density 6% and the total angular
momentum density M®., The form of (2.14) is enough
to ensure the usual relationship between the energy-
momentum and the orbital angular momentum, both
currents representing the responses of source fields to
transformations in the kinematic representation. The
equations (2.34), (2.35), and (2.36) have as sources, respec-
tively, M, 176", and (176**—M“P'x p).

The equations remain covariant under (2.25)—(2.28),
but the coupling between translations and angular
momentum imposes on 6*" a peculiar transformation law:
for a transformation corresponding to (2.30),

129""’=(A_1)aﬁ(Mﬁyvay-i—IzBBv) . (2.39)

By taking derivatives of the field equation and combin-
ing conveniently the terms, we arrive at the invariant con-
servation laws

3 MP— 4%, MYB L M F4TE =0, (2.40)
0, (120™) — A%, (170%) + M FB7,=0 . (2.41)

The angular momentum M= _#?f"4 §° contains the
orbital part .#°?", which is inconvenient for a field
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theory. The coordinate xg appears explicitly in both the
field equations and the Lagrangian (note that the source
Lagrangians are always well defined and it is no problem
to obtain the currents, even after contraction). We can
follow here the usual procedure'® to get around this prob-
lem: it is enough to use, as the point-dependent Poincaré
parameters, the set 5w®? and 6x¢ given by (2.4), instead of
the ten original parameters 8w®? and 8a®. This stratagem
is used without much ado by most authors but it has some
consequences deserving discussion even at the price of re-
peating some apparently trivial things. Of course, the
new parameters are to be considered as functionally in-
dependent so that now

S dab
6x%  ba®

from (2.4). As
i o
St = éawaﬁ—;ﬁ +6x%d,0 ,

the covariant derivative

D,y= ap¢+ AaBp :Olfﬁ +Ba#%
becomes
D,Y=(3,x*+B°, )6a¢+ L gob wOap? (2.42)
with a new tetrad field
h®,=3,x*+B°, . (2.43)

For a scalar field, of course, the last term in (2.42) is ab-
sent. With the transformations described in terms of the
new parameters, the fields B, will exhibit a behavior dif-
ferent from that given by (2.26). The simplest way to find
the new rule is to notice that, if (2.42) is to be covariant,
B, must behave now in the same way the expression
B" — A% wXpg behaved in terms of the old parameters.
For the infinitesimal case
B"®,=B% —dwh?,—0,6x" . (2.44)
In this parametrization, a pure translation (dw®,=0)
changes B, in a simpler way:

B'®,=B%,—03,8x“ (2.45)
whose finite version is
B'%,=B% —0,(x""—x%) . (2.46)

A direct calculation shows that % %, keeps its behavior
(2.37) and that (2.38) still holds for T"w However, with
(2.43) the relation between the torsion and the field
strength 7 becomes

Te, T s (2.47)
where
tapvaaﬁvapxﬁ_Aaﬁ“ava (2.48)

is a contribution to torsion coming from the Lorentz sec-
tor. If now we identify the coordinate systems, so that
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9,x%=05%,, we see that ¢%,, measures the asymmetry of
the connection A or, in other words, its noninertial char-
acter. Formally t%,, is the covariant derivative of the
trivial frame 9,x in the connection 4. One would expect
a noninertial effect in the presence of an angular momen-
tum field density, but the gauge nonlinearity may create it
even in the absence of sources in Eq. (2.34). Another ef-
fect of the reparametrization is to hide the duality sym-
metry for the torsion: Eq. (2.36) is no more valid when
T =t +7. Note, however, that the reparametrization,
which is essential for a future quantization, keeps B,

the fundamental field with the same relation to L and
furthermore, preserves the duality symmetry for the
dynamical equations. All explicit dependence on the
coordinates disappears. The sources in (2.34) and (2.35)
become, respectively, S® and L20, where 8° is the
new energy momentum obtained when the new covariant
derivatives are used in the source Lagrangians.

The reparametrization brings forth a problem in the
characterization of the vacuum. Before the change of pa-
rameters, the vacuum is given by a gauge transformation
of vanishing fields, B"z =—(A" 1)‘z “a" or, for infini-
tesimal transformations, B° w=—0, 8a This should not
change by a reparametrization, but (2.44) tells us that the
gauge transformation of B®,=0 is now B9,
= —(8w?*,0,x"+3,8x%) which nges 7% #0. In reality,
let us recall that, to obtain (2.44), we used the fact that
B®, should have, in terms of the new parameters, the
same transformation properties of (B, —A4°.xp) in
terms of the old. This is not to say that B, has been
changed to absorb the term A%# uX g, it is s1mply a way to
fix its transformation properties. If we want to recover
the vacuum via the transformatan rules, we have to add
to it the piece we had extracted: 4 “,x, = —(3,6w)x,.
Once this is done, we obtain the same vacuum as before
(although written in terms of the new parameters). An in-
teresting consequence of the change of parameters is that
the tetrad of the vacuum fields becomes integrable: the
absence of the gravitational field is signaled by its holono-
my.

The minimum requirement for a candidate theory for
gravitation is that, under the due conditions, Newton’s
law be obtained. Suppose a spinless point source of mass
M in the simplest case where F=0 and the potential 4
can be gauged out. The static solution in the frame at-
tached to the source will exhibit rotational symmetry,
B“=B“,,dx“=B“O(r)dx°+B",(r)dr, and in this case,
9;B% —0;B% =0 for i,j=1,23. Consequently, B
-3 Jcp for some :p and these components can be gauged
out by choosing a“ _f in (2.26). Equation (2.35) with
source reduces to AB/°=0 and AB®= —I?M§(r). If we
look for solutions vanishing at some spherical boundary at
infinity, we find B/°=0 and B®=I’M /(4mr)=—V(r).
This shows also that | =V'47rG is simply related to the
Planck length.

III. NON-LAGRANGIAN CHARACTER

Despite the fact that some important equations do not
come from a La§rang1an (Navier-Stokes,?> Burgers,
Korteweg—de Vries™®), there is a widespread belief that
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the fundamental equations of physics should be related to
an extremal principle.®> As a consequence of Feynman’s
picture of quantum mechanics, it has even become a
matter of common acceptance that the action is, in some
sense, more “fundamental” than the equations of motion,
not the least because it takes into account the global
characteristics of the system. There are difficulties in this
point of view,2* but we shall not discuss this subject. The
model above is the (contraction) limit of a nice Lagrang-
ian dS theory. We shall show that, once the limit is taken,
it is no longer a Lagrangian theory. Without any pretense
to real mathematical rigor, we shall simply state the fun-
damental Vainberg’s theorem involved,' suitably adapted
to the language of field theory, and show how it works for
gauge theories. In particular, it will become evident that a
de Sitter model does satisfy the requirements for a La-
grangian theory. These requirements, however, fail to be
observed by (2.34) and (2.35). To find that a field equa-
tion complies with the Lagrangian conditions is, in gen-
eral, an easy task. To be sure that it does not is often very
difficult. In our case, we shall be able, first, to suspect
that the conditions are violated and then, to show indeed
that they are ruined by the contraction process.
Suppose that we have an equation

D p(x)=0, (3.1)

where & is a differential operator and @(x) a field be-
longing to some functional space. The Fréchet derivative
of & along some field 7(x) at the point ¢(x) of the func-
tional space can be calculated by

.@;,n=lit%%[.@(tp+en)—.@(<p)]
€—>!

) (3.2)

€=0

d
de.@(<p+ecp)

(x). Given this
o such that

and is itself a linear operator acting on
operator &, its adjoint is the operator

[ dx M@ x)= [ d*x 90D yn(x) (3.3)

for any two fields A(x), n(x).

Vainberg’s theorem says that?® the necessary and suffi-
cient condition for (3.1) to come by variation from some
action functional is that

P,=9,

in a ball around ¢@. Such self-adjointness, taken in (3.3),
corresponds to a symmetry of the Fréchet derivative along
any two directions A(x) and 7(x) around @(x),

[ a4 A0 @ x0= [ d*xn(x)DAx)

(3.4)

(3.5

and is reminiscent of the integrability condition of cal-
culus.?
Once this symmetry condition is satisfied, the action
functional can be obtained as
1
Slel= [ d*xp(x) [, daD(agx)) . (3.6)

It is an easy exercise to check the statements above for
the simplest cases in field theory: for linear equations,
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they are rather trivial. For a sourceless gauge field, the
Yang-Mills equations state the vanishing of

DA =(8°0,+ [ A’ AY—3"AF

+ [ A AY) (3.7)
The Fréchet derivative of & is
(2", Ty = | L @4 e
de €=0
=(DDT)*+ f% "% Fe# (3.8)

where D is the covariant derivative fitted to each case:

(DT)SFY =T — QT 4 f%, (AT — 4>T#) , (3.9)
(DY) =(8°0, + [ pc AP W (3.10)
for a field Yy°* (= —¢°™) in the adjoint representation.
Now, for any such ¢ and any ¢,,,

[ @* 9o D)=~ [ d*x ¢**(Dg),,, . (.11)

This can be found by using (3.10), performing an integra-
tion by parts and antisymmetrizing to obtain the covari-
ant derivative D@, which has the form (3.9). It follows
that

[ d*% @, [D(DT)*=—1% [ d*x(DT)*Dg),,,, .
(3.12)

This would be enough to show the symmetry of the first

term in (3.8) but we can go a step further. We reverse the

roles by setting ¥,,,=[D@]a,, and using again (3.11), ar-

riving at

[ d*x @ JD (D))= [ d*x T, [D(D@)1*.  (3.13)
The condition for the existence of a Lagrangian for the

equation £ 4°Y=0is

f d*x q)av[(DDI«)av+fabcl—\bchyV}

= [ d*% T, [(DD@)* + g’ F*] .  (3.14)
That the first terms on each side are equal is guaranteed
by (3.13). For the remaining terms, it is enough to ex-
change the indices and use the cyclic property of the
structure constants to show that

d4x aufabcrb FeBY — d4x Faafabc b FEBY
P W P u

So, the requirements are more than satisfied, as the
symmetry conditions (3.13) and (3.15) hold separately.
Note that, in gauge theories, it is the summation on the
components that makes the symmetrization possible. The
Yang-Mills Lagrangian is obtained from (3.6) in the form

(3.15)

L =5 A 8By + [ AL FHY (3.16)

Let us now consider the Yang-Mills equations for the P
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group (2.34) and (2.35). Applied to (2.34) alone, the above
treatment would lead to the existence of a good Lagrang-
ian like (3.16), still a manifestation of the fact that the
Lorentz sector constitutes a gauge theory by itself. The

J
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problem concerns the whole set of equations. Consider
the Fréchet derivative of the differential operator in (2.35)
along I‘=(I‘“Bﬂ,n7v=LF7’5V) at the point (A4%g,,B?,) in
the functional space:

D50, 0= — T 7"+ (878, — A%, [ (D7) #*— (D¢ ABT"— T, "B"™)]

+ (D)2 (T2 AT — % AT ) JBS + FoES,

For (2.34), 2%, 3[T,n] is of the form (3.8), the only
differences coming from our use of double indices for the
Lie-algebra components. We take then another direction
in the functional space, say, ¢=(¢%,,w?,) and check to
see whether or not

fd‘xcpaﬁv@’“ﬁ"[l‘,n]+ fd“x w,, 2" [T,n]

= fd‘x T, 2P @, w] + fd“x 1D [ p,w] .
(3.18)

As expected, the Lorentz sector alone satisfies the symme-
try condition. Neither n nor w really appear in the first
terms in each side in (3.18). These terms exactly cancel
each other, and we have to verify if the second terms,
which come from the translational sector, coincide or not.
We find that (i) some pieces do allow for symmetrization,
such as the last term in (3.17), which contributes with

Wa F &1, (3.19)
to the left-hand side, and (ii) some other pieces are not
symmetrizable. It is always very difficult to be sure that a
certain term is not somehow canceled or symmetrized by
some other. The first term in (3.17) is a good suspect:
w,, %, ™" is not symmetrical by itself. The best way to
see that it is not symmetrized by any other is to go back
to the dS theory and trace what happens during the con-
traction process. Let us write (3.15) for the dS case: the
left-hand side will be

f d“X(%‘paﬁﬁf aﬁy&,ewryauF Y _;"paﬁuf aﬂyS,eSF YspF i
+ 1 1fczS 78 pesuy
2 Pas v5,€5 7

“%‘PuSuf‘aSy&,eSFYa“vresp) . (3.20)

The f’s are the structure constants for the dS group, writ-
ten in a hopefully clear antisymmetric-double-index nota-
tion, and the numerical factors account for double count-
ing. The first term above is obviously g<—I" symmetrical;
it is a contribution related only to the Lorentz sector.
Also the last term is symmetrical: by contraction, with
L@gsy=Way, LT, =%, it gives (3.19), related to the last
term in (3.17). Now, the second and the third terms are

(3.17)

not, each one, symmetrical: they are “symmetrizing com-
panions:” they symmetrize each other when we substitute
@ for T and vice versa. The third one is precisely that
giving by contraction our suspect first term in (3.17), once
multiplied by w,,. So, the suspect term would be sym-
metrized by the term coming from the second term in
(3.20). That is where the asymmetry comes from: there is
no such term. If we examine the equations in detail we
see that the symmetrizing second term in (3.20) comes
from the Fréchet derivative of the last two terms in (2.32).
We had called attention to the fact that, in the contraction
process leading to (2.32), these terms vanish. Summing
up: the term, present in the dS theory, which sym-
metrizes the first term in (3.17), disappears during the
contraction process. In this way we can pinpoint how
contraction spoils the symmetry necessary for the theory
to be Lagrangian: some terms in the field equations
disappear and terms like the first one in (3.17) no longer
find a symmetrizing companion in the contracted
theory.?® We could still think that some miracle might
occur: we have been analyzing terms of (3.17) which cor-
respond to (3.15); there are other nonderivative terms, cor-
responding to (3.13), which could eventually symmetrize
or compensate just the above “offending” terms. That
this is not the case may be verified by a direct term by
term comparison.

Consequently, there is no Lagrangian leading to the
dynamical equations (2.34) and (2.35). The argument
above can be line-by-line adapted to equations (1.7) and
(1.8), with the same result.

IV. FINAL COMMENTS

The considerations presiding over the elaboration of the
model, however valid, are no guarantee that it does
describe gravitation. Comparison of a large number of
solutions with experiment only can do that. The model
gives Newton’s law in the appropriate conditions but oth-
er solutions should be examined. Being as gaugelike as
possible, it has better chances to exhibit good short-
distance behavior than most models, except possibly those
of the supersymmetric type. Supersymmetry must
anyhow be broken at present-day attainable energies, lead-
ing to some simpler theory, and the Poincaré model is a
good candidate for that. Being already conformally in-
variant, its supersymmetric extension would be worth con-
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sidering as a possible alternative to conformal gravity?’
models. The quantization of the model is still under
study. Its eventual failure with respect to renormalization
would signal the interest of such an extension. In the ab-
sence of a Lagrangian, quantization can be approached in
two ways: directly from the field equations by the
Killén-Yang-Feldman®® method, and indirectly by the
path-integral procedure using the dS model as an inter-
mediate step. Both have been pursued with reasonable
success, but the question of the renormalizability is as yet
unsettled.
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